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CHAPTER 2  

Theory and Methodology 

2.1 General Theory 

Seismic data processing helps image the subsurface using the seismic waves in 

which recorded at the surface. Migration techniques move the reflections to true 

subsurface positions, collapsing diffractions and increasing spatial resolution as we can 

see Figure 2.1. The migration algorithms are classified to three main categories: integral 

solution, finite-difference solution and frequency-wavenumber implementations 

(Yilmaz, 1987). 

  

Figure 2.1 a) Unmigrated section and b) Migrated section (After Yilmaz, 1987). 

After the migration process, the reflectors are steepened and shortened and only move 

in the up-dip direction (Yilmaz, 1987). 

 

 

 

a) b) 
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2.1.1 Zero-offset and Exploding reflector 

When a stacked section is migrated, migration theory is suitable to record data 

with source and receiver at the same location (zero-offset, Figure 2.2). To develop a 

conceptual framework for discussing migration of zero-offset data, we have to examine 

two types of recording schemes: zero-offset and exploding reflector (Yilmaz, 1987). 

 

Figure 2.2 Zero-offset (Claerbout, 1985). 

The zero-offset section (Yilmaz, 1987) is recorded by moving a single source and 

a single receiver along the line with no separation (Figure 2.2). The recorded energy 

follows ray-paths that are normal incidence to reflecting interfaces. Exploding reflectors 

(Yilmaz, 1987) are sources located along the reflecting interfaces (Figure 2.3). Consider 

one receiver located on the surface at each CMP location along the line. The sources 

explode in unison and send out waves which propagate upward. The waves are recorded 

by the receivers at the surface. 

 

Figure 2.3 Exploding reflectors (Claerbout, 1985). 

The resultant seismic section from the exploding reflectors model is largely 

equivalent to the zero-offset section, with one important difference. The zero-offset 

section is recorded as two-way travel-time (from source to reflection point to receiver), 
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while the exploding reflectors model is recorded as one-way travel-time (from the 

reflection point at which the source is located to the receiver). To make the sections 

compatible, it is assumed that the velocity of the propagation is half the true medium 

velocity for the exploding reflectors model (Claerbout, 1985). 

2.1.2 Downward continuation 

Downward continuation (Claerbout, 2010) handles the multi-path that occurs in 

areas of complex geology, whereas Kirchhoff methods are far less reliable in complex 

velocity models (Gray et al., 2001). Downward continuation focuses on waves that 

propagate mainly in the vertical direction. For understanding downward continuation, 

the storm harbor experiment will be utilized (Figure 2.4) to describe the wavefield that 

propagates to subsurface then is recorded at the surface. 

 

Figure 2.4 Storm barrier for understanding downward continuation (After Claerbout, 

1985). 

To extrapolate the wavefield recorded at surface to subsurface, the storm harbor 

experiment was introduced to explain the extrapolation of the wavefield from 

subsurface. Firstly, the upcoming wavefield which was recorded at surface U(x,z=0,t) 

where receivers located on the beach then move the receiver down to each depth. 

Finally, the receiver moves to the storm barrier the wavefield which is U(x,z,t=0) can 

then be obtained (Yilmaz, 1987). 
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2.1.3 Lateral Resolution 

Lateral resolution is improved after migration by decreasing the Fresnel zone 

(Sheriff, 1980). The equation to calculate the radius of Fresnel zone is as follows: 

 

Figure 2.5 Fresnel zone. 

The calculation of the radius of Fresnel zone (Figure 2.6) starts with equation 2.1. 
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where z is depth, λ is wavelength and R is radius. So, we can find radius of Fresnel zone 

follow: 
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Term of λ2 will be small to be neglected. By using equation 2.3 and 2.4, equation 2.2 

can be rewritten to equation 2.5 (Sheriff, 1980). 

2

tV
z


  (2.3) 

 fV  (2.4) 

2

1

2 

















f

tV
R  (2.5) 

where V is velocity, f is frequency and t is time. 
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Figure 2.6 The geometry of Fresnel zone (After Sheriff, 1980). 

2.1.4 Time and Depth Migration 

Time migration creates a time section but it can be converted to depth by using 

the information of velocity and depth migration from a traveltime.  The difference 

between time and depth migration are velocity. Time migration is looking for NMO and 

stack velocity which focuses the migrated image at each location. Thus, time migration 

performs constant velocity migration at each point. Depth migration uses interval 

velocity which similarly uses a model of subsurface. The interval velocities are averages 

of the subsurface velocities in which are over some characteristic distance. Therefore, 

the depth migration can model the seismic wavefield more accurately than time 

migration. Although depth migration cannot easily estimate velocity so geophysicists 

prefer time migration. The sections of time and depth migration were shown in Figure 

2.7 (Gray et al., 2001). 
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Figure 2.7 Migrated seismic section a) time migration and b) depth migration (Gray et 

al., 2001). 

2.1.5 Wave Equation Migration 

There are two main types of migration methods: ray-based and wave-based. Ray-

based methods are Kirchhoff migration and Gaussian Beam migration that focus on 

computing travel-times by ray-tracing their summation. Wave-based methods are one-

way and two-way wave equation migrations that focus on propagating the full measured 

wavefield. This thesis will focus on one-way wave equation, Gazdag and Finite-

difference migration techniques. 

2.1.6 Wavefield Extrapolation 

The acoustic wave equation in 2-Dimensions describes a wavefield that 

propagates through the subsurface and is expressed as 
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where x is the horizontal axis, z is the depth axis, t is time, and v is wave velocity. 

Wavefield recorded at the surface, U(x, 0, t), is referred to as an upcoming wavefield. 

To determine the reflectivity of the subsurface U(x, z, 0), the surface wavefield-

upcoming wavefield U(x, 0, t) to depth z needs to be extrapolated. The process of 

obtaining the earth’s reflectivity U(x, z, 0) from the observed wavefield U(x, 0, t) at the 

surface is called migration, and the reverse process is called modeling (Yilmaz, 1987). 
When equation 2.6 is Fourier transformed over x and t it gives equation 2.7: 
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where kx is horizontal wavenumber, ω is temporal frequency, v is velocity and kz is 

extrapolation wavenumber. One-way wave equation in the Cartesian coordinate system 

rewrite to equation 2.8: 
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2.1.7 Gazdag Migration 

Gazdag migration method is based on wave equation migration that is applied 

phase-shifts in f-k domain. The Fourier transform can be used to obtain the wave 

equation which is downward continued to depth ∆z by multiplying by filter operator 

(Claerbout, 2010). 
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 (2.9) 

The acoustic wave equation is given by equation x using 2D-Fourier transform to obtain 

wave equation in frequency-wavenumber domain. For each frequency, equation 2.8 is 

employed to extrapolate the wavefield in frequency-wavenumber domain at depth z 

with phase-shift operator (equation 2.9) to obtain wavefield U(k_x,z+∆z,ω) at depth 

z+∆z. The previously step again repeated so that the inverse Fourier transform to space 

domain is then used to obtain the migration section at U(x,z,t=0) (Yilmaz, 1987). 

Gazdag migration method following these steps in Figure 2.8: 
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Figure 2.8 Step of Gazdag migration method (After Yilmaz, 1987). 

2.1.8 Finite-difference Migration 

Finite-difference migration methods solve the wave equation based on the 

downward continuation scheme of the wavefield that propagated into subsurface and 

was then recorded at the surface. Yilmaz (1987) introduced the procedure to obtain the 

differential equation for Finite-difference migration. The acoustic wave equation 

(equation 2.6) and the Fourier transform of wavefield are used to obtain the dispersion 

relation (equation 2.7). They introduced the paraxial dispersion relation (equation 2.10) 

which is then approximated using Taylor expansion to find the dispersion equation for 

15-degree Finite-difference time migration (equation 2.11). 
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Applying equation 2.11 into wave equation gives one-way wave equation (equation 

2.12) 
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After downward continuation steps, Yilmaz (1987) introduces the retard wavefield 

follow: 
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where Q is retarded wavefield and τ and use equation 2.13 and 2.14 into equation 2.12. 

The 15-degree Finite-difference can be obtained from equation 2.15 and 2.16. 
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The equation 2.15 is for collapse diffraction energy and equation 2.16 is thin-lens terms 

which are the terms of lateral variation. If the velocity are varies in lateral direction, this 

migration algorithm still includes thin-lens terms (this is depth migration), If the 

velocity only varies in vertical direction, the equation 2.16 will be a zero therefore the 

mean thin-lens terms will disappear. Only the diffraction terms will still be represented 

(this is the parabolic equation for time migration). Equation 2.15 can be rewritten into 

equation 2.17 (Yilmaz, 1987). 
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The dispersion relation was shown in Figure 2.9 relates to dispersion relation equation 

2.10. The Finite-difference migration method based on 15 degree equation is used to 

allow the imaging of the 15 degree dipping reflector (Yilmaz, 1987). 

 

Figure 2.9 Dispersion relation (Claerbout, 2010). 

2.2 Methodology 

AWK software and Surfer software was utilized to prepare the velocity data, 

Matlab software to run migration then SeiSee software and Petrel software were used to 

show the results and obtain attributes (Figure 2.10). 

 

Figure 2.10 Workflow 
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2.2.1 Wavefield Extrapolation in log-polar Coordinates 

The acoustic wave equation was introduced in equation 2.6. I will introduce 

transformation operator between log-polar and Cartesian coordinate systems as follows: 

cospex   

(2.18) 
sinpez   

where θ is propagation angle and p is extrapolation axis follow: 
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where xl and zl are origin location in log-polar coordinates xi and zi are the horizontal 

and vertical distances of each point from the origin in log-polar coordinates. The 

wavefield extrapolation equation in log-polar coordinate, which was solved by 

Naghadeh and Riahi (2013a) to show the relation between wave equation in Cartesian 

and log-polar coordinate systems 
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Equations 2.22, 2.23 and 2.24 can be used to solve equation 2.20 and 2.21. 

x

u

x

p

p

u

x

u























 


 (2.22) 

z

u

z

p

p

u

z

u























 


 (2.23) 
























































































pp

pp

ee

ee
z

p

z

z

p

x

zx

z

p

x

p








 cossin

sincos
1

 (2.24) 

 

 

 



 

15 

So, the second order derivation for log-polar coordinate systems was derived as follows: 
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From equation 2.25 and 2.26, the wave equation in Cartesian can be rewritten to log-

polar coordinate systems to equation 2.28. 
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If equation 2.28 is Fourier transformed over θ and p, it gives: 
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Where kp is wavenumber in log-polar coordinate, ω is temporal frequency and ep/v is 

effective slowness. Then one-way wavefield extrapolation equation in log-polar 

coordinate system could then be obtained: 
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2.2.2 Migration in log-polar Coordinate System 

This migration aims to compare the results of migration between Cartesian and 

log-polar coordinate systems using post-stack unmigrated data. First, the Cartesian data 

is interpolated to log-polar coordinate. Then, interpolated dataset was migrated. Later, 

the migrated data was interpolated back to Cartesian coordinate and the results were 

compared (Figure 2.11). 
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Figure 2.11 Proposed steps. 

2.2.3 Database 

The datasets are available from “The National Archive of Marine Seismic Surveys 

(NAMSS), a marine seismic reflection profile data archive consisting of data acquired 

by or contributed to the U.S. Department of the Interior agencies.  The United States 

Geological Survey (USGS) is committed to safekeeping this data on behalf of the 

academic community and the nation. These data are provided for free and are open 

access (The United States Geological Survey, USGS)”. The study areas are located in 

the region of Alaska, USA (Figure 2.12 and Table 2.1) 

Table 2.1 The data from Alaska 

Area Survey Line 

Shelikof Strait, Alaska W-26-80-WG 
WSS140 

WSS160 

Norton Sound, Alaska W-21-80-BS 
WNS324 

WSS325 



 

17 

 

Figure 2.12 The study areas a) The data from Alaska and b) coastal of California 

(USGS, 2015). 

2.2.4 Data Checking 

Figure 2.13 highlights some bands of high amplitude in the stacked section which 

can cause problems with the data.  These problem bands are not visible in Figure 2.14. 

So this stacked section was used for the post-stack migration. 

 

Figure 2.13 Post-stack data with the problem. 
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Figure 2.14 Post-stack data without the problem. 

2.2.5 Preparing velocity 

Velocity data was prepared to a format can be used for migration in the Matlab 

software. The AWK software and Surfer software are used to create the velocity data. 

The AWK software is language program designed to handle simple data (Close D. B., 

1995). 

  

Figure 2.15 The velocity data a) Before preparing and b) After AWK software (USGS, 

2015). 
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Figure 2.16 AKW code for preparing velocity data (Hutawarakorn, 2015). 

After the velocity data was prepared with AWK software, the velocity section was 

created using with Surfer software. The velocity is known at some CDPs (Figure 2.17) 

so the known values are then interpolated across the whole section. 

 

Figure 2.17 The example of velocity before interpolating. 

By using Surfer software, the point of velocity for whole section can be interpolated 

(Figure 2.18). 

 

Figure 2.18 After interpolating velocity. 

The interpolated velocity and post-stack unmigrated seismic section were then imported 

to Matlab software. 
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2.2.6 Changing coordinate system to log-polar coordinate system 

The Cartesian velocity model and data were interpolated to the log-polar 

coordinate system for migration. The data were then interpolated back to the Cartesian 

coordinate system. This data were then compared to original Cartesian data as shown in 

Figures 2.19 to 2.21. 

 

Figure 2.19 The velocity model before interpolated from Cartesian to log-polar 

coordinate. 

 

Figure 2.20 The effective slowness model in log-polar coordinate system. 
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Figure 2.21 After interpolated back from Cartesian to log-polar coordinate systems. 

The difference value between the section before interpolation of the data from 

Cartesian to LPCs and interpolated back to Cartesian coordinate system is mostly zero 

as highlighted in green on Figure 2.22. 

 

Figure 2.22 The difference value between the data before interpolated the data and 

interpolated back to Cartesian coordinate system. 

 


