CHAPTER 2

Theory and Methodology

2.1 General Theory

Seismic data processing helps image the subsurface using the seismic waves in
which recorded at the surface. Migration techniques move the reflections to true
subsurface positions, collapsing diffractions and increasing spatial resolution as we can
see Figure 2.1. The migration algorithms are classified to three main categories: integral
solution, finite-difference solution and frequency-wavenumber implementations
(Yilmaz, 1987).

Figure 2.1 a) Unmigrated section and b) Migrated section (After Yilmaz, 1987).

After the migration process, the reflectors are steepened and shortened and only move
in the up-dip direction (Yilmaz, 1987).



2.1.1 Zero-offset and Exploding reflector

When a stacked section is migrated, migration theory is suitable to record data
with source and receiver at the same location (zero-offset, Figure 2.2). To develop a
conceptual framework for discussing migration of zero-offset data, we have to examine

two types of recording schemes: zero-offset and exploding reflector (Yilmaz, 1987).
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Figure 2.2 Zero-offset (Claerbout, 1985).

The zero-offset section (Yilmaz, 1987) is recorded by moving a single source and
a single receiver along the line with no separation (Figure 2.2). The recorded energy
follows ray-paths that are normal incidence to reflecting interfaces. Exploding reflectors
(Yilmaz, 1987) are sources located along the reflecting interfaces (Figure 2.3). Consider
one receiver located on the surface at each CMP location along the line. The sources
explode in unison and send out waves which propagate upward. The waves are recorded
by the receivers at the surface.

%g: - g

Figure 2.3 Exploding reflectors (Claerbout, 1985).

The resultant seismic section from the exploding reflectors model is largely
equivalent to the zero-offset section, with one important difference. The zero-offset

section is recorded as two-way travel-time (from source to reflection point to receiver),



while the exploding reflectors model is recorded as one-way travel-time (from the
reflection point at which the source is located to the receiver). To make the sections
compatible, it is assumed that the velocity of the propagation is half the true medium

velocity for the exploding reflectors model (Claerbout, 1985).
2.1.2 Downward continuation

Downward continuation (Claerbout, 2010) handles the multi-path that occurs in
areas of complex geology, whereas Kirchhoff methods are far less reliable in complex
velocity models (Gray et al., 2001). Downward continuation focuses on waves that
propagate mainly in the vertical direction. For understanding downward continuation,
the storm harbor experiment will be utilized (Figure 2.4) to describe the wavefield that

propagates to subsurface then is recorded at the surface.
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Figure 2.4 Storm barrier for understanding downward continuation (After Claerbout,
1985).

To extrapolate the wavefield recorded at surface to subsurface, the storm harbor
experiment was introduced to explain the extrapolation of the wavefield from
subsurface. Firstly, the upcoming wavefield which was recorded at surface U(x,z=0,t)
where receivers located on the beach then move the receiver down to each depth.
Finally, the receiver moves to the storm barrier the wavefield which is U(x,z,t=0) can
then be obtained (Yilmaz, 1987).



2.1.3 Lateral Resolution

Lateral resolution is improved after migration by decreasing the Fresnel zone
(Sheriff, 1980). The equation to calculate the radius of Fresnel zone is as follows:
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Figure 2.5 Fresnel zone.

The calculation of the radius of Fresnel zone (Figure 2.6) starts with equation 2.1.
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where z is depth, 4 is wavelength and R is radius. So, we can find radius of Fresnel zone
follow:
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Term of 42 will be small to be neglected. By using equation 2.3 and 2.4, equation 2.2

can be rewritten to equation 2.5 (Sheriff, 1980).

Z= el (2.3)
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where V is velocity, f is frequency and t is time.
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Figure 2.6 The geometry of Fresnel zone (After Sheriff, 1980).
2.1.4 Time and Depth Migration

Time migration creates a time section but it can be converted to depth by using
the information of velocity and depth migration from a traveltime. The difference
between time and depth migration are velocity. Time migration is looking for NMO and
stack velocity which focuses the migrated image at each location. Thus, time migration
performs constant velocity migration at each point. Depth migration uses interval
velocity which similarly uses a model of subsurface. The interval velocities are averages
of the subsurface velocities in which are over some characteristic distance. Therefore,
the depth migration can model the seismic wavefield more accurately than time
migration. Although depth migration cannot easily estimate velocity so geophysicists
prefer time migration. The sections of time and depth migration were shown in Figure
2.7 (Gray et al., 2001).



Figure 2.7 Migrated seismic section a) time migration and b) depth migration (Gray et
al., 2001).

2.1.5 Wave Equation Migration

There are two main types of migration methods: ray-based and wave-based. Ray-
based methods are Kirchhoff migration and Gaussian Beam migration that focus on
computing travel-times by ray-tracing their summation. Wave-based methods are one-
way and two-way wave equation migrations that focus on propagating the full measured
wavefield. This thesis will focus on one-way wave equation, Gazdag and Finite-

difference migration techniques.
2.1.6 Wavefield Extrapolation

The acoustic wave equation in 2-Dimensions describes a wavefield that

propagates through the subsurface and is expressed as
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where x is the horizontal axis, z is the depth axis, t is time, and v is wave velocity.
Wavefield recorded at the surface, U(x, 0O, t), is referred to as an upcoming wavefield.
To determine the reflectivity of the subsurface U(x, z, 0), the surface wavefield-
upcoming wavefield U(x, 0, t) to depth z needs to be extrapolated. The process of
obtaining the earth’s reflectivity U(X, z, 0) from the observed wavefield U(x, 0, t) at the
surface is called migration, and the reverse process is called modeling (Yilmaz, 1987).

When equation 2.6 is Fourier transformed over x and t it gives equation 2.7:
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where ky is horizontal wavenumber, « is temporal frequency, v is velocity and k; is
extrapolation wavenumber. One-way wave equation in the Cartesian coordinate system

rewrite to equation 2.8:

ik,Az)

u(z+Az,k, o) =u(zk,, w)e" (2.8)
2.1.7 Gazdag Migration

Gazdag migration method is based on wave equation migration that is applied
phase-shifts in f-k domain. The Fourier transform can be used to obtain the wave
equation which is downward continued to depth Az by multiplying by filter operator
(Claerbout, 2010).

p (-k.A2) 2.9)

The acoustic wave equation is given by equation x using 2D-Fourier transform to obtain
wave equation in frequency-wavenumber domain. For each frequency, equation 2.8 is
employed to extrapolate the wavefield in frequency-wavenumber domain at depth z
with phase-shift operator (equation 2.9) to obtain wavefield Uk x,z+Az,w) at depth
z+Az. The previously step again repeated so that the inverse Fourier transform to space
domain is then used to obtain the migration section at U(x,z,t=0) (Yilmaz, 1987).

Gazdag migration method following these steps in Figure 2.8:
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Figure 2.8 Step of Gazdag migration method (After Yilmaz, 1987).
2.1.8 Finite-difference Migration

Finite-difference migration methods solve the wave equation based on the
downward continuation scheme of the wavefield that propagated into subsurface and
was then recorded at the surface. Yilmaz (1987) introduced the procedure to obtain the
differential equation for Finite-difference migration. The acoustic wave equation
(equation 2.6) and the Fourier transform of wavefield are used to obtain the dispersion
relation (equation 2.7). They introduced the paraxial dispersion relation (equation 2.10)
which is then approximated using Taylor expansion to find the dispersion equation for

15-degree Finite-difference time migration (equation 2.11).
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Applying equation 2.11 into wave equation gives one-way wave equation (equation
2.12)
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After downward continuation steps, Yilmaz (1987) introduces the retard wavefield
follow:

Q=P-e™” (2.13)
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where Q is retarded wavefield and 7 and use equation 2.13 and 2.14 into equation 2.12.

The 15-degree Finite-difference can be obtained from equation 2.15 and 2.16.
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The equation 2.15 is for collapse diffraction energy and equation 2.16 is thin-lens terms
which are the terms of lateral variation. If the velocity are varies in lateral direction, this
migration algorithm still includes thin-lens terms (this is depth migration), If the
velocity only varies in vertical direction, the equation 2.16 will be a zero therefore the
mean thin-lens terms will disappear. Only the diffraction terms will still be represented
(this is the parabolic equation for time migration). Equation 2.15 can be rewritten into
equation 2.17 (Yilmaz, 1987).

ot 8 ox’ (2.17)
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The dispersion relation was shown in Figure 2.9 relates to dispersion relation equation
2.10. The Finite-difference migration method based on 15 degree equation is used to

allow the imaging of the 15 degree dipping reflector (Yilmaz, 1987).

Figure 2.9 Dispersion relation (Claerbout, 2010).
2.2 Methodology

AWK software and Surfer software was utilized to prepare the velocity data,
Matlab software to run migration then SeiSee software and Petrel software were used to

show the results and obtain attributes (Figure 2.10).

Raw velocity - . / The velocity Already to
Vi solbware import to Surfer software /
The velocity already to . }
/ import to Matlab software / Surfer software
Matlab software Post-stack unmigrated
seismic section

Post-stack migrated
seismic section

Petrel software

|

/ Seismic attribute /

Figure 2.10 Workflow

13



2.2.1 Wavefield Extrapolation in log-polar Coordinates

The acoustic wave equation was introduced in equation 2.6. | will introduce

transformation operator between log-polar and Cartesian coordinate systems as follows:

x=e’cosd
. 2.18
z=e’sing (2.18)
where 0 is propagation angle and p is extrapolation axis follow:
p= Iog \/(XI - X )2 +(Z| % )2 (2.19)

where x; and z; are origin location in log-polar coordinates x; and z; are the horizontal
and vertical distances of each point from the origin in log-polar coordinates. The
wavefield extrapolation equation in log-polar coordinate, which was solved by
Naghadeh and Riahi (2013a) to show the relation between wave equation in Cartesian

and log-polar coordinate systems
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e = ePcosf+—-e"sind (2.20)
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Equations 2.22, 2.23 and 2.24 can be used to solve equation 2.20 and 2.21.

ou_ou dp ou 0

T > 2.22
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So, the second order derivation for log-polar coordinate systems was derived as follows:
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From equation 2.25 and 2.26, the wave equation in Cartesian can be rewritten to log-

polar coordinate systems to equation 2.28.

2 2 2 2
o)
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If equation 2.28 is Fourier transformed over 8 and p, it gives:

K, =\/[a);/epj +(k, )’ (2.29)

Where kp is wavenumber in log-polar coordinate, o is temporal frequency and ep/v is

effective slowness. Then one-way wavefield extrapolation equation in log-polar

coordinate system could then be obtained:

—ik,Ap

u(p+A4p.k,, ) =u(p,k,,w)e (2.30)
2.2.2 Migration in log-polar Coordinate System

This migration aims to compare the results of migration between Cartesian and
log-polar coordinate systems using post-stack unmigrated data. First, the Cartesian data
is interpolated to log-polar coordinate. Then, interpolated dataset was migrated. Later,
the migrated data was interpolated back to Cartesian coordinate and the results were

compared (Figure 2.11).
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Figure 2.11 Proposed steps.
2.2.3 Database

The datasets are available from “The National Archive of Marine Seismic Surveys
(NAMSS), a marine seismic reflection profile data archive consisting of data acquired
by or contributed to the U.S. Department of the Interior agencies. The United States
Geological Survey (USGS) is committed to safekeeping this data on behalf of the
academic community and the nation. These data are provided for free and are open
access (The United States Geological Survey, USGS)”. The study areas are located in
the region of Alaska, USA (Figure 2.12 and Table 2.1)

Table 2.1 The data from Alaska

Area Survey Line
WSS140
Shelikof Strait, Alaska W-26-80-WG
WSS160
WNS324
Norton Sound, Alaska W-21-80-BS
WSS325
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Figure 2.12 The study areas a) The data from Alaska and b) coastal of California
(USGS, 2015).

2.2.4 Data Checking

Figure 2.13 highlights some bands of high amplitude in the stacked section which
can cause problems with the data. These problem bands are not visible in Figure 2.14.
So this stacked section was used for the post-stack migration.
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Figure 2.13 Post-stack data with the problem.
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Figure 2.14 Post-stack data without the problem.
2.2.5 Preparing velocity

Velocity data was prepared to a format can be used for migration in the Matlab
software. The AWK software and Surfer software are used to create the velocity data.
The AWK software is language program designed to handle simple data (Close D. B.,

IONT WESTERN GEOPHYSICAL COMPANY Cdp " v
LINE WNS-324 96 100 1524
AREA NORTON SOUND 96 800 1890
INFO 96 2000 3322
com1 96 3000 3840
contz 96 4000 4115
R S N S E i s
VELF 96 100 5000 800 6200 200010900 300012600 400013500 % 2500 4336
VELF 96 450013800 500014036 550014225 600014382

SPNT 168 169. 0 0 96 6000 4384
VELF 168 100 5000 700 5825 900 6525 200010600 300012400 168 100 1524
VELF 168 400013300 450013626 500013882 550014088 600014257 168 700 1775
SPNT 240 241. 0 0 168 900 1989
VELF 240 100 5000 300 5350 700 6050 1000 6600 200010300 168 2000 3231
VELF 240 300012200 400013200 450013540 500013806 550014019 168 3000 3780
VELF 240 600014195 168 4000 4054
SPNT 312 313. 0 0 168 4500 4153
VELF 312 100 5000 500 5650 900 6000 1100 6425 1300 7400 168 5000 4231
VELF 312 2000 9700 300011800 400012900 450013280 500013577 168 5500 4204
VELF 312 550013815 600014010 168 6000 4346
SPNT 384 385. 0 0 240 100 1524
VELF 384 100 5000 600 5925 1000 6075 1400 6800 1800 8100 240 300 1631
VELF 384 2000 8700 300011200 400012400 450012850 500013199 4 2 844
VELF 384 550013478 600013705 240 00 1
SPNT 456 457. 0 0 240 1000 2012
VELF 456 100 5000 700 5875 1000 6075 1500 6900 1700 7600 240 2000 3139
VELF 456 1900 7950 300010900 400012200 450012679 500013049 240 3000 3719
VELF 456 550013344 600013585 240 4000 4023
SPNT 528 529. 0 0 240 4500 4127
VELF 528 100 5000 700 5875 1000 6050 1100 6275 1400 6675 240 5000 4208
VELF 528 1600 6925 2000 8400 300011000 400012300 450012764 240 5500 4273
VELF 528 500013124 550013411 600013645 240 6000 4327
SPNT 600 601. 0 0 312 100 1524
VELF 600 100 5000 700 5950 1100 6225 1400 6600 1800 7375 312 500 1722

a) b)

Figure 2.15 The velocity data a) Before preparing and b) After AWK software (USGS,
2015).

18



Microsoft Windows [Uersion 6.1.76811
Copyright {(c> 288% Microsoft Gorporation. All rights reserved.

CzslUszers 578535981 >cd avk

C:=sauwk>awk "AUELF/ { i=2 ; while {i{=HF> { if {length{%i> > 5>{ print %2 ., subst
»(5i, 8,4 . substr($i.5.6)> ; i++; F else { j=i+l ; print $2 ., $i . §js; di=i+2 ; 23
3" WUNS324.txt > result_WNS324_txt

Figure 2.16 AKW code for preparing velocity data (Hutawarakorn, 2015).

After the velocity data was prepared with AWK software, the velocity section was
created using with Surfer software. The velocity is known at some CDPs (Figure 2.17)

so the known values are then interpolated across the whole section.

Tl Em o\ Emir ] =) Om New

@ Velocity

Figure 2.17 The example of velocity before interpolating.

By using Surfer software, the point of velocity for whole section can be interpolated
(Figure 2.18).

R

Figure 2.18 After interpolating velocity.

The interpolated velocity and post-stack unmigrated seismic section were then imported

to Matlab software.
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2.2.6 Changing coordinate system to log-polar coordinate system

The Cartesian velocity model and data were interpolated to the log-polar
coordinate system for migration. The data were then interpolated back to the Cartesian
coordinate system. This data were then compared to original Cartesian data as shown in
Figures 2.19 to 2.21.
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Figure 2.19 The velocity model before interpolated from Cartesian to log-polar
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Figure 2.20 The effective slowness model in log-polar coordinate system.
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Figure 2.21 After interpolated back from Cartesian to log-polar coordinate systems.

The difference value between the section before interpolation of the data from
Cartesian to LPCs and interpolated back to Cartesian coordinate system is mostly zero

as highlighted in green on Figure 2.22.
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Figure 2.22 The difference value between the data before interpolated the data and

interpolated back to Cartesian coordinate system.
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