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CHAPTER 2 

Materials and methods 

2.1 Phytochemical Structures for P-gp inhibitors 

For library generation regarding the groups of phytochemicals used as compound 

sets, herbal compounds with experimental induced/inhibitory activities were taken from 

a variety of publications based on structural diversity and activity covering. Selected 

phytochemicals were from various frequently used Thai medicinal plants and may be 

well known for many years of clinical applications such as CAM and/or Thai traditional 

medicines, or used as commercial dietary/herbal supplements. They were classified into 

the same phytochemical group. 

The most herbal constituents in Thai medicinal plants are phenolic compounds 

especially flavonoids. Moreover, flavonoids are major plant secondary metabolites and 

represent the most studied phytochemicals (Boonsong et al., 2011). Thus this class of 

herbal compounds with known P-gp inhibitory activity was utilised as a template 

(training set) for model creation to elucidate the inhibition of Thai herbal ingredients to 

P-gp and an external test set for a validation test of the created model in this QSAR 

study, and also used in the molecular docking and dynamics simulation studies. 

2.2 QSAR modelling for P-gp inhibitors 

Herbal compounds were chosen as a training set on the basis of ensuing criteria to 

generate a fine QSAR model: by engulfing an extensive activity range of chemicals   

that comprise the most active, moderate, and less active or inactive inhibitors, and 

including inducers (Shukla et al., 2014). Flavonoids with P-gp induced/inhibitory 

studies were identified from various publications. These substances are natural 

compounds with the known activity for P-gp inhibition. The number of 

compounds/phytochemicals in each training set should be at least twenty, and 

approximate ten compounds/phytochemicals should be in each of the test or external 
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evaluation sets (Davis & Vasanthi, 2015). The number of predictor variables 

(descriptors) defines the training set size. It is ordinarily accepted that there must be at 

least five compounds for one descriptor (Topliss ratio) for a facile method as multiple 

linear regression (MLR) (Kiralj & Ferreira, 2009). 

The 23 flavonoids and their induced/inhibitory activities were obtained from two 

publications (Gyémant et al., 2005; Martins et al., 2010). The bioassay (fluorescence 

activity ratio; FAR at 40 µg/ml which represents P-gp induction or inhibition) values of 

the 23 flavonoids cover the range from 0.5–46.4. From the preliminary study using 

bioassay (FAR) as a dependent variable, the obtained correlation was low and increased 

higher in models with excessive descriptors.  The FAR values were transformed 

becoming the corresponding pFAR (-log FAR) values, which is in the range of               

-1.67–0.3. The use of pFAR is to represent a negative value (-) as a P-gp inhibitory 

activity and a positive value (+) as a P-gp induced activity. Flavonoids with FAR values 

>1 but <10 (pFAR<0 but >-1) were regarded to be active inhibitors (weak inhibitors) of 

P-gp and flavonoids with FAR values >10 (pFAR<-1) were considered as potent (or 

strong) inhibitors (Sousa, Ferreira, Molnár, & Fernandes, 2013). A list of the flavonoid 

molecular structures are illustrated in Table 2.1 and further details on their 

corresponding experimental FAR and pFAR values (Gyémant et al., 2005; Martins et 

al., 2010) are illustrated in Table 2.1. 
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Table 2.1 Molecular structures of bioflavonoids with FAR values (in the parenthesis) of 

the training set. 1-21 are from Gyémant et al. (Gyémant et al., 2005), and 22-23 are 

from Martins et al. (Martins et al., 2010) 

1. Formononetin (18.3) 

 

2. Amorphigenin (46.4) 

 

3. Afrormosin (3.1) 

 

4. 6a,12a-Dehydroamorphigenin 

(3.0) 

 

5. (+)-12-Hydroxyamorphigenin 

(Dabinol) (2.8) 

 

6. Rotenone (28.6) 

 

7. Catechin (2.9) 

 

8. Neohesperidin (2.8) 

 

9. Naringin (2.3) 

 

10. Chrysin (14.6) 

 

11. Robinin (1.5) 

 

12. Floretin (Phloretin) (4.9) 
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Table 2.1 (continued) 

13. Floridzin (Phlorhizin) (0.6) 

 

14. Robinetin (0.7) 

 

15. Dihydrorobinetin (0.7) 

 

16. Kaempferol (0.8) 

 

17. Dihydrofisetin (fustin) (0.5) 

 

18. Dihydroquercetin (0.6) 

 

19. Sakuranin (0.8) 

 

20. Sakuranetin (2.4) 

 

21. Epigallocatechin (36.1) 

 

22. Epicatechin (0.97) 

 

23. Procyanidin B5 (0.58) 

 

 

2.2.1 Preparing of molecular structures 

The all the two-dimensional (2D) structures of flavonoids were sketched using the 

ChemBioDraw Ultra. And then, the 2D structures were transformed into three-

dimensional (3D) structures by using the ChemBio3D Ultra. Every hydrogen atom is 

regarded during the computing process for each molecule. Energy minimisation and 

optimisation of molecular 3D structure were also carried out utilising the ChemBio3D 

Ultra by MM2 forcefield. 
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2.2.2 Generation of molecular descriptors 

The ADRIANA.Code programme (Version 2.0) was employed to compute 

physicochemical parameters of the molecular structures of flavonoids. This programme 

consists unique combining procedures for computing molecular structure descriptors on 

a physicochemical basis and sound geometric. A total of 1252 descriptors were 

computed utilising this programme including 8 global molecular descriptors,               

88 two-dimensional autocorrelation descriptors, 96 three-dimensional autocorrelation 

descriptors, 1024 3D property-weighted radial distribution functions (RDF) descriptors 

and 36 autocorrelation of surface properties descriptors [Table 2.2 (Mueller et al., 

2010)]. All calculated descriptors were standardised into the z-scores and then were 

selected as independent parameters using for pFAR prediction. Stepwise multiple linear 

regression method was applied to create prediction model and carried out using SPSS 

Statistics 17.0. 
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Table 2.2 Summary of 35 categories comprising 1252 molecular descriptors calculated 

using ADRIANA.Code 

 

2.2.3 Statistical methods for QSAR modelling 

Quantitative structure-activity relationship analysis is a statistical method by 

which the molecular structures of compounds are correlated with a well-specified 

parameter quantitatively, like chemical reactivity or biological activity. For instance, 

pharmacological activity can be quantitated as in the concentration of a compound 

needed to provide an exact pharmacological response. In addition, when structures or 

physicochemical properties of molecules are quantitated to be numbers, one can 

produce an arithmetical relationship (QSAR), among the two. The arithmetical 

exposition can thereupon be applied to predict the pharmacological effect of other 

molecular structures. Most universal arithmetical function of QSAR is the following; 

Activity = f(physiochemical properties and/or structural properties) 
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An advancement of a quantitative structure-activity relationship model results in the 

endeavours to increasingly discover corresponding relationships among the variations in 

the values of molecular properties and the pharmacological effect for a chemical 

set/series which can thereupon be utilised to appraise activities of novel molecular 

identities (Yadav et al., 2010). 

For identification of the predicted inhibitory activity of the untested 

phytochemicals, QSAR study is operated. A totality of physicochemical properties 

(descriptors) are utilised for the purpose of QSAR model creation. Physicochemical 

parameters of the herbal compound molecules are computationally calculated, then total 

of descriptors are obtained (used as an independent variable). Flavonoids were involved 

and P-gp inhibition was regarded as the biological activity parameter of the chemicals  

(a dependent variable). A statistical model was then utilised to predict the P-gp 

inhibitory activity of other flavonoids from herbs. A stepwise multiple linear regression 

method was used to establish a predictive model. Molecular descriptors for a QSAR 

model construction were selected (Yan et al., 2011). All calculated descriptors were 

selected as independent variables and P-gp inhibitory activity as dependent variables. 

Based on the flavonoid compounds in dataset, all of these 23 compounds were 

used as the training set and their molecular descriptors [as standardised values             

(z-scores)] for the QSAR model construction were selected. Following the analysis 

method from the study of Yan et al. (Yan et al., 2011), Pearson's correlation coefficient 

(r) analysis merged with stepwise variable selecting manner was utilised to choose the 

best descriptor group for modelling. Regarding this study, molecular descriptors whose 

the calculated Pearson’s correlation coefficient with the P-gp modulatory activity was 

less than 0.1 (r <0.1) were not utilised. 

After that by considering the pairwise correlation coefficients, if the pairwise 

correlation coefficient between any two descriptors was higher than 0.85, the descriptor, 

that had the lower correlation to the P-gp modulatory activity of a compound, one of 

them was eliminated. The remaining descriptors were selected utilising stepwise 

multiple linear regression (MLR) variable selecting method (Yan et al., 2011). First 

step, every descriptor chosen by correlation analysis were ranked in a descending 

sequence in accordance with their correlation coefficient with activity. Second step, the 
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descriptor which had the highest correlation coefficient with activity was utilised to 

create an ordinary linear regression model as an initial equation. Third step, other 

descriptors were subsequently admixed to the initial equation one by one. Subsequent 

admixing a new descriptor to the initial equation, a new equation was gained, and it was 

appraised with a significance test. If a significant accretion was accomplished, the 

admixed descriptor was kept, and if a significant accretion was not noticed, the admixed 

descriptor was eliminated. The procedure was reiterated till no descriptor could be 

admixed or eliminated (Zhong et al., 2013). 

Many models were generated, but the best model satisfied all of the following 

parameters: (1) the number of compounds should be 3-6 times the number of molecular 

descriptors used in the proposed model (Agrawal et al., 2002), (2) R2, square of 

regression (>0.7) (Asgaonkar et al., 2013), (3) q2, cross-validated r2 (>0.5) (Asgaonkar 

et al., 2013), (4) SEE, standard error of estimate (smaller is better) (Asgaonkar et al., 

2013), (5) F-test, F-test for statistical significance of the model (higher is better, for the 

same set of descriptors and chemicals) (Asgaonkar et al., 2013). 

To test the stability and predictive ability of the developed QSAR model, the 

model was validated utilising internal validation. The leave-one-out (q2, LOO) method 

was used to validate the model generated by MLR QSAR. Regarding the calculation of 

q2, each compound in the training set was sequentially moved away, the model was refit 

utilising same descriptors, and the pharmacological activity of the removed compound 

was predicted utilising the refit model. The q2 was calculated utilising equation; 

q2 = 1-[∑ (ŷi-yi)
2 / ∑ (yi-ymean)

2] 

where yi and ŷi are the actual and predicted activities of the ith compound in the training 

set, respectively, and ymean is the average activity of all compounds in the training set 

(Sharma et al., 2014). 

2.2.4 Validation of a QSAR model 

In order to evaluate the potential health risks related with herb-drug and/or food-

drug interactions of some other flavonoids, the P-gp inhibitory activities of flavonoids 

in a dataset containing all 11 compounds (Table 3.3) was collected from recent 

literatures (Boccard et al., 2009; Chung et al., 2005; Kitagawa et al., 2004; Zhang & 

Morris, 2003) which were not included in the training set and estimated using the 
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developed QSAR model. The dataset were utilised like an external test set, which 

comprises all 11 active (weak) and strong inhibitors of P-gp. The values that stand for 

P-gp inhibitory activity of bioflavonoids from 4 literatures were converted into 

Inhibitory efficiency [calculated as percentage compared to a positive control 

(verapamil)]. The all the two-dimensional (2D) structures of 11 flavonoids were 

sketched using the ChemBioDraw Ultra. And then, the 2D structures were transformed 

into three-dimensional (3D) structures by using the ChemBio3D Ultra. All hydrogen 

atoms of each molecule are regarded during the computational process. Energy 

minimisation and optimisation of molecular 3D structure were also carried out utilising 

the ChemBio3D Ultra by MM2 forcefield. The ADRIANA.Code programme (Ver. 2.0) 

was applied to calculate physicochemical parameters of the 11 flavonoid molecules in 

the external test set. 

All calculated descriptors were standardised into the z-scores and P-gp 

modulatory activity as pFAR values of each flavonoid were estimated using the MLR 

QSAR model. 

2.3 Molecular docking of P-gp inhibitors 

2.3.1 Preparing of P-gp protein 

Molecular docking was carried out. The PDB file of the crystal structure of mouse 

P-glycoprotein; PDB code: 4Q9H (with the resolution of 3.40 Å). A sequence similarity 

search with the BLAST between mouse and human P-gps was run in the UniProt 

Knowledgebase (UniProtKB) (Magrane & Consortium, 2011). The sequence alignment 

obviously illustrated that whole parts of human and mouse P-gps shared high amino 

acid identity 87.3% and interestingly, the NBDs which are requisite to cleave ATP and 

to provide energy for the drug efflux process disclosed 100% amino acid identity (Saeed 

et al., 2015). Thus, this study has been performed molecular modellings applying a 

mouse P-gp that could be extrapolated the results directly to human. The 

macromolecule was exported to Discovery Studio Client 2.5 to be adjusted hydrogen 

atoms and minimised energies with the CHARMm forcefield. Then the P-gp was 

transformed to PDBQT format utilising AutoDockTools 1.5.6 and was set as the 

macromolecule NBD1 and NBD2 dockings were selected for molecular docking. The 
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experimental data regarding P-gp inhibitory activity of flavonoids was collected from 

the literatures (Table 3.4 and 3.9). 

2.3.2 Collection and preparing of ligand molecules 

AutoDock 4.2.6 was utilised to dock a set of 25 known bioflavonoids which 

exhibited experimental P-gp inhibitory activity (Table 3.4 and 3.9). The bioflavonoids 

and their P-gp inhibitory activities were obtained from previous publications; Gyémant 

et al., Martins et al., Chung et al., El-Readi et al., Kitagawa et al., and Zhang and Morris 

(Gyémant et al., 2005; Martins et al., 2010; Chung et al., 2005; El-Readi et al. 2010; 

Kitagawa et al., 2004; Zhang & Morris, 2003). The dataset was comprises all 8 strong 

and 17 active (weak) inhibitors of P-gp compared with verapamil (this cardiovascular 

drug acts as a strong P-gp inhibitor). The values that stand for P-gp inhibitory activity of 

bioflavonoids from all literatures were converted into percentage of inhibitory 

efficiency compared to a positive control (verapamil). A compound that exhibits same 

or more potency of verapamil was classified to be a strong or potent inhibitor of P-gp. 

2D structures of the flavonoids were constructed using ChemBioDraw Ultra 11.0 

and later converted to 3D structures utilising ChemBio3D Ultra 11.0. Every hydrogen 

atom is regarded during the computing process for each flavonoid molecule. Energy 

minimisation and optimisation of molecular 3D structures were also carried out utilising 

the ChemBio3D Ultra 11.0 by MM2 forcefield with default setup (minimum rms 

gradient of 0.010) until the minimum rms error became smaller than 0.100 kcal/mol Å. 

These molecules were then used as ligands for molecular docking. A grid box was 

apportioned to define docking spaces upon the NBDs of the macromolecule. 

2.3.3 Docking method 

The docking efforts were targeted the ATP binding sites to impede the ATP 

hydrolysis (by NBD1 and 2), that ATP is an energy source of the pump. NBDs are 

greatly conserved among ABC transporters, these pumps are definitely demanded like 

the mechanistic driving force for the operation of P-gp. Many previous researches have 

studied regarding inhibition of NBDs (Palmeira et al., 2012). A wide range of 

bioflavonoids (presumed to bind both NBDs) were used in our docking study for 

validations of the NDB1 and 2 models. 
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Flavonoids were docked into both NBDs of 4Q9H to determine their binding 

affinities represented by estimated free energy of binding values. Energies for each 

atom type in the ligand were calculated at each grid point utilising AutoGrid. The 

volume of the grid was set to mantle the cytosolic domain containing ATP-binding site 

on each NBD and vicinity with a grid-spacing interval of 0.375 Å with dimension     

126 × 126 × 126 Å. These calculated energies were afterwards employed to predict 

binding energies for each ligand. Molecular docking of flavonoids was carried out 

utilising AutoDock 4.2.6 via the Lamarckian algorithm due to its ordinary robustness 

(Badhan & Penny, 2006) and performed by default. Default docking parameters with 50 

runs, a population size of 250, 2,500,000 evaluations, and 27,000 generations per tested 

ligand for each cycle were employed throughout the study. Ligand orientations were 

clustered into groups with a 1 Å cut-off. Docking poses of every ligand were retrieved 

from the correspondent dlg file and AutoDockTools 1.5.6 and PyMol were utilised for 

visual inspection of the molecular docking result and graphical representations of all 

poses. A final docked delegate of the potential binding mode of bioflavonoids was 

picked based on the selection of the compound having the lowest docked energy within 

the most populated cluster of the lowest possible energy (Badhan & Penny, 2006). 

2.3.4 Validation of molecular docking 

A correlation between a docking score (estimated free energy of binding) and an 

experimental activity (percentage of inhibitory efficiency) was performed. These values 

were plotted and the coefficient of determination (R2) was admeasured. Experimentally 

admeasured activity values may correlate with calculated results, and increase and 

convince the reliability of related results when only computational results are available. 

(Palmeira et al., 2012) R2 value must be obtained with a minimum of five points and 

higher than 0.6, a threshold routinely accepted to establish the goodness of structure-

based models utilised in computational studies (Palmeira et al., 2012). Thus, afterwards 

the molecular docking calculation using AutoDock, the correlation between observed 

activities (percentage of inhibitory efficiency values) and computational docking scores 

(estimated free energies of binding), and including linear regression equation that can be 

further used to predict P-gp inhibitory activity of other flavonoids from inputted 

docking scores were determined. 
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2.3.5 NBD-based pharmacophore identification 

The docked complexes of flavonoids at P-gp NBD1 and 2 were further examined 

using LigandScout software (Inte:Ligand version 3.12) (Wolber & Langer, 2004) to 

create schematic diagrams of protein–ligand interactions (binding modes). 

Pharmacophore models were created that pointed out certain amino acid residue atoms 

in NBDs interacted with the ligand atoms. The interactions created by LigandScout 

were presented as four main features, namely hydrogen bond donors (HBD), hydrogen 

bond acceptor (HBA), hydrophobic interactions (H) and aromatic ring (Ar). The feature 

shown in green colour is the HBD, red colour is HBA, yellow colour is H, and purple 

colour is Ar. Example representative pharmacophore features are shown in Table 2.3. 

Pharmacophore modelling for P-gp inhibitors was advocated by the availability of 3D 

structural data on protein–ligand complexes. Molecular interactions of the ligands to 

any binding cavities at NBDs were analysed in order to identify key features for ligand 

binding (Table 3.6 and 3.11). 4Q9H including ligands were overlaid to illustrate ligand 

binding cavities (Figure 3.2 and 3.4). 

Table 2.3 Pharmacophore features from LigandScout 

Chemical feature Depiction style 

HBD 
 

HBA 
 

H 
 

Ar 
 

Positive ionisable area 

 

Negative ionisable area 

 

2.4 Molecular dynamics (MD) simulations of P-gp inhibitors 

2.4.1 Selection of a model and ligands for MD simulation 

Five known flavonoids with strong experimental inhibitory activities of P-gp 

(Table 3.4 and 3.9); amorphigenin, epigallocatechin, rotenone, formononetin, and 

chrysin from the docking study were further used to realise the following: (1) dynamical 

effects of flavonoids on P-gp mediated efflux as competitive inhibitors, (2) dynamical 
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binding conformations and affinities of flavonoids that show strong P-gp inhibitory 

activities, (3) that NBD is the preferred binding site of flavonoids in a dynamical state, 

and (4) the physicochemical factors and interactions, which grant strong binding of 

flavonoids to P-gp in a dynamical state. These flavonoids have been proved to possess 

the strong inhibitory activity for P-gp (Gyémant et al., 2005). Therefore, they were used 

in the MD study to establish the computational techniques and elucidate that their 

observed P-gp inhibitory activities are on the basis of the competitive inhibition at ATP 

binding site within NBD2. 

2.4.2 Preparing of P-gp–ligand complexes for MD simulation 

3D models of protein–ligand complexes (at NBD2) obtained from molecular 

docking of 5 flavonoids; amorphigenin, epigallocatechin, rotenone, formononetin, and 

chrysin to P-gp were analysed. The molecular docking provided illustration whether 

each flavonoid bound to NBD2 of P-gp or not (depended on a calculated binding 

affinity). Regarding MD simulation, stability of the molecular structures of each 

complex, calculation of binding free energy, hydrogen bond distance, and amino acid 

residue–ligand interaction energy decomposition were determined. 

2.4.3 MD simulation method 

All 5 docked complexes were conducted to molecular dynamics simulations. 

Every MD simulation was rendered utilising the AMBER 14 simulation package. The 

docked complexes was inserted into the dioleoyl-phosphatidylcholine (DOPC) bilayer 

modelled by the Lipid14 force field obtained from Dickson et al. (Dickson et al., 2014). 

The parameters for a ligand were generated by the Antechamber programme. The xleap 

module was run to prepare the complex prior to MD simulation. The standard AMBER 

force field (ff03.r1) was utilised to create the topologies and parameters of the complex 

(Palestro et al., 2014). Twelve Cl- ions were put around the complex to keep the 

system’s neutrality. The entire system was solvated in a truncated octahedral periodic 

box of TIP3P water molecules with a minimum solute-wall distance of 10 Å. All 

simulations were performed using PMEMD.CUDA from AMBER14 on graphics 

processing units (GPUs) GeForce GTX TITAN X manufactured by NVIDIA. 

Employing GPU would shorten the wall time of simulation desired to collect the 
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properties from each simulation (Götz et al., 2012; Le Grand et al., 2013; Salomon-

Ferrer et al., 2013). 

The MD simulations are operated utilising a time step of 2 femtoseconds. 

Potential energy for non-bonding interactions was calculated within the cut-off of 10 Å. 

The long range interactions were speculated utilising periodic boundary condition based 

on the Particle Mesh Ewald (PME) method. The SHAKE algorithm and the Langevin 

dynamics were employed to constrain a bond associating H atom, and handle the 

temperature, successively. Prior to MD simulations, the solvated systems were energy-

minimised by a two-step minimisation procedure to eliminate possible bad contacts. 

First, the protein was fixed, and the water molecules were minimised by 8000 cycles of 

steepest descent and 4000 cycles of conjugate gradient minimisation by a force constant 

of 50 kcal/mol Å2; second, the whole system was minimised with no restraint by 2000 

cycles (1500 cycles of steepest descent and 500 cycles of conjugate gradient 

minimisation). At first, the temperature of each system was increased gradually from    

0 to 310 K over a period of 20 picoseconds (ps) of NVT dynamics. 60 ps of NVT 

equilibration was carried out. The equilibrated system was finally utilised for NPT 

production run for 15000 ps with 310 K and 1 atm pressure for properties collection. 

The coordinates of the P-gp–flavonoid complexes were saved every 1 ps. The VMD 

1.9.2 (Humphrey et al., 1996) was utilised to visualise and analyse the simulation 

trajectory. The structural properties and intermolecular interactions of P-gp–flavonoid 

were analysed from the MD trajectories of 15 ns. 

2.4.4 Dynamics conformational change analysis of the complexes 

The dynamics conformational changes of the trajectory were checked by 

monitoring the equilibration of quantity; RMSD values of protein backbone (Cα, C, N) 

atoms throughout 15000 ps simulation with respect to the initial structure that the 

deviation of a target set of coordinates of each complex were measured using the 

CPPTRAJ utility in Amber Tools 15 (Roe & Cheatham, 2013). 

2.4.5 Pre and post MD simulation binding mode comparison 

Structure-based pharmacophore modelling provided illustration of molecular 

interaction features (binding modes) that amino acid residues essential for a binding of 

each flavonoid were clarified. Representative structures averaged over the 10000-15000 
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ps (trajectory stable stage) time frames were generated for the complexes using the 

CPPTRAJ utility so that the docked complexes of 5 flavonoids at 4Q9H NBD2 

(representing pre MD simulation structures) including the generated average structures 

of the complexes (representing post MD simulation structures) at a stable stage were 

further examined using LigandScout (Wolber & Langer, 2004) to create 3D schematic 

diagrams of protein-ligand interactions (binding modes). 3D structure-based 

pharmacophore models were created that pointed out certain amino acid residue atoms 

in NBD2 interacted with ligand atoms. The interactions created by LigandScout were 

presented as four main features, namely hydrogen bond donors (HBD), hydrogen bond 

acceptor (HBA), hydrophobic interactions (H) and aromatic ring (Ar). The feature 

shown in green colour is the HBD, red colour is HBA, yellow colour is H, and purple 

colour is Ar. Molecular interactions of each ligand to any binding cavities at NBD2 

were analysed in order to identify key features for ligand binding, as well as heavy atom 

distances representing hydrogen bonding interactions between each ligand and the 

protein were also measured using the CPPTRAJ utility (Figure 3.7-3.12). 

2.4.6 Binding free energy calculation 

The free energy of binding of each 4Q9H–flavonoid complex was computed 

relied on the Molecular Mechanics–Poisson-Boltzmann Surface Area (MM-PBSA) and 

Molecular Mechanic-Generalised Born Surface Area (MM-GBSA) protocols. The 

methodology details of both methods have been described elsewhere (Genheden & 

Ryde, 2015). Regarding this work, the free energy of binding of each trajectory was 

computed from the entire trajectory (1-15000 ps). The calculation was based on 150 

snapshots from the respective trajectories. 

 The MM-PBSA and MM-GBSA analyses were implemented for each system 

depended on the MD trajectory, whereupon the free energy of binding is estimated 

perpetually: 

ΔGbind = Gcomplex – (Greceptor + Gligand) (1) 

ΔGbind = ΔH – TΔS ≈ ΔEMM + ΔGsol – TΔS (2) 

ΔEMM = ΔEinternal + ΔEelectrostatic + ΔEvdW (3) 

ΔGsol = ΔGPB/GB + ΔGSA (4) 

ΔGSA = γΔA + b (5) 
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where ΔGbind points to the total free energy change between the bound-state (Gcomplex) 

and unbound-state systems (Greceptor + Gligand), and can be decomposed into three terms: 

ΔEMM, recognised as the gas-phase interaction energy, which comprises electrostatic 

(ΔEelectrostatic) and van der Waals (ΔEvdW) interactions; ΔGsol, the solvation energy, which 

encloses the polar (ΔGPB/GB) and non-polar (ΔGSA) components; and – TΔS, the change 

in the conformational entropy up to ligand binding, which was not respected in this 

work on account of the very high computational cost and low prediction accuracy (Sun 

et al., 2014). 

2.4.7 Residue-based energy decomposition 

A key amino acid residue identifying of each 4Q9H–flavonoid complex was 

performed. The 4Q9H–flavonoid interaction energy information was created via 

decomposing the total free energies of binding into residue-residue interaction pairs 

employing the MM-GBSA decomposition method of the MMPBSA.py module of 

AMBER14 (Miller et al., 2012). 


