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CHAPTER 2 

Theory and Principle 

An electron gun in this study is a 1.6-cell BNL type S-band photocathode RF-gun, 

which was developed at the High Energy Accelerator Research Organization (KEK), 

Japan [11]. The gun has half-cell and full-cell resonant cavities. During this study, a 

copper cathode was placed at the center of the rear wall of the half-cell cavity. It produces 

free electrons via the photoelectric effect. A high power radio-frequency (RF) wave with 

a frequency of 2856 MHz is transported from a 10-MW klystron through a rectangular 

waveguide system, which is connected to the RF-gun at the cylindrical wall of the full-

cell cavity. The RF wave is fed into the half-cell cavity via a central iris between the two 

cavities. A solenoid magnet is placed downstream the RF-gun for focusing and 

compensation of the space-charge effect. Quadrupole magnets are installed in the beam 

transport line to control the transverse beam size. Characteristics of electron beams 

produced from the RF-gun depend greatly on the electron distributions in the 6-

dimensional phase space. The transverse phase space is related to the electron beam size 

and emittance. The longitudinal phase space determines the electron beam energy, energy 

spread and bunch length. Several beam diagnostics are needed in the accelerator system 

to investigate the electron beam properties. The quadrupole magnet and a fluorescent 

screen are used to measure the beam emittance. A dipole magnet and a view screen are 

utilized in the electron beam energy measurement. A Faraday cup is used in the charge 

measurement. To understand functionalities of the photocathode RF-gun and other 

elements in the accelerator system, all concerned principles and theory are discussed in 

this chapter.  
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2.1 Principle of Photocathode Emission 

The first photoelectric emission from metals was studied by Heinrich Hertz in 

1887 [12]. Then, Albert Einstein proposed the theory to explain the principle of 

photoelectric process in 1905. The theory presents the quantization of the light energy 

and proposes an escape energy of photoelectron, which depends on properties of 

materials. This energy is known as a work function of the material in present days. The 

principle of the photoelectric effect is described as following. When photon shines upon 

a metal, the photon energy is transferred to electrons inside the material surface. If the 

photon energy is larger than the work function, the excited electron can escape from the 

metal surface with the kinetic energy (KE) of 

           KE h   ,     (2.1) 

where h is the Planck’s constant,   is the frequency of the incident photon and   is the 

work function of the cathode material. The theory of the photoemission in the 

photoelectric effect based on the three-step model [13]. The model divides the process 

into three independent steps. The first step is a photon absorption, which results in 

electron excitation. The second step is a movement of the excited electron to the surface 

of cathode. The last step is an emission of the excited electron from the cathode.  

  The quantum efficiency (QE) of the photocathode is introduced to determine the 

ratio of the number of emitted electrons (ne) to the number of incident photons (np). A 

standard definition of the quantum efficiency in practical unit is given by [14] 

               e

p

n
QE

n
     (2.2) 

Thus, a physical idea of the QE is a probability of a single photon that can generate an 

emitted electron from the cathode material, which is related to a product of the probability 

of each step in three-step model. 

2.1.1 Three-step Model of Photoemission 

   In the first step of photoemission, the probability of photon absorption for exciting 

electron to higher energy state is calculated. The process in this step is almost the same 

for both metallic and semi-conductor materials. There are two assumptions considered in 
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this step. The first assumption is that all states, which has energy below the Fermi energy 

(EF), are filled and the states, which have energy above the Fermi energy, are empty [15]. 

The second assumption is that every absorbed photons excite electrons in the cathode 

surface. Thus, the probability depends on the photon energy, a number of electrons in an 

occupied energy state and a number of available states for the excited electrons. In case 

of the first assumption, the probability of the incident laser transmission T(v) can be 

calculated to be  

      ( ) 1 ( ) ( ),T A R        (2.3) 

where A(v) is the probability of the photon absorption in the cathode material and R(v) is 

the probability of reflection of the incident photon.  

  For the second assumption, the estimation considers the probability of the 

excitation of electron from an initial energy state E0 to a final energy state E=E0+hv. The 

probability is then proportional to a number of the initial state N(E0) and a number of the 

final state N(E), as  

            
0( , ) ( ) ( ) ( ) ( )P E hv N E N E N E hv N E   .   (2.4) 

The probability is obtained by considering a fraction of the total number of interested 

states and the total number of possible states, which is 

      ' ( ') ( ' )
F

F

E hv

E

dE N E N E hv



 .    (2.5) 

At the lower limit of the integration, the states below the Fermi energy state are filled. 

For the upper limit, all excitation states refer to the states above the Fermi energy state. 

Thus, the probability of the electron excitation to the final state becomes 

     ( ) ( )
( , )

( ) ( )
F

F

E hv

E

N E N E hv
P E hv

dE N E N E hv






   

.   (2.6) 

  In the second step, the probability of the excited electron traveling to the cathode 

surface is calculated. The process in this step differs between metallic and semi-conductor 

materials. In this study, we concentrate on the metallic material because the photocathode 
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is made of copper. In case of metal, electrons may scatter with electrons, phonons and 

impurities while they travel to the cathode surface. However, this model considers only 

the electron-electron scattering process, which makes the excited electron to lose a 

sufficient energy and cannot escape from the cathode. A lifetime of an excited state ( )E  

is inversely proportional to the electron-electron scattering probability as [16]  

      
1

( ) ,
( )

E
S E

       (2.7) 

where S(E) is the electron-electron scattering probability. To simplify the assumption, the 

interaction between the valence electrons and the excited electron is ignored and a 

probability of the interaction is only a function of a number of the available initial and 

final energy states. Thus, the total probability of the scattering of an electron with energy 

E by the electron with energy E0 for all possible energy transition states E  is related to  

    

0

0 0 0( , ) ( ) ( ) ( ) ( )
F

F

E E

E E

S E E d E N E N E E N E E





    ,     (2.8) 

where
0( )N E is the number of electron with energy

0E ,
0( )N E E is the number of 

empty states with energy
0E E , ( )N E E   is the number of empty states with energy

E E  . The lower limit of the integration in equation (2.8) represents a kinematic 

limitation, which is 
0 2 FE E E  [14]. Then, equation (2.8) becomes 

    

0

0 0 0

2

( ) ( ) ( ) ( ) ( )
F F

F F

E E E

E E E E

S E dE d E N E N E E N E E



 

     .   (2.9) 

The electron-electron scattering process limits a traveling length of the excited 

electron in the material, which is represented by the electron-electron scattering length   

( )e . Herein, we assume that the electron velocity is proportional to square root of its 

kinetic energy, which is taken to be the energy above the Fermi energy. Then, we get 

( ) Fv E E E   and the scattering length becomes 

  

0

0 0 0

2

( ) ( ) ( )

( ) ( ) ( ) ( )
F F

F F

F

e E E E

E E E E

E E
E v E E

dE d E N E N E E N E E


 



 


 

    

,  (2.10) 
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where  is the constant of proportionality. The mean distance that the excited electron 

travels to reach the cathode surface is related to the photon absorption length ( )ph , which 

can be calculated from [17] 

          
4

ph
k





  ,      (2.11) 

where   is the photon wavelength and k is related to the complex part of the refraction 

index, which is N n ik  . The probability that the electron will escape at the depth d 

corresponds to / ed
e

 . Then, the probability per unit length that photon is absorbed by the 

electron at the depth d is /1 phd

phe



 . The fraction of electrons, which reach the cathode 

surface without scattering, can be obtained by integrating the product of these two 

probabilities and it becomes [14] 

           
( ) / ( )

( , )
1 ( ( ) / ( ))

e ph

e ph

E v
T E v

E v

 

 



.     (2.12)  

  In the final step, the probability of electrons that reach and escape from the surface 

is calculated. The motion direction of electrons, which can escape from the cathode 

surface, must lie within a cone determined by electron energy and work function of the 

cathode material. An opening angle of the cone ( ) is described by [18] 

            mincos( ) ,T

F

k E

E Ek
  


    (2.13) 

where ET is the required energy of electron to escape from the cathode surface and 
mink

refers to the value of transverse component of electron momentum. In case of metal, the 

required energy equals to the work function of material (
TE  ). The fraction of total 

solid angle described the number of electrons, which escape from the cathode surface, is 

[14]  

   
2

0 0

1 1 1
( ) sin( ') ' [1 cos( )] 1

4 2 2

T

F

E
D E d d

E E

 

   


 
       

  ,  (2.14) 

Then, the QE, which is related to the total probability, corresponds to  
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     ( ) ( ) ( , ) ( )
F

T

hv E

E

QE v P E T E v D E dE



  .     (2.15) 

In case that the electron energy is very close to the threshold of the emission energy

( )T TE E E , the probability of electron with energy E escaping from the metal is 

proportional only to ( )D E  [14]. Thus, the total QE is proportional to the integral of ( )D E

over the possible electron energies as 

     ( ) ( )
F

F

E hv

E

QE v D E dE






  ,     (2.16) 

     ( ) 2 2 1 ( )
hv

QE v hv


  



     .   (2.17) 

Then, we get    

    

2

1
( ) 2 2 1 ( )

2 8 2

hv hv
QE v hv

 
  

 

   
           

.  (2.18) 

If an excess energy is much less than the work function, ( )hv    , the quantum 

efficiency (QE) is estimated to be  

      2( ) ( )QE v hv         (2.19) 

Equation (2.19) shows that the expected QE depends on an excess energy by a quadratic 

relation.  

  2.1.2 The Schotty Effect 

  The electric field component of the radio-frequency (RF) wave, which is used to 

accelerate electrons inside the resonant cavity, has an influence on the work function of 

the cathode material. In this section, we consider a reduction of the material’s work 

function due to the electric field component of the RF wave. For this study, we assume 

that the cathode is made of a perfect conductor. Then, the work function is defined as a 

total required energy, which is used to separate an electron from its image charge inside 

a conductor surface. If there is no external electric field, a potential energy of electron 

and its image charge is related to [19] 
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     ( ) ( )
2

e image image

e
W x e x e

x


 
    

 
 ,     (2.20) 

where x is the distance between the electron and the cathode surface. By using the 

symmetric consideration, the potential energy between the electron and the cathode 

surface is half of the value in equation (2.20), which is 

      
2

( )
4

surface

e
W x

x

 
  
 

.     (2.21) 

In classical electromagnetic theory, the work function is defined as the total energy 

required to move the electron from some minimum distance between the electron and its 

image charge (xmin) to infinity ( ) , thus the work function in case of no external electric 

field becomes 

    
2

0 min

min

( ) ( )
4

surface surface

e
W W x

x


 
     

 
 .   (2.22) 

When an external electric field is applied on the cathode surface, the potential energy of 

the field is 

     ( ) ( ) ( )field fieldW x e x e Ex eEx      ,   (2.23) 

where E is the magnitude of the electric field, which has the direction perpendicular to 

the cathode surface. The total potential energy is obtained by 

     
2

( ) ( ) ( )
4

total surface field

e
W x W x W x eEx

x


    .   (2.24) 

A derivative of the total potential energy with respect to the distance is calculated to find 

the optimal distance (x0), where the total potential energy reaches a maximum value. The 

derivative of the total energy is 

     
0

2

2

0

( ) 0
4

total x x

d e
W x eE

dx x
   .    (2.25) 

Then, the maximum total potential energy occurs at 
0 ( / ) / 2x e E . Therefore, the 

maximum total potential energy is 
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      0( )totalW x e eE  .     (2.26) 

When the external electric field is applied, the total work function becomes 

     
2

0 min

min

( ) ( )
4

total total

e
W x W x e eE

x
     .    (2.27) 

The change in the work function of e eE  is called the Schottky effect. To convert the 

result in equation (2.27) to SI unit. The change of the work function due to the Schottky 

effect is [20] 

      [ ] [ / ]Schottky eV a E V m   ,     (2.28) 

where      5

0

3.7947 10 [ ]
4

e
a e e Vm



   . 

The modified work function of the material when the external electric field is applied can 

be written as 

     0 a E   ,                (2.29) 

where 
0  is the work function of the material in the absence of the external electric field.  

2.2 Acceleration of Electrons in Resonant Cavity 

    To accelerate electrons inside the photocathode radio-frequency (RF) gun in this 

study, the RF wave is transported from a high power klystron by a waveguide system and 

fed into the RF-gun cavity through an aperture hole on the cylindrical wall of the full-cell 

cavity. Then, the RF wave is coupled to the half-cell cavity via an iris between the two 

main cavities. The RF wave resonates in both cavities and forms a standing wave pattern, 

which has the time revolution electric and magnetic field components. The electric field 

component is used to accelerate the free electrons emitted at the cathode surface via the 

photoelectric effect to form the electron bunches at the gun exit. For simple explanation, 

a cylindrical pillbox cavity with the lowest transverse magnetic field mode TM010 is 

discussed here. The shape of the cavity and the field directions inside the TM010 pillbox 

cavity are shown in Fig. 2.1. 
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Figure 2.1: TM010 pillbox cavity with electric and magnetic field direction. 

  Wave equations of longitudinal electric field and magnetic field components for 

free space with no charge and no current are [21] 

    2 2 0z zE k E         and    2 2 0z zB k B   ,     (2.30) 

where k is the wave number. In cylindrical coordinates ( , , )z  , the wave equation of 

the longitudinal electric field is 

    
2 2

2

2 2 2

1 1
( ) 0z z z

z

E E E
r k E

r r r r z

  
   

   
.     (2.31) 

The solution of equation (2.31) can be written is a form of Bessel function ( )m cJ k r as 

    
0( , , , ) ( ) zik zim i t

z m cE r z t E J k r e e e   ,    (2.32) 

where   is the angular frequency of the RF wave. Consider the case of azimuthal 

symmetry with m = 0 and the boundary condition at the cavity wall of 0B B  . The 

electric field component Ez and the magnetic field component B
inside the RF pillbox 

cavity are [21] 

     
0 0( , ) ( )cosz cE r t E J k r t ,     (2.33) 

     0
1( , ) ( ) sinc

E
B r t J k r t

c
   .    (2.34) 

where 2 /c rfk    while rf  is the wavelength of the RF wave and / cc k . Here,

0 ( )cJ k r  and
1( )cJ k r  are the Bessel functions of the zeroth and the first orders as shown in 

Fig. 2.2.  
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Figure 2.2: Bessel functions of the zeroth order 
0 0( ) ( )cJ x J k r  and the first order

1 1( ) ( )cJ x J k r . 

   According to equation (2.33), the electric field component Ez inside the TM010 

cavity has the maximum value at r = 0 and it decreases when the radial distance in the 

cavity increases. For the longitudinal direction, the electric field component Ez is constant 

as shown in Fig. 2.3.  

 

Figure 2.3: Magnitude of the longitudinal electric field Ez as a function of the radius (r) 

and the longitudinal distance (z) of the TM010 pillbox cavity. 

 The parameters, such as a resonant frequency (frf), a transit time factor (Tt), a 

quality factor (Q) and a shunt impedance (Rs), are used to describe the properties of the 

resonant cavity.  Such parameters for the TM010 cylindrical pillbox cavity can be 

evaluated from the cavity geometry and accelerating voltage (Vacc). By considering the 

Bessel function of the zeroth order in Fig. 2.2, it is found that
0(2.405) 0J   at 2.405ck r 

x
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. Then, we get the relationship between the resonant frequency (frf) and the cavity radius 

(R) as 

     
2.405

2 22

c
rf

k c c
f

RR



  
   ,     (2.35) 

where  and are the permeability and the permittivity of the medium inside the cavity, 

respective. In our case the medium is vacuum where 1/ c  . Then, the RF 

wavelength is 

      
2

2.405
rf

rf

c
R

f


   .     (2.36) 

The radius of the resonant cavity becomes 

     2.405 2.405
2 2

rf

rf

c
R

f



 
  .    (2.37) 

When an electron is accelerated inside the resonant cavity, the energy gain of the electron 

can be evaluated from 

     
/2

0

/2

cos( )

d

acc

d

W eV e E t dz


   ,      (2.38) 

where d is the cavity length, v is the electron velocity and 2 rff   is the angular 

frequency. Thus, the accelerating voltage inside the resonant cavity is 

     
/2

0 0

/2

2
cos( / ) sin

2

d

acc

d

v d
V E z v dz E

v







  .              (2.39) 

A transit time factor (Tt), which is defined by a ratio of the energy gain from the 

acceleration in one RF period and the maximum energy gain, is 

      
0

sin( / 2 )

/ 2

acc
t

V d v
T

E d d v




  .     (2.40) 

From the synchronism condition of the -mode acceleration, the length of cavity is 

      
2 2

rf rfvT
d


   ,    (2.41) 



 
 

17 
 

where 
rfT is the RF period and /v c  . To get a maximum energy gain, the electron must 

be accelerated at the RF phase of / 2 . Therefore, the transit time factor for the 

maximum acceleration case is 

     
2( )sin( / 2) 2 2

/ 2 (2 )( / 2)

rf rf

t

rf rf

fv
T

d v d f



    
    .  (2.42) 

For the relativistic electron with the velocity close to the velocity of light ( 1  ), the 

maximum accelerating voltage for the  -mode RF structure is  

      0
0

2
acc t

E d
V E dT


  .    (2.43) 

A quality factor (Q-factor) describes a relationship between the stored energy 

inside the cavity (Ws) and the dissipated power that dissipates into the cavity wall (Pcy) in 

one RF period. It is normally used to define the acceleration efficiency inside the RF 

cavity, which is written as 

      s

cy

W
Q

P


 .                 (2.44) 

It can be seen from equation (2.44) that the resonant cavity with large Q-factor value can 

store a large amount of energy for charged particle acceleration inside the cavity. The 

stored energy inside the resonant cavity and the power dissipated into the cavity wall in 

term of the magnetic field are 

      
2

0

1

2
sW B dV


  ,                (2.45) 

     
2

2

02

w
cy

R
P B da


  ,        (2.46) 

where
0 is the permeability of vacuum and /w cR    is the surface resistance of the 

cavity wall, while c and  are the resistivity and the skin depth of the cavity material, 

respectively. The skin depth of the cavity material can be calculated from  

      
0 0

2 2c

c




   
  ,              (2.47) 

where 1/c c   is the conductivity of the cavity material. Then, we can evaluate the  

Q-factor of the cavity from  
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2

2

2
s

cy

B dVW
Q

P B ds




 




.               

Due to the resistance property of the resonant cavity, the power loss into the cavity wall 

is 

      
2

acc
cy

s

V
P

R
 ,                 (2.48) 

where Rs is the shunt impedance of the cavity. Thus, the shunt impedance per unit length 

(rs) is 

     
2 2

20acc
s t

cy cy

V E d
r T

P d P
   .               (2.49) 

Then, the cavity wall loss power (Pcy) can be obtained from    

     
2 2

0acc
cy

s s

V E d
P

r d r
  ,      (2.50) 

where
0E is the accelerating gradient of the longitudinal electric field and d is the effective 

length of the cavity. If the RF-gun has more than one resonant cavities, the cavity wall 

loss of the n cavities becomes 

     
22 2

1 1 2 2

1 2

... n n
cy

s s sn

E dE d E d
P

r r r
    .     (2.51) 

The amplitude of the longitudinal electric field component ( , )zE z t  of the RF wave 

as a function of the revolution time and the longitudinal z-coordinate can be written as 

     
0( , ) ( )sin( )zE z t E z t   ,     (2.52) 

where
0( )E z is the amplitude of the electric field, 2 rff   is the angular resonant 

frequency, t is the RF revolution time and  is the initial RF phase difference. The energy 

gain ( )W of the electron, which is accelerated through the resonant cavity is calculated 

to be 

     
/2

0 0
0

( ) sin( )
rfT

W W eE z t dt      ,   (2.53) 
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where 
0W is initial electron energy before it enters the cavity, Trf is the RF period and  

z ct . Then, the energy gain of the electron becomes 

      
/2 /2

0 0 0
0 0

cos( ) ( )sin( ) sin( ) ( )cos( )
rf rfT T

W W e E ct t dt e E ct t dt        . (2.54) 

The second integration in equation (2.54) equals to zero because it integrates an odd 

function in half period. Thus, the energy gain of the electron when it exits from the 

resonant cavity is 

     
0 cos( )accW W eV    ,     (2.55) 

where 
/2

0
( )sin( )

rfT

accV E ct t dt   is the accelerating voltage in the cavity. Equation 

(2.55) is modified when the electron enters the resonant cavity at any phase  . This 

results in the energy gain of  

     
0 0cos( )accW W eV      .    (2.56) 

Here 
0  is the phase that the electron achieves the maximum possible energy gain or the 

so called maximum mean momentum gain (MMMG) phase. A model of the electron 

bunch acceleration by the RF wave is shown in Fig. 2.4, which the RF phase increases 

from left to right. The blue line refers to the electron momentum gain pz, which is a 

function of the RF phase. The head of electron bunch enters first to the resonant cavity 

and experiences an earlier phase than the tail of the bunch. If the entire bunch enters the 

cavity earlier than the MMMG phase 
0( )  with a phase difference of 

0     , the 

tail of the bunch will achieve higher acceleration than the head. 
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Figure 2.4: Model of the electron bunch acceleration inside the resonant cavity [22]. 

 

2.3 Bending and Focusing of Electron Beam 

  When an electron travels through a transverse magnetic field, which is 

perpendicular to the electron’s direction, there is a magnetic force acts on the electron and 

changes its traveling direction. Generally, dipole and quadrupole magnetic fields are used 

to bend the electron beam trajectory and to control the beam transverse size, respectively. 

In practice, the dipole and quadrupole magnets do not have only dipole or quadrupole 

fields. They may have multipole-field components. This is due to the magnet construction 

limitation. By considering the multipole-field expansion using the Taylor’s expansion, 

the transverse magnetic field is  

      ˆ ˆ
x yB B x B y  .    (2.57) 

The transverse magnetic field Bx and By can be expanded around the point x = 0 and  

y = 0 as 

2 2 2
2 2

0 2 2
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1 1
...
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where 
0xB  and 

0yB  are the uniform magnetic fields in the x-axis and the y-axis, 

respectively. In the region where is no charge and no electric current, the curl and the 

divergence of the magnetic field are 

     0B     and   0B  .    (2.58) 

The curl of the magnetic field can be written as    

    

ˆ ˆ ˆ

ˆ 0

0

y x

x y

x y z

B B
B z

x y z x y

B B

   
     

     
.   

Then, we get    
y x

B B

x y

 


 
  and 

2 2

2 2

y x
B B By

x x y y

  
  

   
.  

The divergence of the magnetic field is 

     ˆ ˆ ˆ ˆˆ 0
yx

x y

BB
B x y z B x B y

x y z x y

    
         

     
  

Thus, the magnetic gradients and the derivatives of the magnetic gradient are  

    
yx

BB

x y


 

 
   and  

2 2

2 2

yx x
BB B

x x y y

 
   

   
.  

Then, the multipole-field expansions in the x-axis and the y-axis become 

   
2 2

2 2

0 2

1
( , ) ( ) ...

2

x x x x
x y

B B B B
B x y B x y x y xy

x y x x y

   
      

    
 ,   (2.59) 

   

2 2

2 2

0 2

1
( , ) ( ) ...

2

y y y y

y x

B B B B
B x y B x y x y xy

x y x x y

   
      

    
     (2.60) 

where the zeroth, the first and the second order terms are the dipole, quadrupole and 

sextupole magnetic field components, respectively.  
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Figure 2.5: Reference and actual trajectories of the electron [23].  

In any particle accelerator, a reference trajectory is a design path of the reference 

particle in the accelerator. As shown in Fig. 2.5, the reference trajectory is defined in the 

curvilinear coordinates with the unit vectors ˆ ˆ ˆ( , , )x y s  and a displacement vector of the 

particle is given by 

      ˆ ˆ ˆr ss xx yy   .     (2.61) 

According to Newton’s second law, the equation of motion of a relativistic particle is 

related to 

      
0F m r .                 (2.62) 

Since the unit vector ŝ is parallel to the reference trajectory and an angular displacement 

in the y-axis is kept to be constant, thus ˆ 0s   and ˆ 0y   in this consideration. Therefore, 

the velocity of the electron becomes 

          ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆr ss ss xx xx yy yy ss xx xx yy              (2.63) 
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Figure 2.6: Change of the horizontal and vertical displacements with respect to time in 

s direction [23].  

A derivative of the displacement with respect to time is shown in Fig. 2.6. Then, 

we get ˆ ˆx s  and s  , where  is the curvature radius of the bending trajectory. 

Thus, the velocity of the electron is  

      ˆ ˆ ˆ ˆ ˆ ˆ1
x

r x s xx yy ss xx yy 


 
        

 
  (2.64) 

By using the relation ˆ ˆs x    or ˆ ˆs x  , the electron acceleration can be expressed 

as 

     
2 2

ˆ ˆ ˆ1
x s xs

r x x yy s
  

    
        

    
.      (2.65) 

Apply the Lorentz force to the charge q,  F q v B  , and the equation of motion, 

0F m r , to equation (2.65), we get    

    
2

0

2
ˆ ˆ ˆ1

x s xs q
r x x yy s v B

m   

      
           

      
,

 

 
2

0

2
ˆ ˆ ˆ ˆ ˆ ˆ1 s y s x x y y x

x s xs q
r x x yy s v B x v B y v B v B s

m   

      
                 

      
,  
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where ˆ ˆ ˆ
x y sv v x v y v s    and ˆ ˆ

x yB B x B y  . When the electron travelling thought the 

transverse magnetic field, the transverse accelerations in the x-axis and the y-axis are  

   
2

0

1 s y

x s q
x v B

m  

  
     
   

   and  
0

s x

q
y v B

m

 
  
 

,    

By replacing  1 ( / )sv x s  , we get   

   
2

0

1 1
yqBx s x

x s
m   

   
       
   

  and  
0

1xqB x
y s

m 

 
  

 
.   

By using the chain rule, which are x x s , 2x s x , y y s  and 2y s y ,  the 

derivatives with respect to time are changed to be the derivatives with respect to the 

longitudinal distance (s) as  

    
0

1
1 1

yqBx x
x

p m s  

   
        

   
  and  

0

1xqB x
y

m s 

 
   

 
.    

Practically, we need to control the beam to travel close to the reference trajectory as much 

as possible. That means the transverse displacements are very small. Thus, it can be 

estimated that 0xx v  , 0yy v  ,
sv v  and / (1 ( / ))s v x  . By replacing 

0m v  

with a momentum p, the equations of motion of charge q through the transverse magnetic 

field, which bends the particle trajectory in x-axis, are  

   

2

1
'' 1 1

yqBx x
x

p  

   
       

   
  and   

2

'' 1xqB x
y

p 

 
  

 
. (2.66) 

On the other hand, the equations of motion of the positive charged particle through the 

transverse magnetic field, which bends the particle trajectory in the y-axis, are  

    

2

'' 1
yqB y

x
p 

 
  

 
 and  

2

1
'' 1 1xqBy y

y
p  

   
       

   
. (2.67) 

As mentioned earlier that in this study we focus on the use of the transverse magnetic 

fields from the dipole and the quadrupole magnets. Therefore, the principles and equation 

of motions for both magnets are discussed in the following sections. In addition, the 
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principle concerning a solenoid magnet, which has a longitudinal magnetic field, is also 

discussed.  

2.3.1 Dipole Magnet 

  Consider a simple dipole magnet with a cross section diagram shown in Fig. 2.7. 

The magnet consists of two magnetic poles, which their pole faces are parallel to each 

other. Each pole has a coil of n turns with an applied current I. A gap between the two 

poles is given by G and the magnetic field 
0H in the gap is considered to be uniform. As 

shown in Fig. 2.7, an induced magnetic field inside the dipole magnetic poles and in the 

gap can be studied by using Ampere’s law as shown in the following equation 

      enclosed

c

H dl I nI   .     (2.68) 

By considering entire region of the dipole magnet, equation (2.68) becomes 

    0 0

0 0

FeIh

Fe Fe Fe

c

H dl H dl H dl H G H l nI          .    

For an iron yoke and poles with a large permeability of 1r  , the magnetic field inside 

the yoke and the poles is nearly zero, ( / ) 0rH B   . Then, equation (2.68) becomes  

      0 0
c

H dl H G nI    .  

Thus, the magnetic field in the gap between the poles is 

      0
0

nI
B

G


 ,                    (2.69) 

where
0 is the permeability of free space, which is equal to 74 10  [kg m s-2 A-2]. 
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Figure 2.7: Cross section diagram of a simple dipole magnet [24]. 

  When the charged particle beam travels through the uniform transverse magnetic 

field, the equation of motion of a moving particle with charge g is  

      
2

0
0

m v
F qvB




  .      (2.70) 

A traveling path of the beam is bent with a curvature radius  as defined in this following 

equation 

      01 qB

l p




  ,        (2.71) 

where B0 is the uniform transverse magnetic field,   is the bending angle, l is the path 

length of the charged particle beam in the magnetic field, q is the charge of particle and      

p is the particle momentum. In case of electron with charge e , the relationship between 

the curvature radius, the magnetic field and the electron energy becomes [25]  

     0 00.2998 [ ]1

[ ] [ / ]

eB B T

m p p GeV c
  .                 (2.72) 

Equation (2.72) shows that electrons with different energies bend in the uniform dipole 

magnetic field with different bending radii.  
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  In case of the dipole magnetic field, which 
0 0y yB B B   and 0xB  , the electron 

bends in the x-axis with the following equations of motion 

    

2

01
1 1

qBx x
x

p  

   
        

   
 and   0y   .  

  

When a beam rigidity is defined as 0
0

m v p
B

q q


   , we get 

    

2

1 1
1 1

x x
x

   

   
        

   
.    (2.73) 

If the displacement in the x-axis is small, the terms x2, xy, y2,… are very small and can be 

neglected. The equations of motion become  

     
2

2 2

1 1 2
1

x x x
x

    

 
       

 
                     

or     
2

0
x

x


         (2.74) 

Equation (2.74) is in the form of the Hill’s equation, which has the solutions in the forms 

of 

   1 2cos( ) sin( )
s s

x C C
 

   and 1 2sin( ) cos( )
C Cs s

x
   

     . 

By using the initial conditions of 0s  , 
0x x  and '

0'x x , the coefficients 
1 0C x  and 

2 0C x   are achieved. Thus, the solutions of the equations of motion are  

  0 0cos( ) sin( )
s s

x x x
 

       and  0 0

1
sin( ) cos( )

s s
x x x

  
    . 

   

The above equations can be written in a form of the beam transport matrix Mx as 

   0 0

0 0

cos( ) sin( )

1
sin( ) cos( )

x

s s

x xx
M

x xx s s


 

  

 
      
                
 

,              (2.75) 
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where s and  are the arc length and the bending radius, respectively. For non-deflecting 

plane, 0y  , the solutions of the equations of motion are 

   
1 2y C C s      and   

2y C  .  

By using the initial conditions of 0s  , 
0y y  and 

0y y  , the coefficients 
1 0C y   and 

2 0C y   are achieved. The solutions of the equations of motion can be written in the form 

of the matrix transportation as 

      
0

0

1

0 1

yy s

yy

    
           

.                  (2.76) 

Thus, the transport matrix for the non-deflecting plane of the dipole magnet is 

     
1

0 1
y

s
M

 
  
 

.                 (2.77) 

By including both transverse directions, the 4-dimensional matrix transportation of the 

dipole magnet, which bends the positive charged particle in the x-axis is written by 

   

0

0

0

0

cos( ) sin( ) 0 0

1
sin( ) cos( ) 0 0

0 0 1

0 0 0 1

s s

xx

xx s s

yy

s yy


 
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 
    
                
    

     
 
 

.               (2.78) 

Similarly, the 4-dimensional matrix transportation of the dipole magnet, which bends the 

positive charged particle in the y-axis is 

   

0

0

0

0

1 0 0

0 1 0 0

0 0 cos( ) sin( )

1
0 0 sin( ) cos( )

s

xx

xx s s

yy

yy s s


 
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 
    
                
    

      
 

.               (2.79) 
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2.3.2 Quadrupole Magnet 

  Generally, a quadrupole magnet is used to focus or defocus the charged particle 

beam. A cross sectional diagram of the quadrupole magnet (as shown in Fig. 2.8) consists 

of four magnetic poles, which each pole has a coil of N turns and an applied current I. A 

radius of an aperture between the four poles is given by R.  

 

Figure. 2.8: Cross section diagram of a quadrupole magnet [25].  

The magnetic field inside the aperture between the four poles increases linearly when the 

distance from the center of the magnet increases. Thus, the quadrupole magnet has 

constant magnetic field gradients, which are 0xB

y





, 0

yB

y





, 0

yB

x





and 0xB

x





. From 

these conditions, the induced magnetic fields in the vertical and horizontal directions are 

written in the terms of magnetic field gradients gx and gy as 

      ( , ) ( )x
x x

B
B x y y g y

y


 


,               (2.80) 

     ( , ) ( )
y

y y

B
B x y x g x

x


 


.                 (2.81) 
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Figure 2.9: Cross sectional diagram of a single pole of the quadrupole magnet. 

An induced magnetic field of the dipole magnet can be derived by using the 

Ampere’s law. According to the integration path in Fig. 2.9, we get 

   enclosed

c

H dl I NI   ,      (2.82) 

   
1 2 0

0 1 2

Fe

c

H dl H dr H dl H dl          .     (2.83) 

Consider an iron yoke and pole with large permeability of 1r  , the magnetic field  

inside the yoke and pole whose the path from point 1 to point 2, is nearly zero or 

( / ) 0Fe Fe rH B   . The path from point 2 to point 0 gives 0H dl   because the 

direction of the magnetic field B  is perpendicular to the direction of dl . As the total 

transverse magnetic field amplitude is obtained from
2 2

x yB B B  , thus the magnetic 

field H in the gap is 

    2 2 2 2

0 0 0 0

( , ) 1
x y

B x y g g
H B B x y r

   
      .   (2.84) 

where g is the gradient of the magnetic field and in this case we consider that .x yg g g   

By using equation (2.84), equation (2.83) becomes  

     
2

0 00

1

2

r

c

gr
H dl grdr NI

 
     .    (2.85) 

Therefore, the gradient of the quadrupole magnet is 
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      0

2

2 NI
g B

r


  ,                (2.86) 

Consider equations of motion of a moving charged particle inside the quadrupole 

magnetic field as  

    
2(1 )

yqB x
x

p p
      and  2(1 )xqB y

y
p 

   .    

  

When a strength of the quadrupole magnet is given by 

      2 2

x y

qg
k k k

p
    ,               (2.87) 

Thus, the equation of motion in horizontal axis becomes 

      '' 0
qg

x x
p

  .                  (2.88) 

In case of 2 ( / ) 0xk qg p  , equation (2.88) becomes '' 0x kx  , which has the solutions 

in the form of  

 1 2cos( ) sin( )x C ks C ks         and     ' sin( ) cos( )x k ks k ks   .  

By using the initial conditions of 0s  , 
0x x  and '

0'x x , the coefficients 
1 0C x  and 

'

2 0(1 / )C k x  are achieved. Thus, the solutions of equations of motion in horizontal 

axis of the quadrupole magnet with an effective length l  are  

  
'

0 0cos( ) (1/ )sin( )x kl x k kl x       and   
'

0 0' sin( ) cos( )x k kl x kl x   .   

The solutions in the x-axis can be written in the form of the matrix transportation as  

     
0

'

0

cos( ) (1/ )sin( )

' sin( ) cos( )

xx kl k kl

xx k kl kl

    
     

     

.               (2.89) 

In the y-axis, the equation of motion is 

      '' 0
qg

y
p

   .                 (2.90) 
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Similar to the case of the x-axis, the solution in the y-axis can be written in the form of 

the matrix transportation as 

    
0

'

0

cosh( ) (1/ )sinh( )

' sinh( ) cosh( )

k l k k l yy

yy k k l k l

 
  

    
    
 

.              (2.91) 

Therefore, the 4-dimensional matrix transportation of the focusing quadrupole magnet is 

     

0

'

0

0

'

0

cos( ) (1/ )sin( ) 0 0

sin( ) cos( ) 0 0'

0 0 cosh( ) (1/ )sinh( )

'
0 0 sinh( ) cosh( )

kl k kl
xx

k kl kl xx

yy k l k k l

yy
k k l k l

 
    
    
     
    
    

     

.   (2.92) 

Similarly, the 4-dimensional matrix transportation of the defocusing quadrupole magnet 

is 

     

0

'

0

0

'

0

cosh( ) (1/ )sinh( ) 0 0

' sinh( ) cosh( ) 0 0

0 0 cos( ) (1/ )sin( )
'

0 0 sin( ) cos( )

k l k k l xx

xx k k l k l

yy
kl k kl

yy
k kl kl

 
    
    
     
    
    

     

.   (2.93) 

  When the electron beam travels through the quadrupole magnet, the effective 

length is evaluated by  

      
gdz

l
g


 


 ,                (2.94) 

where <g> is the average of the magnetic gradient near the center of the magnet. The 

quadrupole magnetic field can be used to focus the electron beams with a focal length of  

      
2

1
[ ]

[ ] [ ]
f m

k m l m
 .     (2.95) 

Therefore, the strength of the quadrupole magnet becomes [25 

      
2 0.2998 [ / ]

[ ]
[ / ]

G T m
k m

p Gev c

                   (2.96) 
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  2.3.3 Solenoid Magnet 

 Properties of a solenoid magnet are equivalent to optical lens, which can be used 

to focus the charged particle beam in both x-axis and y-axis. A diagram of the solenoid 

magnet and an induced magnetic field lines are shown in Fig. 2.10. A relationship 

between the induced magnetic field H  and an applied current I is obtained by using the 

Ampere’s law as 

     encloed

c

H dl I NI   , 

     
0 00

l

z z

c

B B l
H dl dl NI

 
     , 

where l is the physical length of the solenoid magnet and N is the number of coil’s turns. 

Thus, a longitudinal magnetic field component (Bz) inside the solenoid, which is parallel 

to the traveling direction of the beam, is calculated to be 

     0
z

NI
B

l


 .      (2.97) 

 

Figure 2.10: Diagram of the solenoid magnet and the induced magnetic field lines [26].  

Inside the ideal solenoid magnet, the magnetic field Bz is constant and there is no 

transverse magnetic field components Bx and By. However, there is a coupling condition 

between Bx and By  at the entrance and the exit edges of the solenoid magnet. Therefore, 

the solenoid magnet focuses the beam in both x-axis and y-axis with the edge fields of 

[27]  

   
1

2

z
x

B
B x

z


 


  and 

1

2

z
y

B
B y

z


 


.    (2.98) 
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Equation (2.98) shows that the solenoid magnet has the magnetic field gradients at the 

longitudinal edges similar to the quadrupole magnetic fields. The beam matrix at the 

entrance edge of the solenoid magnet is [27]  

     
1

1 0 0 0

0 1 0
2

0 0 1 0

0 0 1
2

z

z

eB

p
M

eB

p

 
 
 
 

  
 
 
 
 

 ,    (2.99) 

where Bz is the magnetic field along the z-axis, pz is the particle momentum component 

in the z-axis with the approximation
zp p , while 2 2 2

x y zp p p p   is the total 

momentum. Inside the solenoid magnet of the effective length L, the beam matrix is 

2

1 sin( ) 0 (1 cos( ))

0 cos( ) 0 sin( )

0 (1 cos( )) 1 sin( )

sin( ) 0 0 cos( )

z z

z z

z z

z

z z

eB L eB Lp p

eB p eB p

eB L eB L

p p
M

eB L eB Lp p

eB p eB p

eB L eB L

p p

 
 

 
 
 
 
 

  
 
 
 
 

 .        (2.100) 

Similar to equation (2.99), the beam matrix at the exit edge of the solenoid magnet is  

     
3

1 0 0 0

0 1 0
2

0 0 1 0

0 0 1
2

z

z

eB

p
M

eB

p

 
 
 
 

  
 
 
 
 

.            (2.101) 

For the whole solenoid magnet, the product of the three matrices 
1 2 3M M M M  gives the 

final beam transport matrix, which is  
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2
2

2

2
2

sin( / 2)cos( / 2) sin ( / 2)
cos ( / 2) sin( / 2)cos( / 2)

/ 2 / 2

sin( / 2)cos( / 2) sin 2( / 2)
cos ( / 2) sin( / 2)cos( / 2)

2 2

sin ( / 2) sin( / 2)cos( / 2)
sin( / 2)cos( / 2) cos ( / 2)

/ 2 / 2
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z z

z z

z z

eB p eB p

eB eB

p p
M

eB p eB p

  
  

  
  

  
  



 






 2sin( / 2)cos( / 2)
sin( / 2)cos( / 2) cos ( / 2)

2

zeB

p

 
  

 
 
 
 
 
 
 
 
 
 
 
  

.       

Here /zeB L p   and L is the solenoid effective length. The thin lens approximation is 

applied to the beam matrix by estimating that the length L and 𝜃 are small. Therefore, the 

beam matrix becomes [28]  

     

1 0 0 0

1
1 0 0

0 0 1 0

1
0 0 1

f
M

f

 
 
 
 

  
 
 

 
 

,                    (2.102) 

where f  is the focal length of the solenoid magnet, which is given by [28]  

     21
( )

2

zeB
kL L

f p
  .                      (2.103) 

From equation (2.103), it is found that the focal length of the solenoid magnetic field 

relates to energy of the particle. Therefore, the electrons in the beam with energy spread 

are focused in different positions due to different solenoid magnetic focal lengths. 

2.4 Transverse Phase Space and Beam Emittance  

  The electron beam quality depends greatly on electron distributions in transverse 

and longitudinal phase spaces. The longitudinal phase space is determined by the electron 

bunch length and the energy spread within the bunch. For the KU compact THz-FEL, the 

longitudinal properties can be modified by using a magnetic bunch compressor in a form 

of chicane magnet. Contradictory, the transverse phase space depends significantly on an 

intrinsic property called a transverse beam emittance, which can only be optimized from 

an electron injector system. Thus, the beam emittance is one of the most important 

properties to determine the quality of the RF electron gun. It is related to a relationship 
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between transverse positions and angular displacements of electrons inside the transverse 

phase space, which can be explained by a phase ellipse occupied by electrons as shown 

in Fig. 2.11. 

 

Figure 2.11: Ellipse phase space of the electron beam [29]. 

The transverse beam emittance   is determined by an enclosed area of the phase 

ellipse shown in Fig. 2.11 as  

        ab   ,              (2.104) 

where a and b are the half-lengths of the ellipse major axis and minor axis, respectively. 

The phase ellipse and its orientation can be explained by using the beam emittance   and 

the beam matrix parameters, which are 11 , 
12 , 

21 and 22 . Regarding to the ellipse 

phase space in Fig. 2.11,
11  equals to half of the beam width,

22  equals to half of 

the beam divergence while 
12  and 

21 describe the correlation between x and 'x .  

  Here, the angular displacements are /x zx p p  and /y zy p p  . The parameter pz 

is the momentum of the electron in z-axis, which can be estimated to be
zp p  when the 

transverse momenta
x zp p  and 

y zp p . The beam matrix is then written as 

      
11 12

21 22

.
 


 

 
  
 

             (2.105) 
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The transverse beam size is related to the rms transverse size and rms divergence. Then, 

an rms emittance can be calculated from the positions and the angular displacements of 

electrons as [30] 

   
22 2

,x rms x x xx        and   
22 2

.y rms y y yy    . (2.106) 

In term of the beam matrix, the emittance is 

      det .                (2.107) 

An average momentum of the electron beam can be evaluated from the average beam 

energy (Etotal)avg by using the following equation 

     ( )avg total avgcp E ,            (2.108) 

where /v c  , v is the electron velocity and c is the speed of light. The total energy 

( )totalE is obtained from 

    0

2 2

0( )total avg avgE m c m c KE   ,           (2.109) 

where m0c
2
 is the electron rest mass energy and   is the Lorentz factor, 

2 21/ 1 ( / )v c   . For comparison of electron beams produced from different 

accelerators with different energies, a normalize emittance 
n is introduced to normalize 

the energy term from the emittance formula and is given by the following equation 

      n rms  .                (2.110) 

 The vector of an electron at any position in the accelerator is defined by 

      
'

x
X

x

 
  
 

.              (2.111)  
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  2.4.1 Quadrupole Scan Method 

  In this study, emittance measurement was performed by using the quadrupole scan 

method. The principle of this method is to measure the electron rms transverse beam size 

dependence on the quadrupole magnetic gradient. The measurement system consists of a 

quadrupole magnet, a drift space and a fluorescence screen. A schematic diagram of the 

experimental set-up for the quadrupole scan method is shown in Fig. 2.12. 

 

Figure 2.12: Schematic diagram of the experimental set-up for the quadrupole scan 

method.   

    Consider the components in the experimental set-up, let l is the effective length 

of the quadrupole magnet, D is a length of the drift space, which is the distance between 

the center of the quadrupole magnet and the view screen, 
q and

qX are the beam matrix 

and the beam vector at the center of the quadrupole, while 
s and

sX are the beam matrix 

and the beam vector at the screen. The matrix equations of the beam vectors at the center 

of the quadrupole magnet (q) and at the screen position (s) are [31]  

       
1 1T

q q qX X   ,             (2.112) 

and      1 1T

s s sX X   .            (2.113) 

Apply the transport matrix R to the beam matrix at the quadrupole magnet position, then 

the beam matrix at the screen position is 

     
s qX RX .                       (2.114) 

Quadrupole magnet 

Mirror 
CCD Camera 

Screen 

Electron beam 

D 
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Replace 
sX  in equation (2.114) into equation (2.113), then equation (2.113) becomes 

    1 1( ) ( ) 1T T T

q s q q s qRX RX X R RX    .          (2.115) 

Equations (2.112) is equal to equation (2.115), then we get      

     
1 1T T T

q s q q q qX R RX X X   .                       (2.116) 

     
1 1T T T T

q s sR R R R                            (2.117) 

By using the invert relation, we get the beam matrix at the quadrupole positions 

    
1 1( )T

q sR R   .                        (2.118) 

Apply the matrices R and RT to the left and the right hand side of the beam matrix 
q in 

equation (2.118), then we get 

    
1 1( )T T T

q sR R RR R R   .                       (2.119) 

Therefore, the relationship between the beam matrices at the screen position and at the 

quadrupole position becomes 

     
T

s qR R  .             (2.120) 

There are four unknown parameters in the beam matrix 
s , which are 

11( )s , 
12( )s , 

21( )s  and 
22( )s , where 

12 21( ) ( )s s  . The only one parameter that we can directly 

measure is the transverse beam size at the screen, which is 
11( )s .  

Properties of focusing and defocusing quadrupole magnets are equivalent to the 

properties of converging and divergent lens, respectively. Apply the thin lens 

approximation to the transport matrices of the quadrupole magnets in equations (2.92) 

and (2.93), which the length of the quadrupole magnet is considered to be very small 

compared to a focal length of the quadrupole. The approximations are [32] 

    
0

lim cos( ) 1
l

kl


  
 

 ,     
0

lim cosh( ) 1
l

k l


  
 
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0

sin( )
lim 0
l

kl kl
l

k k

 
   

 

,  
0

sinh( )
lim 0
l

k l k l
l

k k

 
    
 
 

,  
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0

1
lim sin( ) ( )
l

k kl k kl kl
f

      
   

,  

    
0

1
lim sinh( ) ( )
l

k k l k k l kl
f

      
   

.                 

Hence, the transport matrices of the focusing and defocusing thin quadrupole magnets are 

  

1 0 0 0

1
1 0 0

0 0 1 0

1
0 0 1

QF

f
M

f

 
 
 
 

  
 
 
 
 

  and     

1 0 0 0

1
1 0 0

0 0 1 0

1
0 0 1

QD

f
M

f

 
 
 
 

  
 
 

 
 

.          (2.121) 

The relationship between the focal length and the strength of the quadrupole magnet can 

then be written as 

       
1 qg

l kl
f p
  ,            (2.122) 

Furthermore, the transport matrix of the drift space for transverse motion can be written 

as 

       

1 0 0

0 1 0 0

0 0 1

0 0 0 1

D

D

M
D

 
 
 
 
 
 

 ,                  (2.123) 

where D is the length of the drift space. For the components in the experimental set-up 

for the quadrupole scan method, the product of the matrices is 
D QFR M M  or 

D QDR M M . For convenience, the beam matrix of the quadrupole magnet is separated 

in two matrices corresponding to the x-axis and the y-axis. Thus, the dimensions of the 

matrix reduce from 4x4 to 2x2 and the matrix R is 

   11 12

21 22

1 1 0 1 /

0 1 1/ 1 1/ 1

R RD D f D
R

R Rf f

       
         

        
.  (2.124) 

From equation (2.120), the beam matrix at the screen position becomes 
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11 1211 12 11 21

21 2221 22 12 22

( ) ( )

( ) ( )

q q

s

q q

R R R R

R R R R

 


 

    
     
    

.                      (2.125) 

The matrix element 
11( )s , which corresponds to 2x  or 2y , is calculated to be 

    
2 2

11 11 11 11 12 12 22 22( ) ( ) 2 ( ) ( )s q q qR R R R      , 

2 2

11 11 11 12 11 12 222

1 1
( ) ( ) 2 (( ) ( ) ) (( ) 2 ( ) ( ) )s q q q q q qD D D D D

f f
            , (2.126) 

Equation (2.126) suggests that the transverse beam size is a function of the focal length 

of the quadrupole magnet with a quadratic relation. The transverse beam size in x-axis or 

y-axis can be obtained from the Gaussian fitting of the histogram of the particle 

distribution. An example of the simulated transverse distribution of the electron beam is 

shown in Fig. 2.13.  An example of the histogram and the Gaussian fitting of the simulated 

transverse distribution are shown in Fig. 2.14. 
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Figure 2.13: Example of simulated transverse distribution of the electron beam. 
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Figure 2.14: Example of histogram and the Gaussian fitting for the horizontal distribution 

of the beam.  

  In the quadrupole scan method, the transverse beam image is measured while 

adjusting the quadrupole magnetic gradient. Then, the transverse beam size is calculated 

for each gradient. For a Gaussian beam, the transverse beam size, which is achieved from 

the Gaussian fitting, is equal to an rms transverse beam size. Therefore, the rms transverse 

beam size can be defined as  

    
2

,x rms x     and      
2

,y rms y  .          (2.127) 

An example of the transverse beam size as a function of the focal length of the quadrupole 

magnet is shown in Fig. 2.15. The relation is fitted with a quadratic function in order to 

compare with the result of the beam matrix transportation as shown in equation (2.126). 

The fitting results is in form of  

       
2

2

1 1
rms A B C

f f
    ,                     (2.128) 

where   is the transverse beam size in x-axis or y-axis, f is the focal length of the 

quadrupole magnet and the constants A, B and C are the fitting coefficients. Compare the 

fitting coefficients in equation (2.128) with the coefficients in equation (2.126) to obtain 

the values of the beam matrix elements 
11( )q , 

12( )q , 
21( )q and 

22( )q at the quadrupole 

magnet position. The beam matrix at the quadrupole magnet position is 
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11 12

21 22

( ) ( )
( )

( ) ( )

q q

q

q q

 


 

 
  
 

.                (2.129) 

Thus, the beam emittance at the quadrupole magnet position can be calculated from 

     det( )rms q  .                        (2.130) 
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Figure 2.15: Example of relationship between the transverse beam size squared and the 

focal length (f) of the quadrupole magnet. 

2.5 Space Charge Effect 

 The space charge effect is related to the electron cloud self-generated fields and 

forces in a space region. Consider two static identical charged particles with a charge of 

q as shown in Fig. 2.16. The Coulomb force causes a repulsing force between the two 

identical charged particles. If these particles travel with a velocity of v c , their 

behaviors are similar to two parallel currents. The currents generate magnetic fields, 

which produce the magnetic forces acting on the two parellel currents as shown in Fig. 

2.16.  
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           (a)        (b) 

Figure 2.16: (a) Coulomb forces between two static identical charged particles. (b) 

Magnetic forces between two parallel currents. 

  The idea of two static identical charged particles is extended to a group of static 

charged particles and a group of moving charged particle beam. For the group of static 

charged particles, the Coulomb force pushes the test particle outward. In case of the group 

of moving charged particles, the behavior is similar to many parallel currents inside the 

beam. The magnetic force due to the induced magnetic field from the parallel currents 

introduces the radial attractive force to the test particle. Diagrams of the repulsing force 

due to the electric field between the static identical particles and the attractive force due 

to the induced magnetic field for the parallel currents inside the beam are shown in Fig. 

2.17. 

 

           (a)      (b)  

Figure 2.17: (a) Coulomb electric repulsing force (Fe) on the test particle in a group of 

static charged particles. (b) The attractive magnetic force (Fm) on the test particle in the 

group of moving charged particles.   
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where
0  is the maximum charge density. The charge per unit length of the cylindrical 

beam is defined as 

      2

02 r   .                       (2.132) 

Consider a region where 0 r R  , the radial electric field can be obtained by using 

Gauss’s law as 
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Furthermore, the azimuthal magnetic field can be obtained by using Ampere’s law as 

    
0 0 0

0

2 ( )

r

s s

C

B dl J dS v dS v r r dr              , 

    
22

2 20 0 0

2

0

( ) exp 1 exp( / 2 )
2 2

r

s s r
r

r

v vr
B r rdr r

r r


   




 
    

 
 .      (2.134) 

Consider the Lorentz force from the electromagnetic fields, which are generated from the 

electron beam itself, we get 

      
e mF F F  ,        
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The Lorentz force from the electric and the magnetic fields becomes   

     ˆ ˆ( ) ( )e m r sF F F qE r r qv B r r    .           (2.135) 
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Thus, the space charge force of the Gaussian beam with the standard deviation of 
r is  
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Here, 2 2 2

sv c  and 2

0 01/ c  . Therefore, the space charge force is 
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According to the above equation, the space force introduces a defocusing effect, which is 

inversely proportional to the beam energy 2

0/ .totalE m c  Besides the beam energy, it 

also depends on the charge distribution or the charge density of the beam.  

2.6 Stopping Power of Materials 

  Generally, the beam energy measurement is performed in a vacuum chamber, 

where the electron beam travels through the accelerator system without hitting any 

particle. In this case, the electron beam does not lose its energy. Unfortunately, during 

this study the beam energy measurement was performed in air due to the equipment 

limitation. The vacuum chamber at the end of the accelerator is closed by a beam 

extraction window in order to keep the vacuum condition inside the accelerator. After the 

electron beam hits the extraction window, it then travels in air. When hitting on the 

extraction window and other particles such as molecules of gas or vapor water, the beam 

loses its energy. Therefore, the study on the energy loss of the beam when it travels in 

matter is important for the beam energy measurement. 

  A stopping power in materials is defined as a decelerating force that acts on a 

charged particle when it travels in the matter. This results in the energy loss of the particle. 

The stopping power depends on the initial energy of the particle, the particle type and the 
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material properties. The stopping power of the particle in any material equals to the 

energy lost per unit path length (x), which is 

      ( )
dE

S E
dx

  .                       (2.138)  

When the charged particle travels through the material, the retarding force increases until 

it reaches the end of the traveling length. Then, the particle energy rapidly drops to zero. 

This relationship is called the Bragg curve and the maximum point is called the Bragg 

peak [33]. Equation (2.138) defines a linear stopping power, which is usually introduced 

in a unit of MeV/cm. A mean moving path of the charged particle inside the material can 

be obtained by integrating the stopping power over the particle energy, which is [34] 
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where RCSDA is the continuous slowing down approximation (CSDA) range in unit of 

g/cm2, ( )S E  is the linear stopping power and
0E is the initial energy of the charged 

particle. The RCSDA defines the path length of the charged particle that travels with 

slowing-down velocity until it stops inside the material. 

  The stopping power can be categorized into three kinds, which are an electronic, 

a nuclear and a radiative stopping powers. The electronic stopping power Se(E) is related 

to an inelastic collision between the moving charged particles and bounded electrons in 

the material structure. The energy that transfers from the incident charged particle can be 

a cause of the ionization or the change of the bounded electron orbit. It causes the slowing-

down process of the charged particle in the material. The nuclear stopping power Sn(E) is 

related to the elastic collisions between the charged particles and nuclei in the material. 

A probability of the collision between the charged particle and the material nuclei 

increases when the charged particle has slowed down. The amount of the electronic and 

nuclear stopping powers is called the collision stopping power. In case of charged 

particles with high energies, the radiative stopping power Srad(E) is related to the 

bremsstrahlung emission, which occurs when the charged particle travels through the 

material. Therefore, the total stopping power of the material can be written as the sum of 

these three stopping powers. 



 
 

48 
 

     ( ) ( ) ( ) ( )tot e n radS E S E S E S E   ,           (2.140) 

Since, the collision stopping power Scol(E) is the sum of the electric and the nuclear 

stopping powers, the total stopping power becomes 

     ( ) ( ) ( )tot col radS E S E S E  ,            (2.140) 

An energy loss (Eloss) of the charged particle in the material can be calculated from 

          ( )loss totE S E d ,             (2.141) 

where  is the material density and d is the material thickness. The total stopping power, 

the material density and the material thickness usually are introduced in units of MeV 

cm2/g, g/cm3 and cm, respectively.  

 


