CONTENTS

Acknowledgement	iii
Abstract in Thai	v
Abstract in English	vi
List of Tables	ix
List of Figures	X
Chapter 1 Introduction	1
Chapter 2 Theory and Principle	6
2.1 Principle of Photocathode Emission	7
2.1.1 Three-step Model of Photoemission	7
2.1.2 The Schotty effect	11
2.2 Acceleration of Electrons in Resonant Cavity	13
2.3 Bending and Focusing of Electron Beam	20
2.3.1 Dipole Magnet	25
2.3.2 Quadrupole Magnet	29
2.3.3 Solenoid Magnet	33
2.4 Transverse Phase Space and Beam Emittance	35
2.4.1 Quadrupole Scan Method	38
2.5 Space Charge Effect	43
2.6 Stopping Power of Materials	46
Chapter 3 Methodology	49
3.1 Production of Photoelectrons	49
3.2 Acceleration of Electrons in RF-gun	53
3.2.1 Study of RF Wave Properties	53

3.2.2 Simulations of Electromagnetic Field Distribution in	
the RF-gun	57
3.2.3 Beam Dynamic Simulations	58
3.2.4 Estimation of Cavity Wall Loss Power	65
3.3 Electron Beam Focusing	66
3.4 Electron Bunch Charge Measurement	69
3.5 Measurement of Electron Beam Energy	72
3.6 Measurement of Transverse Beam Emittance	80
Chapter 4 Results and Discussions	89
4.1 Measurements of Electron Bunch Charge	89
4.2 Measurements of Electron Beam Energy	92
4.3 Measurements of Beam Transverse Emittance	99
4.3.1 Beam Emittance and Solenoid Magnetic Field	100
4.3.2 Beam Emittance and Electron Bunch Charge	106
4.3.3 Beam Emittance and Laser Injection Phase	110
4.4 Study on Influence of Laser Position on the Cathode	113
Chapter 5 Conclusion	119
5.1 Study of Electron Bunch Charge	119
5.2 Study of Electron Beam Energy	120
5.3 Study of Transverse Beam Emittance	121
References	124
Curriculum Vitae rights reserved	129

LISL OF TABLES

Table 3.1	Properties of the photocathode drive laser for electron production	53
Table 3.2	Properties of the RF wave for electron acceleration in this study	57
Table 3.3	Simulated parameters used in PARMELA simulations	59
Table 3.4	Dimensions and properties of the quadrupole magnet	83
Table 4.1	Measured and simulated parameters used in the study of beam energy measurements	95
Table 4.2	Simulated parameters used in PARMELA simulations in section 4.4.	117
Table 5.1	Optimal measurement conditions for the electron beam production and acceleration	122
Table 5.2	Optimal properties of electron beams, which are produced from the photocathode RF-gun	123
	MAI UNIVERSIT	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure 1.1	Diagram illustrates a moving path of electrons inside the	
	undulator magnet	2
Figure 1.2	Diagram of electromagnetic spectrum	3
Figure 1.3	Conceptual diagram of the compact accelerator for generation of	
	the THz-FEL at Kyoto University	4
Figure 2.1	TM010 pillbox cavity with electric and magnetic field direction	14
Figure 2.2	Bessel functions of the zero th order $J_0(x) = J_0(k_c r)$ and the	
	first order $J_1(x) = J_1(k_c r)$	15
Figure 2.3	Magnitude of the longitudinal electric field E_z as a function of the	
	radius (r) and the longitudinal distance (z) of the TM_{010} pillbox	
	cavity	15
Figure 2.4	Model of the electron bunch acceleration inside the RF cavity	20
Figure 2.5	Reference and actual trajectories of the electron	22
Figure 2.6	Change of the horizontal and vertical displacements with	
	respect to time in <i>s</i> direction	23
Figure 2.7	Cross section diagram of a simple dipole magnet	26
Figure 2.8	Cross section diagram of a quadrupole magnet	29
Figure 2.9	Cross section diagram of a single pole of the quadrupole magnet	30
Figure 2.10	Diagram of the solenoid magnet and the induced magnetic	
1.1	field lines	33
Figure 2.11	Ellipse phase space of the electrons beam	36
Figure 2.12	Schematic diagram of the experimental set-up for the quadrupole	
	scan method	38
Figure 2.13	Example of simulated transverse distribution of the electron beam	41
Figure 2.14	Example of histogram and the Gaussian fitting for the horizontal	
	distribution of the beam	42

Figure 2.15	Example of relationship between the transverse beam size	
	squared and the focal length (f) of the quadrupole magnet	43
Figure 2.16	(a) Coulomb forces between two static identical charged particles	
	(b) Magnetic forces between two parallel currents	44
Figure 2.17	(a) Coulomb electric repulsing force (Fe) on the test particle in	
	a group of static charged particles. (b) The attractive magnetic	
	force (F_m) on the test particle in the group of moving charged	
	particles	44
Figure 3.1	Schematic diagram of the drive laser system for the photocathode	
	RF-gun	50
Figure 3.2	Simple figure shows the concept of the second harmonic	
	generation (SHG) with the phase matching	51
Figure 3.3	The time varying of the electric field at the cathode surface	52
Figure 3.4	(a) Diagnostic instruments to measure the laser pulse energy and	
	the laser injection timing (b) Typical laser pulse for the timing	
	measurement (c) The laser pulse energy meter	53
Figure 3.5	Schematic figure of ideal rectangular RF macropulses with the	
	pulse duration of $2\mu s$ and the repetition rate of 10 Hz	54
Figure 3.6	Measured forward RF signal for the RF pulse width of 2 μ s	56
Figure 3.7	Forward RF power as a function of the measured RF voltage	56
Figure 3.8	Simulated electric field profiles inside (a) the half-cell and (b) the full-cell cavities	58
Figure 3.9	Distributions of the normalized longitudinal electric field (E _z)	
A	and the longitudinal magnetic field (B_z) at $r = 0$ inside the	
	half-cell and the full-cell cavities	58
Figure 3.10	(a) Transverse and (b) longitudinal distributions of the initial	
	electron bunch at the cathode $(z = 0)$	59
Figure 3.11	Relationship between the number of macro-particles and	
	the simulated maximum and average electron energies	60
Figure 3.12	RMS transverse beam size and beam emittance in x-axis and	
	y-axis as a function of the number of macro-particle	61

Figure 3.13	Relationship between the maximum and average electron	
	energies and the radial mesh size	61
Figure 3.14	Relationship between the RMS transverse beam size and	
	emittance in x and y axes and the radial mesh size	62
Figure 3.15	Relationship between the maximum and average electron	
	energies and the longitudinal mesh size	62
Figure 3.16	Relationship between the RMS transverse beam size and beam	
	emittance in x and y axes and the longitudinal mesh size	63
Figure 3.17	Example of transverse distribution in x-y plane of the electron	
	bunch at the position of $z = 50$ cm	63
Figure 3.18	Examples of transverse phase spaces $(x - x')$ and $(y - y')$	
	of the electron bunch at the position of $z = 50$ cm	64
Figure 3.19	Relationship between the electron energy and the longitudinal	
	position of the simulated electron beam at the position $z = 50$ cm	64
Figure 3.20	Photographs of (a) the solenoid magnet and (b) the pancake coil	66
Figure 3.21	(A) Experimental set-up of the magnetic probe on the translation	
	state (B) Thermometer and one of sensors on the outer wall of the	
	solenoid chamber (C) The 40 V/200 A power supply, which was	
	used in the magnetic field measurement of the solenoid magnet	67
Figure 3.22	Simulated (blue line) and measured (red dots) solenoid	
8	longitudinal fields as a function of the distance in z-axis	68
Figure 3.23	Measured longitudinal magnetic field (B_z) as a function of the	
C	applied current (I) by Chiang Mai University	68
Figure 3.24	Measured longitudinal solenoid magnetic field and	
	the integration of the field along z-axis	69
Figure 3.25	Photograph of the experimental set-up for the charge measurement	70
Figure 3.26	Layout of the experimental set-up for the charge measurement	70
Figure 3.27	Photograph of the experimental set-up for the beam energy	
	measurement	72
Figure 3.28	Layout of the experimental set-up for the beam energy	
	measurement	73

Figure 3.29	Image of the fluorescence screen with dimensions for the	
	measurement of electron beam energy	74
Figure 3.30	Photograph of the dipole magnet used in electron beam energy	
	measurements	75
Figure 3.31	The experimental set-up for the dipole magnetic field	
	measurements	75
Figure 3.32	Simulated and measured magnetic field By distributions along	
	the z-axis of the dipole magnet	76
Figure 3.33	Normalized simulated and measured results of the magnetic field	
	By along the z-axis of the dipole magnet.	77
Figure 3.34	Distributions of the simulated and measured normalized magnetic	
	field By along the x-axis of the dipole magnet	78
Figure 3.35	Distributions of the magnetic field B_y along the y-axis within	
	the dipole magnet gap of ± 1 cm	78
Figure 3.36	Distribution of the measured magnetic field By component in	
	the x-z plane at the center of y-axis of the dipole magnet	79
Figure 3.37	Example histogram of the electron distribution in the x-axis on	
	the screen when the dipole magnet current of 4.5 A is used.	80
Figure 3.38	Layout of the experimental set-up to measure the beam emittance	80
Figure 3.39	An image of the screen with dimensions used in the transverse	
	beam emittance measurement	81
Figure 3.40	The set-up for the quadrupole magnetic field measurement	82
Figure 3.41	Electrical wire connection configuration of the quadrupole magnet	82
Figure 3.42	Magnetic field configuration for the measurement of quadrupole	
71	magnetic field	83
Figure 3.43	Photographs of the quadrupole magnet	84
Figure 3.44	Measured vertical magnetic field as a function of the position	
	in the x-axis	85
Figure 3.45	Measured horizontal magnetic field as a function of the position	
	in the y-axis	85

Figure 3.46	Gradients of the horizontal or vertical fields $(g_x \text{ or } g_y)$	
	as a function of the applied current	86
Figure 3.47	Gradient of the horizontal magnetic field (g_x) and the integration	
	of g _x along the z-axis.	87
Figure 3.48	Gradient of the vertical magnetic field (g_y) and the integration g_y	
	along the z-axis	88
Figure 4.1	Charge of the dark current as a function of the solenoid magnetic	
	field when the RF power of 8.9 MW was used	90
Figure 4.2	Charge of the dark current and the optimal solenoid magnetic field	
	as a function of the RF power	90
Figure 4.3	Dependence of the electron bunch charge on the laser injection	
	phase when the drive laser pulse energies were 150, 222, 285	
	and 350 µJ	91
Figure 4.4	Relationship between the electron bunch charge and the drive	
	laser pulse energy when the laser injection phases were 40, 59	
	and 76 degree	92
Figure 4.5	Trajectories of electrons with the energies of 5, 4.5 and 4 MeV	
	along the 3-D dipole magnetic field distribution when the applied	
	current is 4.25 A	93
Figure 4.6	Measured electron beam intensity distribution on the x-axis of the	
6	screen when the RF power was 8.9 MW, the laser injection phase of	of
(I	40 degree and the solenoid magnetic field of 200 mT were used	94
Figure 4.7 C	Simulated electron distributions on the x-axis of the screen when	
A	the RF-gun accelerating gradient of 52 MV/m, the laser injection	
	phase of 40 degree and the solenoid magnetic fields of 150 mT	
	and 200 mT were used	96
Figure 4.8	Measurement results of the electron beam energy for various	
	RF powers and laser injection phases for different accelerating	
	gradients E_1 and E_2	97

Figure 4.9	Measurement and simulation results of the beam energy	
	dependence on the laser injection phase for the case of the	
	maximum mean beam energy of about 4.6 MeV	98
Figure 4.10	Simulated electron beam energy and energy spread as a function	
	of the laser injection phase for different accelerating gradients	
	E_1 and E_2	99
Figure 4.11	Measured horizontal RMS beam size squared as a function	
	of the quadrupole magnet focal length for various solenoid	
	magnetic fields	100
Figure 4.12	Measured vertical RMS beam size squared as a function of	
	the quadrupole magnet focal length for various solenoid	
	magnetic fields	101
Figure 4.13	Relationship between the measured RMS transverse beam size	
	and the solenoid magnetic field	103
Figure 4.14	Relationship between the measured RMS beam emittance and	
	the solenoid magnetic field	103
Figure 4.15	Simulated RMS transverse beam size dependence on the solenoid	
	magnetic field at the position $z = 126$ cm	105
Figure 4.16	Simulated RMS emittance as a function of the solenoid magnetic	
	field at the position $z = 112$ cm	105
Figure 4.17	RMS transverse beam size dependence on the quadrupole magnet	
ລ	focal length for the drive laser pulse energy of 10, 20, 40, 60 and	
C	^{80 μJ} ight [©] by Chiang Mai University	106
Figure 4.18	Measured RMS transverse beam size at the screen (red square	
~	plots) and the measured RMS emittance (blue circle plots) at the	
	quadrupole magnet as a function of the electron bunch charge	
	when the solenoid magnetic field is 193 mT	108
Figure 4.19	Simulated RMS transverse beam size dependence on the bunch	
	charge and the solenoid magnetic field at the position $z = 126$ cm	109
Figure 4.20	Simulated RMS emittance dependence on the bunch charge and	
	the solenoid magnetic field at the position $z = 112$ cm	109

Figure 4.21	Measured horizontal RMS transverse beam size squared as	
	a function of the quadrupole magnet focal length for different	
	laser injection phases	110
Figure 4.22	RMS transverse beam size at the screen position as a function	
	of the laser injection phase	112
Figure 4.23	RMS transverse beam emittance at the quadrupole position as	
	a function of the laser injection phase	112
Figure 4.24	The dark current images on the screen for the solenoid magnetic	
	fields of (a) 0 mT, (b) 104 mT, (c) 156 mT, (d) 193 mT,	
	(e) 222 mT and (f) 297 mT	114
Figure 4.25	Electron beam images on the screen for the solenoid magnetic	
	fields of (a) 0 mT, (b) 104 mT, (c) 163 mT, (d) 193 mT,	
	(e) 252 mT and (f) 297 mT	115
Figure 4.26	Measured result of the beam center dependence on the solenoid	
	magnetic field	116
Figure 4.27	Dependence of simulated electron beam center in (a) x-axis and	
	(b) y-axis on the solenoid magnetic field and the shifted laser	
	injection positions on the photocathode	117
Figure 4.28	Cross-sectional area of the photocathode and the electrons, which are generated by the $+0.1$ cm-shifted drive laser	118

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved