

APPENDIX A

2D Graph 2 f= y0+a/(1+exp(-(x-x0)/b))

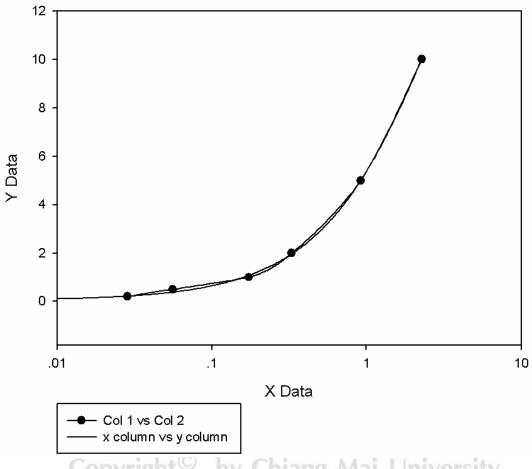
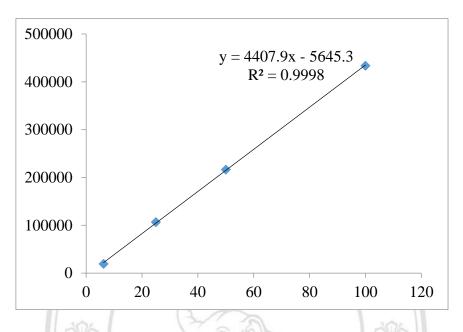
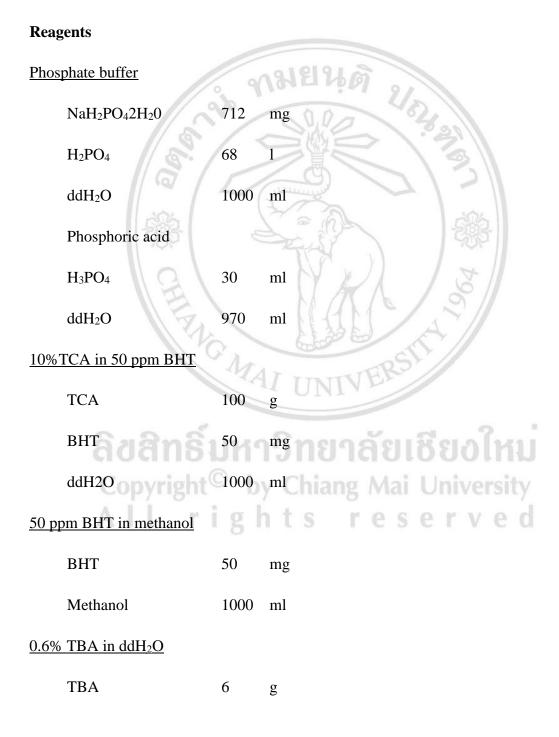


Figure A-1Standard curve for determination of insulin concentration based on Sandwich ELISA method

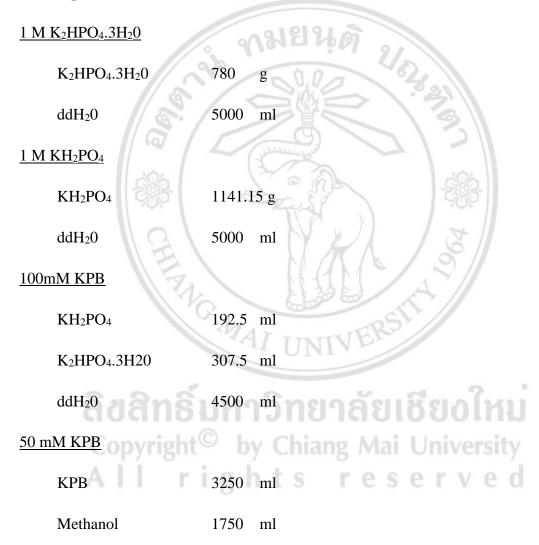



Figure A-2 Standard curve for determination of cardiac MDA level

Copyright[©] by Chiang Mai University All rights reserved

APPENDIX B

Determination of cardiac MDA level



ddH_2O 100)0 ml
--------------	-------

MDA standard

MDA stock solution	100	ml
ddH ₂ O	9900	ml

Mobile phase for MDA determination

APPENDIX C

Western blot technique

1. Solutions

	1.1 Extraction buffer (sto	ock solu	tion)
	1.1.1 Tris HCl (1M; pH	6.8)	2/02
	Tris HCl	15.76	g
	ddH ₂ O	<100	m 131
	Add ddH ₂ O until re	each 10	0 ml and adjust pH to 6.8.
	1.1.2 NaF (1M)	T	-X) (%?)
	NaF	41.98	g
	ddH ₂ O	100	mi
	1.1.3 Na ₃ VO ₄ (100 mM)	T T T	FRST
	Na ₃ VO ₄	1.8391	g
	ddH ₂ O	<100	^พ ่าลัยเชียงใหม่
	Add H ₂ O until reac	ch 100 r	nl and adjust pH to 9.0.
1.2	Extraction buffer (workin	ıg soluti	on; prepare from stock solution)
	Tris HCl (20 mM)	200	μl
	NaF (5mM)	50	μl
	Na ₃ VO ₄ (100 mM)	1	ml
	ddH ₂ O	17.5	ml
	Protease inhibitor tables	1	tab/10ml

1.3 2X SDS Sample buffer

Glycerol	2	ml
SDS	6	g

Tris 1.4 g

Make up to 100 ml with ddH₂O.

Before use, add 100 μ l of mercaptoethanol (10%), 900 μ l of 2X sample

g

buffer and 5 μ l of bromophenol blue (8% in Ethnol).

- 1.4 SDS-PAGE gel solutions
 - 1.4.1 Polyacrylamide gel solution
 - Resolving gel (1.5 M Tris; 0.4% SDS; pH to 8.8 with HCl) 1)

SDS	2.0	g
Tris	90.9	g
ddH ₂ O	300	ml

Add ddH₂O until 500 ml and adjust pH to 8.8

Stacking gel (0.5 M Tris; 0.4% SDS; pH to 6.8 with HCl) 2)

0	SDS	2.0	G
ລູງຊາ	Tris UM191	30.25	ខ្ទួពទេព១ពេរា
Copyri	ddH ₂ O	300	Mai University
AII	Add ddH2O until rea	ach 500	ml and adjust pH to 6.8
3)	10% Ammonium per	sulfate	

Ammonium persulfate	1	g
ddH ₂ O	10	ml

Polyacrylamide gels were made depending on the concentration

according to table.

Reagent	10%	15%	4% Stacking gel
MW of trget protein	>80	<30	-
ddH ₂ O (ml)	5	3	3.5
30% Acrylamide (ml)	4	6	1
1.5 M tris-HCl (pH 8.8) (ml)	3	3	-
0.5 M tris-HCl (pH 6.8) (ml)	ALL HE	1 91	1.5
10% Ammonium persulfate (μ l)	60 000	50	50
TEMED (µl)	15	15	5

1.5 Coomassie blue staining solution

Protein can be visualized in the gel by exposure to Coomassie blue solution followed by de-stained to remove background staining. Coomassie brilliant blue R250 1.25 g Methanol 225 ml 225 ddH_2O ml Glacial acetic acid 50 ml **11** Filter through Whatman #1 Filter paper 1.6 Coomassie blue destain solution Methanol 500 ml Glacial acetic acid (100%) 100 ml H_2O 400 ml

1.7 Ponceau S Staining solution (0.1% (w/v) Ponceau S in 5% (v/v) acetic acid)

This is a reversible staining method to locate protein bands on Western

30.3

144.2

10

g

g

blots.

Ponceau S1gGlacial acetic acid (100%)50ml

Add ddH2O until reach 1000 ml.

1.8 Running buffer (10x)

Tris

Glycine

SDS

Add ddH₂O until reach 1000 ml.

To make 1X Running buffer; add 100 ml of 10X Running buffer and 900 ml of ddH₂O.

1.9 Transfer buffer (10X)

Tris

Glycine

30.3

144.2

g

Add ddH₂O until reach 1000 ml.

To make 1X Transfer Buffer; add 100 ml of 10X Transfer Buffer to 200 ml of methanol and 700 ml of ddH₂O

1.10 TBS buffer (10X)

Tris	24.2	g
NaCl	80	g

To make 1X TBST; add 100 ml of 10X TBS to 900 ml of ddH2O and 1 ml of Tween-20.

1.11 Blocking buffer

1X TBST 10	00 1	ml
------------	------	----

Skimmed Milk powder 5 g

1.12 Antibody dilution buffer

1X TBST	100	ml

Skimmed Milk powder 1 g

2. Sample preparation

Frozen heart samples were homogenized with extraction buffer

(Add 1 ml of extraction buffer/ 100 mg sample)

Centrifuged at 13,000 rpm for 10 minutes at 4°C

Ţ

Collect supernatant and add 2X SDS Sample buffer (1:1)

Boil 95°C, 10 min

3. SDS-Acrylamide gel preparation

Clean loading gel glass with 70% Ethanol

<u>ุปสทธ์มหาวิทยุ</u>าลยเชยงไหม

Load the 10% or 15% separating gel, fill the space above the gel with isopropanol, and leave it for 30 min

 \downarrow

After gel is set, discard isopropanol, wash with ddH₂O

 \downarrow

Add 4% stacking gel, place comb, and leave it for 15 min

 \downarrow

After gel is set, move gels into electrophoresis chamber, and add 1X running

buffer

4. Immunolotting

Add 10µl of Protein ladder and 20 µl of protein sample/well

Ļ

Run gel at constant voltage of 90 Volts for initial 10 min and increase the voltage to 120 Volts for approximately 2 h until the protein touch the end of the

gel

T

Transfer gel to PVDF membrane at 90 Volts, 2 h (sponge-blotting paper-gel-

membrane-blotting paper-sponge)

Check transfer by straining membrane with Ponceau S for 5 min, wash with ddH2O follow by 1X TBST until red band disappear and staining gel with Coomassie Brilliant Blue for 5 min, and destain until gel is clear

ลิขสิทธิมหาวิทยุาลัยเชียงไหม

Block membrane with 5% milk in 1X TBST for 1 hour on an orbital shaker

Discard the blocking solution, add primary antibody 1:1000 with 1% milk in 1X

TBST, and incubate overnight at 4°C

Wash membrane with 1X TBST 5 min, 4 times

Add anti-rabit IgG conjugate HRP in TBST for 1 hour on an orbital shaker

Wash membrane with 1X TBST 5 min, 6 times

5. ECL exposure

Immerse the membrane in ECL reagent mixed with 1:1 for 1 min at room

temperature

↓

Place the membrane between the plastic sheets, put into an x-ray film cassette,

and close the cassette

Adjust exposure time according to the signal strength and specificity

Protein was exposed by ChemiDocTM Touch Imaging System

6. Re-use the Membrane for another protein

After membrane exposed to ECL, wash with 1X TBST for 5 min

Incubate the membrane with stripping buffer (10X dilution with ddH₂O) for 30

min, wash with 1X TBST for 5 min

Incubate the membrane in the blocking buffer (5% milk in 1X TBST) for 40 min

Incubate the membrane with another primary antibody

APPENDIX D

Cardiac mitochondrial function

1. Solutions

1.1 Mitochondrial isolation	on buffe	er (MIB)
Sucrose	300	mM
EGTA	0.2	mM
TES	5	mM
рН 7.2	La Ca	
1.2 Respiration buffer for	r mitocl	nondrial membrane potential changes (RB)
KCI	150	mM
HEPES	5	mM
K ₂ HPO ₄ .3H ₂ O	2	mM
C5H8NNaO4.xH2O	5	mM
CH ₃ COCOONa	5)n	™าลัยเชียงใหม่
		iang Mai University
		nondrial swelling or ROS production (RH)
KCl	100	mM

Sucrose	50	mM
HEFES	10	mM

 KH_2PO_4 5 mM

pH 7.4

2. Cardiac mitochondria isolation

Ventricular tissue in 8 ml cold isolated buffer in homogenate tube

 \downarrow Centrifuge it at 800 g at 4°C for 5 min ↓ Keep the supernatant and separated tube for RH or RB solution RB tube RH tube Centrifuge it at 8,800 g at 4°C for 5 min Ţ Keep pellet and added 2ml isolated buffer Centrifuge it at 8,800 g at 4°C for 5 min Keep pellet and added 1 ml of each RES buffer ลิขสท Copyrig 50 µl of each tube added 1 ml BCA reagent d e Incubated at 60°C for 30 min in water bath ↓ Measured 562 nm by spectrophotometer \downarrow

Calculated protein concentration and added each RES buffer for final

concentration 0.4 mg/ml

Well plate	Blank	М
Sample	-	150 µl
RES buffer (RH)	150 μl	-
DI	-30 μl	30 µl
DCFH-DA dye	20 µl	20 μl

3. Cardiac mitochondrial ROS production

Incubated at room temperature for 20 min

Measured at 485/ 530 nm by microplate reader

4. Cardiac mitochondrial membrane potential

Well plate	Blank	М
Sample	AI UNIVERS	150 μl
RES buffer (RB)	150 µl	Salari
DI DI Convright [©]	30 µl	30 µl
JC-1 dye	hts ^{20 µl} res	20 μl

Cover and Incubated at 37°C for 20 min

 \downarrow

Measured at 485/530 and 485/590 nm by microplate reader

5. Cardiac mitochondrial swelling

Well plate	Blank	М
Sample	-	150 µl
RES buffer (RH)	150 µl	-
DI	50 µl	50 µl

Measured at 540 nm by microplate reader

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

CURRICULUM VITAE

Miss Wannipa Tunapong	
Januar	ry 29, 1992
Uttara	dit Province, Thailand
2013	B.Sc. (Physical Therapy)
6	Chiang Mai University, Chaingmai, Thailand
2009	High school degree from Uttaradit Darunee School
	Uttaradit, Thailand
2014	Present Physical Therapy (PT), Thailand
articipa	ation at international meeting
NV	iternational Graduate Research Conference (iGRC 2015),
Chian	g Mai University, Thailand
Tunaj	pong W, Yasom S, Wanchai K, Chunchai T, Thiennimitr P,
	n S, Chaiyasut C, Pongchaidecha A, Lungkaphin A,
	pakorn S and Chattipakorn N., "Probiotics (Lactobacillus
iguu	sei) Improves Cardiac Function in Obese Insulin-resistant
	International Graduate Research Conference (iGRC
2015),	Chiang Mai University, Thailand
Yason	n S, Thiennimitr P, Tunapong W , Wanchai K, Sirilun S,
Chaiya	asut C, Chattipakorn S, Chattipakorn N. Probiotic
Lactol	pacillus paracasei ST11 (HP4) Decreases Serum
Chole	sterol Levels and Attenuates Metabolic Endotoxemia
Indepe	endent of Gut Microbiota Alteration. Proceeding to the
	Januar Uttara 2013 2009 2014 articipa The In Chian Sirilur Chatti paraca Rats". 2015), Yason Chaiya Lactol Cholea

International Graduate Research Conference (iGRC 2015), Chiang Mai University, Thailand

Wanchai K, Yasom S, **Tunapong W**, Chunchai T, Chattipakorn N, Chattipakorn S, Pongchaidecha A, Lungaphin A. Prebiotic Xylooligosaccharide Attenuates Kidney Dysfunction by Improving Insulin Resistance in High-Fat Diet Induced-Obese Rats. Proceeding to the International Graduate Research Conference (iGRC 2015), Chiang Mai University, Thailand

Chunchai T, **Tunapong W**, Yasom S, Wanchai K, Thiennimitr P, Chaiyasut C, Chattipakorn N, Chattipakorn S. The Probiotic Therapy with Lactobacillus paracasei Increased Cognitive function in Obese- Insulin Resistant rats. Proceeding to the 8thfederation of the Asian and oceanian physiological societies (FAOPS) congress 2015.

<mark>ธิ์มหาวิทยาลัยเชียงใหม่</mark> ht[©] by Chiang Mai University rights reserved