CONTENTS

	Page
Acknowledgement	d
Abstract in Thai	e
Abstract in English	g
Lists of Tables	1
Lists of Figures	m
List of Abbreviations	O
List of Symbols	S
Chapter 1 Introduction	1
1.1 Principle, theory and rational/Hypothesis	1
1.2 Literature review	3
1.2.1 Obesity and insulin resistance	3
1.2.2 Obese-insulin resistance and the heart	5
1.2.3 Insulin resistance and mitochondrial function	5
1.2.4 Obese-insulin resistance and gut microbiota	6
1.2.5 The probiotics	9
1.2.6 Effects of probiotics on obesity and metabolic syndrome	10
1.2.7 Effects of probiotics on the inflammatory process	11
and oxidative stress	
1.2.8 Effects of probiotics on cardiovascular disease	12
1.3 Purposes of the study	12
1.4 Hypothesis of the study	13
Chapter 2 Materials and methods	14
2.1 Research design, scope, and methods	14
2.1.1 Study protocol	14
2.2.2 General methods	15
1) Animal preparation	15
2) High-fat diet preparation	17
3) Probiotics preparation	17

4) Echocardiography protocol	18
5) Heart rate variability (HRV) protocol	18
6) Blood pressure (BP) protocol	19
7) Left ventricle pressure -volume loop (P-V loop) protocol	19
8) Cardiac mitochondrial function protocol	19
9) Western blot analysis for Bax and Bcl-2	22
10) Determination of serum lipopolysaccharide (LPS)	23
11) HPLC based assay of malondialdehyde (MDA) concentration	23
2.1.3 Chemical analysis	24
1) Determination of plasma insulin level	24
2) Determination of plasma glucose level	25
3) Determination of total cholesterol (TC) level	25
4) Determination of plasma triglyceride (TG) level	26
5) Determination of high density lipoprotein (HDL)	27
and low density lipoprotein (LDL) level	
6) Oral glucose tolerance test (OGTT) protocol	27
7) Determination of insulin resistance (HOMA index)	27
2.2 Statistical analysis	28
Chapter 3 Results	29
3.1 Effects of probiotics improved inflammation and lipid profile	30
in HFD-induced obese-insulin resistant rats.	
3.2 Effects of probiotics attenuated blood pressure in HFD-induced	32
obese-insulin resistant rats.	
3.3 Effects of probiotics improved heart rate variability in	35
HFD-induced obese-insulin resistant rats.	
3.4 Effects of probiotics improved cardiac function in HFD-induced	36
obese-insulin resistant rats.	
3.5 Effects of probiotics attenuated cardiac mitochondrial	38
dysfunction in HFD-induced obese-insulin resistant rats.	
3.6 Effects of probiotics improved oxidative stress but did not change	39
in cardiac apoptosis in HFD-induced obese-insulin resistant rats.	

Chapter 4 Discussion and conclusion	41
References	46
Appendix	65
Appendix A	66
Appendix B	70
Appendix C	72
Appendix D	79
Curriculum vitae	83

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

		Page
Table 2.1	The contents of the normal diet (ND)	16
Table 2.2	The contents of the high-fat diet (HFD)	17
Tables 3.1	The metabolic parameters at baseline and after 12-weeks of either	30
	ND or HFD consumption.	
Tables 3.2	The metabolic parameters after 12-weeks of vehicle and probiotics	31
	administration in ND-fed rats and HFD-fed rats.	
Tables 3.3	The pressure-volume loop parameters after 12-weeks of vehicle	38
	and probiotics administration in ND-fed rats and HFD-fed rats.	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright© by Chiang Mai University
All rights reserved

LIST OF FIGURES

		Page
Figure 1.1	Insulin signaling pathway modulating glucose uptake	4
	in skeletal muscle cells.	
Figure 1.2	Composition of dominant microbial species in the human	8
	gastrointestinal tract.	
Figure 1.3	A diagram summarizing the association of long-term HFD,	8
	obese-insulin resistance and cardiac dysfunction.	
Figure 1.4	Potential direct effects of probiotics	10
Figure 2.1	A diagram to demonstrate the study protocol.	15
Figure 2.2	Mechanism of 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA)	21
	de-esterification to 2,7-dichlorodihydrofluorescein (DCFH), and	
	further oxidation to fluorescent 2,7-dichlorofluorescein (DCF)	
	by ROS and RNS	
Figure 3.1	The effects of HFD consumption on metabolic endotoxemia	32
	at 12 weeks of HFD consumption and post-treatment.	
Figure 3.2	The effects of HFD consumption on blood pressure, heart rate	33
	variability and echocardiographic parameters at the baseline and	
	after 12 weeks of HFD consumption.	
Figure 3.3	The effects of probiotics on blood pressure in ND and	34
	HFD-fed rats at 4, 8 and 12 weeks of the intervention period.	
Figure 3.4	The effects of probiotics on LF/HF ratio in ND	35
	and HFD-fed rats at 4, 8 and 12 weeks of the intervention period.	
Figure 3.5	The effects of probiotics on echocardiography parameters in ND	37
	and HFD-fed rats at 4, 8 and 12 weeks of the intervention period.	
Figure 3.6	The effects of probiotics on cardiac mitochondria function in ND	39
	and HFD-fed rats.	
Figure 3.7	The effects of probiotics on oxidative stress	40
	and apoptotic makers in ND and HFD-fed rats.	

Figure 4.1	A diagram summarizing the effects of chronic HFD consumption	45
	on cardiac function in HFD-induced obese-insulin resistant rat model.	
Figure 4.2	A diagram summarizing the effects of probiotics	45
	Lactobacillus paracasei ST11 HP4 on cardiac function in	
	HFD-induced obese-insulin resistant rats model.	
Figure A-1	Standard curve for determination of insulin concentration	68
	based on Sandwich ELISA method.	
Figure A-2	Standard curve for determination of cardiac MDA level	69
	SAN	

LIST OF ABBREVIATIONS

+ **dP/dt** Maximum slope of the systolic pressure increment

- **dP/dt** Minimum slope of the systolic pressure increment

Akt Serine/threonine-specific protein kinase

ATP Adenosine triphosphate

Bax BCL2 Associated X Protein

BCA Bicinchoninic acid

BHT Butyrate hydroxytoluene

BP Blood pressure

BSA Bovine serum albumin

CFU Colony forming unit

CHE Cholesterol esterase

CHO Cholesterol oxidase

CVD Cardiovascular disease

CRP C-reactive protein

DBP Diastolic blood pressure

DCF Fluorescent 2,7-dichlorofluorescein

DCFDA Dichlorohydrofluorescein diacetate

DCFH De-esterification to 2,7-dichlorodihydrofluorescein

DM Diabetes mellitus

FFA Free fatty acid

ECG Electrocardiogram

EGTA Ethylene glycol bis (2-amino ethylether)-N,N,N,N-tetraacetic

acid

ETC Electron transport chain

g Gram

GOD Glucose oxidase

H₂O₂ Hydrogen peroxide

 H_3PO_4 H_3PO_4

HDL High-density lipoprotein

HF High frequencyHFD High-fat diet

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

HOMA Homeostasis model assessment

HPLC High-performance liquid chromatography

HRV Heart rate variability

IL-6 Interleukin-six

IL-10 Interleukin-ten

IL-12 Interleukin-twelve

IL-17 Interleukin-seventeen

I/R Ischemia/reperfusion

IRS Insulin receptor substrate

JC-1 The dye 5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-

tetraethylbenzimidazolcarbocyanine iodide

KCl Potassium chloride

KH₂PO₄ Potassium dihydrogen phosphate

L Liter

LAL Limulus amebocyte lysate

LDL Low-density lipoprotein cholesterol

LF Low frequency

LPS Lipopolysaccharides

LV Left ventricular

LVEDP Left ventricular end-diastolic pressure

LVESP Left ventricular end-systolic pressure

LVIDd Left ventricular internal diameter during diastole

LVIDs Left ventricular internal diameter during systole

MAP Mean arterial pressure

MAPK Mitogen-activated protein kinase

MDA Malondialdehyde

Mets Metabolic syndrome

mg Milligram

min Minute

ml Milliliter

mm Millimeter

mM Milimolar

mmHg Millimeter of mercury

mmol Millimole

NaCl Sodium chloride

Na₂CO₃.H₂O Sodium carbonate monohydrate

NaF Sodium fluoride

NAFLD Non-alcoholic fatty liver disease

NaHCO₃ Sodium bicarbonate

Na₂HPO₄ Di-sodium hydrogen phosphate

NaOH Sodium hydroxide

NaHCO₃ Sodium bicarbonate

NF-kB Nuclear factor kappa-light-chain-enhancer of activated B cells

ND Normal diet

nm Nanometer

O-cuff Occlusion cuff

OGTT Oral glucose tolerance test

ox-LDL Oxidized low density lipoprotein

tumor protein 38

PAI-1 Plasminogen activator inhibitor-1

PBS Phosphate Buffer Saline

PI3K Phosphatidylinositol 3-kinase

PKB Protein kinase B

PV-loop Pressure-volume loop

R/O Reverse osmosis drinking water

ROS Reactive oxygen species

SDS Sodium dodecyl sulfate

SBP Systolic blood pressure

SOD Superoxide dismutase

SV Stroke volume
SW Stroke work

SWR Standard working reagent

TBA Thiobabituric acidTC Total cholesterol

TG Triglyceride

TCA Trichloroacetic acid

TLR-4 Toll-like receptor 4

TNF- α Tumor necrosis factor-alpha

VLDL Very low-density lipoprotein

VPR Volume pressure recording

WHO World health organization

ลิ**ปสิทธิ์มหาวิทยาลัยเชียงใหม**่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF SYMBOLS

% Percentage
 %FS Fractional shortening
 %E Percent of total energy
 %EF Ejection fraction

°C Degrees in Celsius

 $\Delta \Psi$ Mitochondrial membrane depolarization

ENG MAI

β Beta

μl Microliter

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved