## CONTENTS

| Acknowledgments                                                       | c |
|-----------------------------------------------------------------------|---|
| Abstract in Thai                                                      | d |
| Abstract in English                                                   | f |
| Content                                                               | h |
| List of Tables                                                        | k |
| List of Figures                                                       | 1 |
| List of Abbreviations                                                 | р |
| Statement of Originality in English                                   | r |
| Statement of Originality in Thai                                      | S |
| Chapter 1 Introduction                                                | 1 |
| 1.1 Introduction                                                      | 1 |
| 1.2 Purposes of the Study                                             | 2 |
| 1.3 Education/application advantages                                  | 2 |
| 1.4 Location                                                          | 2 |
| Chapter 2 Literature Review                                           | 4 |
| 2.1 Introduction                                                      | 4 |
| 2.2 Component, chemical composition, nutritive and medicinal value of |   |
| orange fruit                                                          | 5 |

| 2.3 Some main causes affect the postharvest quality of orange fruit                | 10 |
|------------------------------------------------------------------------------------|----|
| 2.4 Postharvest Technology of orange fruit                                         | 13 |
| 2.5 Application of PLA, bees wax and carnauba wax coating on fruit in              |    |
| Vietnam and in the World                                                           | 24 |
| Chapter 3 Effect of mixed wax coating on shrinkage pattern of orange fruit cv.     |    |
| Canh                                                                               | 26 |
| 3.1 Introduction                                                                   | 26 |
| 3.2 Materials and methods                                                          | 27 |
| 3.3 Results and discussions                                                        | 30 |
| 3.4 Conclusions                                                                    | 38 |
| Chapter 4 Effect of mixed wax coating on postharvest qualities and storage life of |    |
| sweet orange fruit cv. Canh during storage                                         | 39 |
| 4.1 Introduction                                                                   | 39 |
| 4.2 Materials and methods                                                          | 40 |
| 4.3 Results and discussions                                                        | 42 |
| 4.4 Conclusions                                                                    | 61 |
| Chapter 5 Effects of DLA socking in combination with mixed way costing on          |    |
| Chapter 5 Effects of PLA soaking in combination with mixed wax coating on          |    |
| quanties and storage me of vietnamese orange nut ev. Cann at ambient               | 61 |
| Copyright <sup>©</sup> by Chiang Mai University                                    | 04 |
| 5.1 Introduction                                                                   | 64 |
| 5.2 Materials and methods                                                          | 66 |
| 5.3 Results and discussions                                                        | 70 |
| 5.4 Conclusions                                                                    | 81 |
| Chapter 6 Effects of PLA soaking in combination with wax coating on qualities      |    |
| and storage life of Vietnamese orange fruit cv. Canh at 5°C                        | 83 |
| 6.1 Introduction                                                                   | 83 |

| 6.2 Materials and methods                                                                                      | 84  |
|----------------------------------------------------------------------------------------------------------------|-----|
| 6.3 Results and discussions                                                                                    | 87  |
| 6.4 Conclusions                                                                                                | 99  |
| Chapter 7 Conclusions                                                                                          | 101 |
| References                                                                                                     | 102 |
| Appendix                                                                                                       | 116 |
| Appendix A                                                                                                     | 116 |
| Appendix B                                                                                                     | 118 |
| Appendix C                                                                                                     | 119 |
| Appendix D                                                                                                     | 120 |
| Curriculum vitae                                                                                               | 128 |
| <b>ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่</b><br>Copyright <sup>©</sup> by Chiang Mai University<br>All rights reserved |     |

### LIST OF TABLES

Page

| Table 2.1       | Water vapour, O <sub>2</sub> and CO <sub>2</sub> permeability of edible coating    | 15 |
|-----------------|------------------------------------------------------------------------------------|----|
| Table 3.1       | The distance of convex spots on the top, bottom of mixed wax                       |    |
|                 | coated (4, 6, 8 and 10%) of orange cv. Canh fruit stored at $22 \pm 2^{\circ}$ C,  |    |
|                 | $80 \pm 5\%$ RH                                                                    | 34 |
| Table 3.2       | Effects of MW coating on thickness on the top, middle, bottom of                   |    |
|                 | orange cv. Canh                                                                    | 36 |
| Table 4.1       | Effect of mixed wax on sensory in orange cv. Canh at $22 \pm 2^{\circ}$ C, 80      |    |
|                 | ± 5% RH                                                                            | 50 |
| Table 4.2       | Effect of mixed wax on sensory in orange cv. Canh at $5 \pm 1^{\circ}$ C, $80 \pm$ |    |
|                 | 5%RH                                                                               | 60 |
| Tabla 5 1       | Antifungal activity of phonyllatic acid and mixed way against                      |    |
|                 | muchiel growth Asparaillus on and Banieillium on ofter 7d                          | 70 |
| Table 5 2       | Effect of DLA applied with mixed way on <i>Devicillium</i> on mold                 | 12 |
| 1 able 5.2      | Effect of PLA applied with mixed wax on <i>Penicilium</i> sp. mold                 | 74 |
| <b>T</b> 11 5 2 | Incidence in orange cv. Cann                                                       | /4 |
| Table 5.3       | Effect of PLA combined with MW on sensory values in orange cv.                     | -  |
|                 | Canh                                                                               | 79 |
| Table 5.4       | Effect of PLA combined with MW on total microorganisms and                         |    |
|                 | total aerobic bacteria in orange cv. Canh                                          | 80 |
| Table 5.5       | Effect of PLA combined with MW on shelf life of orange cv. Canh                    |    |
|                 | fruit at $22 \pm 2^{\circ}$ C, $80 \pm 5\%$ RH.                                    | 81 |
| Table 6.1       | Effect of PLA combined with MW on sensory of orange cv. Canh                       |    |
|                 | fruit stored at low temperature (5 $\pm$ 1°C), 80 $\pm$ 5%RH                       | 95 |
| Table 6.2       | Effect of PLA combined with MW on shelf-life of orange cv. Canh                    |    |
|                 | fruit stored at low temperature (5 $\pm$ 1°C), 80 $\pm$ 5%RH                       | 96 |

### LIST OF FIGURES

| Page |
|------|
|------|

| Figure 2.1 Some main genus Citrus                                             | 6  |
|-------------------------------------------------------------------------------|----|
| Figure 2.2 Leaf, flower, fruit, treeof orange cv. Canh                        | 9  |
| 691819163                                                                     |    |
| Figure 3.1 Scanning electron microscope JSM-5410LV (a) and E600-Nikon (b)     | 30 |
| Figure 3.2 Effect of bees-carnauba wax (MW) coating on shrinkage pattern on   |    |
| the top of orange cv. Canh peel stored at ambient temperature (22 $\pm$       |    |
| $2^{\circ}$ C), $80 \pm 5\%$ RH                                               | 31 |
| Figure 3.3 Effect of bees-carnauba wax (MW) coating on shrinkage pattern on   |    |
| the mildle of orange cv. Canh peel stored at ambient temperature (22          |    |
| $\pm 2^{\circ}$ C), 80 $\pm 5\%$ RH                                           | 31 |
| Figure 3.4 Effect of bees-carnauba wax (MW) coating on shrinkage pattern on   |    |
| the bottom of orange cv. Canh peel stored at ambient temperature (22          |    |
| $\pm 2^{\circ}$ C), 80 $\pm 5\%$ RH                                           | 32 |
| Figure 3.5 Wrinkle of Orange cv. Canh by microscope (taken 20 times) (Nikon   |    |
| Japan)                                                                        | 33 |
| Figure 3.6 Convex spots of control orange cv. Canh (before, after storage) by |    |
| SEM (x15)                                                                     | 34 |
| Figure 3.7 a Convex spots of 4%MW orange cv. Canh (before, after storage) by  |    |
| SEM (x15)                                                                     | 35 |
| Figure 3.7 b Convex spots of 6%MW orange cv. Canh (before, after storage) by  |    |
| SEM (x15)                                                                     | 35 |
| Figure 3.7 c Convex spots of 8%MW orange cv. Canh (before, after storage) by  |    |
| SEM (x15)                                                                     | 35 |
| Figure 3.7 d Convex spots of 10%MW orange cv. Canh (before, after storage) by |    |
| SEM (x15)                                                                     | 36 |
| Figure 3.8 Cross-section image of surface skin coated by SEM: control (a) and |    |
| 8%MW (b)                                                                      | 37 |

| Figure 4.1 Effect of bees-carnauba wax (MW) coating on titrable acid of orange        |    |
|---------------------------------------------------------------------------------------|----|
| cv. Canh fruit stored at ambient temperature ( $22 \pm 2^{\circ}$ C), $80 \pm 5\%$ RH | 43 |
| Figure 4.2 Effect of bees-carnauba wax (MW) coating on total sugars of orange         |    |
| cv. Canh fruit stored at ambient temperature ( $22 \pm 2^{\circ}$ C), $80 \pm 5\%$ RH | 44 |
| Figure 4.3 Effect of bees-carnauba wax (MW) coating on vitamin C of orange cv.        |    |
| Canh fruit stored at ambient temperature ( $22 \pm 2^{\circ}$ C), $80 \pm 5\%$ RH     | 44 |
| Figure 4.4 Effect of bees-carnauba wax (MW) coating on TSS of orange cv. Canh         |    |
| fruit stored at ambient temperature ( $22 \pm 2^{\circ}$ C), $80 \pm 5\%$ RH          | 45 |
| Figure 4.5 Effect of bees-carnauba wax (MW) coating on ethanol of orange cv.          |    |
| Canh fruit stored at ambient temperature ( $22 \pm 2^{\circ}$ C), $80 \pm 5\%$ RH     | 46 |
| Figure 4.6 Effect of bees-carnauba wax (MW) coating on decay of orange cv.            |    |
| Canh fruit stored at ambient temperature ( $22 \pm 2^{\circ}$ C), $80 \pm 5\%$ RH     | 47 |
| Figure 4.7 Effect of bees-carnauba wax (MW) coating on weight loss of orange          |    |
| cv. Canh fruit stored at ambient temperature $(22 \pm 2^{\circ}C)$ , $80 \pm 5\%$ RH) | 48 |
| Figure 4.8 Effect of bees-carnauba wax (MW) coating on respiration of orange          |    |
| cv. Canh fruit stored at ambient temperature ( $22 \pm 2^{\circ}$ C), $80 \pm 5\%$ RH | 49 |
| Figure 4.9 Effect of bees-carnauba wax (MW) coating on titrable acid of orange        |    |
| cv. Canh fruit stored at $5 \pm 1^{\circ}C 80 \pm 5\%RH$                              | 51 |
| Figure 4.10 Effect of bees-carnauba wax (MW) coating on total sugars of orange        |    |
| cv. Canh fruit stored at $5 \pm 1^{\circ}$ C $80 \pm 5\%$ RH                          | 52 |
| Figure 4.11 Effect of bees-carnauba wax (MW) coating on vitamin C of orange           |    |
| cv. Canh fruit stored at $5 \pm 1^{\circ}C 80 \pm 5\%$ RH                             | 53 |
| Figure 4.12 Effect of bees-carnauba wax (MW) coating on TSS of orange cv.             |    |
| Canh fruit stored at $5 \pm 1^{\circ}$ C $80 \pm 5\%$ RH                              | 54 |
| Figure 4.13 Effect of bees-carnauba wax (MW) coating on ethanol of orange cv.         |    |
| Canh fruit stored at $5 \pm 1^{\circ}$ C $80 \pm 5\%$ RH                              | 55 |
| Figure 4.14 Effect of bees-carnauba wax (MW) coating on decay of orange cv.           |    |
| Canh fruit stored at $5 \pm 1^{\circ}$ C $80 \pm 5\%$ RH                              | 57 |
| Figure 4.15 Effect of bees-carnauba wax (MW) coating on weight loss of orange         |    |
| cv. Canh fruit stored at $5 \pm 1^{\circ}C 80 \pm 5\%RH$                              | 58 |
| Figure 4.16 Effect of bees-carnauba wax (MW) coating on respiration of orange         |    |
| cv. Canh fruit stored at $5 \pm 1^{\circ}$ C $80 \pm 5\%$ RH                          | 59 |

| Figure 4.17 Effect of bees-carnauba wax (MW) coating on storage time of orange     |    |
|------------------------------------------------------------------------------------|----|
| cv. Canh fruit stored at $5 \pm 1^{\circ}C \ 80 \pm 5\% RH$                        | 63 |
| Figure 5.1 Blue mold and green mold of orange cv. Canh                             | 65 |
| Figure 5.2 Symptoms and signs of post-harvest rot of orange caused by              |    |
| Aspergillus sp. and Penicillium sp.                                                | 71 |
| Figure 5.3 Inhibitory activity of PLA combined with 8% mixed wax against           |    |
| Aspergillus sp. and Penicillium sp. germination after 48h                          | 73 |
| Figure 5.4 Effect of PLA combined with MW 8% on titrable acid oforange cv.         |    |
| Canh fruit stored at ambient temperature ( $22 \pm 2^{\circ}$ C), $80 \pm 5\%$ RH  | 75 |
| Figure 5.5 Effect of PLA combined with MW 8 % on TSS of orange cv. Canh            |    |
| fruit stored at ambient temperature ( $22 \pm 2^{\circ}$ C), $80 \pm 5\%$ RH       | 76 |
| Figure 5.6 Effect of PLA combined with MW 8% on decay oforange cv. Canh            |    |
| fruit stored at ambient temperature ( $22 \pm 2^{\circ}$ C), $80 \pm 5\%$ RH       | 77 |
| Figure 5.7 Effect of PLA combined with MW 8% on weight loss of orange cv.          |    |
| Canh fruit stored at ambient temperature ( $22 \pm 2^{\circ}$ C), $80 \pm 5\%$ RH) | 77 |
| Figure 5.8 Effect of PLA combined with MW 8% on storage time 25 days of            |    |
| orange cv. Canh stored at ambient temperature (22 $\pm$ 2°C), 80 $\pm$             |    |
| 5%RH                                                                               | 82 |
| Figure 6.1 Effect of PLA combined with MW on titrable acid of orange cv. Canh      |    |
| fruit stored at low temperature (5 $\pm$ 1°C), 80 $\pm$ 5% RH                      | 87 |
| Figure 6.2 Effect of PLA combined with MW on total sugars of orange cv. Canh       |    |
| fruit stored at low temperature (5 $\pm$ 1°C), 80 $\pm$ 5% RH                      | 88 |
| Figure 6.3 Effect of PLA combined with MW on vitamin C of orange cv. Canh          |    |
| fruit stored at low temperature (5 $\pm$ 1°C), 80 $\pm$ 5% RH                      | 89 |
| Figure 6.4 Effect of PLA combined with MW on TSS of orange cv. Canh fruit          |    |
| stored at low temperature (5 $\pm$ 1°C), 80 $\pm$ 5%RH                             | 90 |
| Figure 6.5 Effect of PLA combined with MW on ethanol of orange cv. Canh fruit      |    |
| stored at low temperature (5 $\pm$ 1°C), 80 $\pm$ 5%RH                             | 91 |
| Figure 6.6 Effect of PLA combined with MW on decay of orange cv. Canh fruit        |    |
| stored at low temperature (5 $\pm$ 1°C), 80 $\pm$ 5%RH                             | 93 |

Figure 6.7 Effect of PLA combined with MW on weight loss of orange cv. Canh fruit stored at low temperature (5 ± 1°C), 80 ± 5% RH
Figure 6.8 Effect of PLA combined with MW on storage time (a-g) of orange cv.

Canh fruit stored at low temperature  $(5 \pm 1^{\circ}C)$ ,  $80 \pm 5\%$  RH 100



ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright<sup>©</sup> by Chiang Mai University All rights reserved

# LIST OF ABBREVIATIONS

| А.     | Aspergillus                                              |
|--------|----------------------------------------------------------|
| AOAC   | Association of analytical communities                    |
| BC wax | Bees and carnauba wax                                    |
| CA     | Controlled atmosphere                                    |
| CBZ    | Carbendazim                                              |
| СМС    | Carboxymethyl cellulose                                  |
| CW     | Chitosan wax                                             |
| d 6    | days                                                     |
| Fig.   | Figure                                                   |
| GSC    | Gas solid chromatography                                 |
| h 🛛    | hour                                                     |
| HDPE   | High density polyethylene                                |
| HPMC   | Hydroxypropyl methylcellulos                             |
| HWT    | Hot water treatment                                      |
| IMZ    | Imazalil                                                 |
| L.     | Lactobacillus                                            |
| LDPE   | Low density polyethylene                                 |
| MA     | Modified atmosphere                                      |
| MAP    | Modified atmosphere packaged                             |
| MARD   | Ministry of Agriculture and Rural Development of Vietnam |
| MEA    | Malt extract agar                                        |
| MIC    | Minimum inhibiting concentration                         |
| MW     | Mixed wax (Bees wax - carnauba wax)                      |
| Р.     | Penicillium                                              |
| PE     | Polyethylene                                             |
| PDA    | Potato dextrose agar                                     |
| PLA    | Phenyllactic acid                                        |
| RH     | Relative humidity                                        |

| SEM | Scanning Electron | Microscope |
|-----|-------------------|------------|
|-----|-------------------|------------|

- TA Titrable acidity
- Tab. Table
- TBZ Thiabendazol
- TSS Total soluble solids
- wk week
- Vit C Vitamin C, Ascorbic acid



ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright<sup>©</sup> by Chiang Mai University All rights reserved

#### STATEMENT OF ORIGINALITY

1. I declare that this applied dissertation represents my original work, except where I have acknowledged the ideas, words, or materials of other authors by citing them in the required style.

2. This thesis presents the safety procedure for storage life extension of orange fruit and is able to apply for a commercial scale.



ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved

# ข้อความแห่งการริเริ่ม

 ข้าพเจ้าขอยืนยันว่าวิทยานิพนธ์ที่นำเสนอนี้เป็นผลงานต้นฉบับของข้าพเจ้า ยกเว้นในส่วนของ แนวความกิด ใจความ หรือข้อมูลที่ผู้ประพันธ์ท่านอื่น ๆ ซึ่งข้าพเจ้าได้นำมาอ้างอิง หรือ แสดง ความขอบคุณไว้ในรูปแบบที่ต้องการ

 วิทยานิพนธ์นี้ได้นำเสนอแนวทางการยืดอายุการเก็บรักษาส้มเกลี้ยงที่ปลอดภัยและสามารถนำไป ประยุกต์ใช้ในเชิงการค้าได้



ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved