CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (THAI)	iv
ABSTRACT (ENGLISH)	vii
LIST OF TABLES	xii
LIST OF FIGURES	XV
ABBREVIATIONS AND SYMBOLS	xviii
STATEMENTS OF ORIGINALITY (THAI)	xxii
STATEMENTS OF ORIGINALITY (ENGLISH)	xxiii
CHAPTER 1 Introduction	1
CHAPTER 2 Literature review	4
2.1 Leonardite	4
2.2 The Role of Microorganisms	13
2.3 Soil Fertility Degradation	17
2.4 Soil Organic Matter and Soil Fertility	18
2.5 Rice Production and Fertilization	19
CHAPTER 3 Chemical properties and potential use in agriculture	
of leonardite from different sources in Thailand	21
3.1 Introduction	21
3.2 Materials and methods	23
3.3 Results	25
3.4 Discussion	32
3.4 Conclusion	35

CONTENTS (CONTINUED)

	Page
CHAPTER 4 X – ray and scanning electron microscope	
characterization of leonadite	36
4.1 Introduction	36
4.2 Materials and methods	37
4.3 Results and discussion	39
4.4 Conclusion	57
CHAPTER 5 Microbial population in leonardite and their potential	
use in agriculture	58
5.1 Introduction	58
5.2 Materials and methods	59
5.3 Results and discussion	62
5.4 Conclusion	87
CHAPTER 6 Application of leonardite to improve soil quality and rice	
yield I. Pot experiment	88
6.1 Introduction	88
6.2 Materials and methods	89
6.3 Results and discussion	91
6.4 Conclusion	100
CHAPTER 7 Application of leonardite to improve soil quality and rice	
yield I. Field experiment	101
7.1 Introduction	101
7.2 Materials and methods	102
7.3 Results and discussion	104
7.4 Conclusion	112
CHAPTER 8 Conclusion	113
REFERENCES	115
CURRICULUM VITAE	135

LIST OF TABLES

	Page
Table 2.1 The benefits of leonardite	9
Table 2.2 Comparison on contents of humic and fulvic acid from various sources	9
Table 2.3 Characterized composition of the mineral found in leonardite	
with the XRD.	13
Table 3.1 Methods of leonardite analysis for plant nutrients	24
Table 3.2 Methods of leonardite analysis for chemical and organic properties	25
Table 3.3 Location, spot and sample code of leonardite sampling	26
Table 3.4 Total concentrations of selected plant nutrients contained in	
leonardite of Mae Moh, Lampang	27
Table 3.5 Total concentrations of selected plant nutrients contained in	
leonardite of Chiang Muan, Phayao	28
Table 3.6 Total concentrations of selected plant nutrients contained	
in leonardite from Lee, Lamphun	29
Table 3.7 Total concentrations of selected chemical properties of	
leonardite from Mae Moh, Lampang	30
Table 3.8 Total concentrations of selected chemical properties of	
leonardite of Chiang Muan, Phayao	31
Table 3.9 Total concentrations of selected chemical properties of	
leonardite from Lee, Lamphun	32
Table 3.10 Comparison of nutrients levels contained in leonardite	
obtained from various experiments	33
Table 4.1 Chemical properties of five selected leonardite samples	40
Table 4.2 Total cation exchange (CEC) and ash (% Ash) of selected	
leonardite samples	41
Table 4.3 Mineral composition of leonardite examined by XRD analysis	43
Table 4.4 Elemental analysis of leonardite samples	
by X-ray fluorescence spectrometry	50

LIST OF TABLES (CONTINUED)

	Page
Table 4.5 Elemental analysis of leonardite samples by SEM	
(Scanning Electron Microscope).	54
Table 5.1 Microbial biomass carbon in leonardite determined	
at 1, 2, 3, 4, 5, and 6 months after incubation	62
Table 5.2 Microbial biomass nitrogen in leonardite determined	
at 1, 2, 3, 4, 5, and 6 months after incubation.	64
Table 5.3 Number of microorganisms in leonardite at 1 month	66
Table 5.4 Number of microorganisms in leonardite at 6 month	67
Table 5.5 Morphology and color of the bacterial culture isolated	
from the leonardite	68
Table 5.6 Morphology and color of the fungal culture isolated	
from the leonardite	69
Table 5.7 Morphology and color of the actinomycetal culture	
isolated from the leonardite	70
Table 5.8 Cellulase activity, phosphate solubilizing ability	
and IAA production by selected bacterial isolates	77
Table 5.9 Cellulase activity, phosphate solubilizing ability and	
IAA production by selected fungal isolates.	82
Table 5.10 Cellulase activity, phosphate solubilizing ability and	
IAA production by selected Actinomycetal isolates	85
Table 6.1 The analysis results of the soil after planting rice.	92
Table 6.2 Growth parameters of rice variety jasmine rice 105 at 2 months	
after transplanting	95
Table 6.3 Effect of different treatments on number of panicle,	
grain yield and straw yield	96
Table 6.4 Nutrient concentrations in rice straw at harvesting time	98
Table 6.5 Nutrient uptake in rice straw at harvesting time	99

LIST OF TABLES (CONTINUED)

Table

Table 7.1 Growth parameters of rice variety jasmine rice 105 at 1 and 2 months	
after transplanting	105
Table 7.2 Effect of different treatments on growth parameters.	106
Table 7.3 Nutrient concentrations in rice shoots at 1, 2 and 3 month	
after transplanting	107
Table 7.4 Nutrient concentrations in rice grains at harvesting	107
Table 7.5 Nitrogen uptake in rice shoots at 1, 2 and 3 month after transplanting	108
Table 7.6 Phosphorus uptake in rice shoots at 1, 2 and 3 month after transplanting	109
Table 7.7 Potassium uptake in rice shoots at 1, 2 and 3 month after transplanting	110
Table 7.8 Calcium uptake in rice shoots at 1, 2 and 3 month after transplanting	111
Table 7.9 Magnesium uptake in rice shoots at 1, 2 and 3 month after transplanting	112

Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

	Page
Figure 2.1 The character with black color of leonardite.	6
Figure 2.2 Leonardite deposit in Mae Moh mine, Lampang province	7
Figure 2.3 A structural model of lignite	8
Figure 4.1 X-Ray analysis diffraction patterns of leonardite	
samples LD 2-3 (Mae Moh2)	44
Figure 4.2 X-Ray analysis diffraction patterns of leonardite	
samples LD 3-2 (Mae Moh3)	45
Figure 4.3 X-Ray analysis diffraction patterns of leonardite	
samples LD 4-2 (Chiang Muan2)	46
Figure 4.4 X-Ray analysis diffraction patterns of leonardite	
samples LD 8-1 (Lee2)	47
Figure 4.5 X-Ray analysis diffraction patterns of leonardite	
samples LD 8-1 (Lee2)	48
Figure 4.6 SEM images of leonardite samples: LD 2-3: Mae Moh 2	52
Figure 4.7 SEM images of leonardite samples: LD3-2: Mae Moh 3	52
Figure 4.8 SEM images of leonardite samples: LD4-2: Chiang Muan2	52
Figure 4.9 SEM images of leonardite samples: LD8-1: Lee 2	53
Figure 4.10 SEM images of leonardite samples: LD8-3: Lee 2	53
Figure 4.11 Elemental analysis of leonardite	
samples : LD2-3 (Mae Moh 2) by SEM	55
Figure 4.12 Elemental analysis of leonardite	
samples : LD3-2 (Mae Moh 3) by SEM	55
Figure 4.13 Elemental analysis of leonardite	
samples: LD4-2 (Chiang Muan 2) by SEM	55
Figure 4.14 Elemental analysis of leonardite	
samples : LD8-1 (Lee 2) by SEM	56

LIST OF FIGURES (CONTINUED)

	Page
Figure 4.15 Elemental analysis of leonardite	
samples: LD8-3 (Lee 2) by SEM	56
Figure 5.1 Comparison of microbial biomass carbon in the leonardite	
at various periods.	63
Figure 5.2 Comparison of microbial biomass nitrogen in the leonardite	
at various periods.	64
Figure 5.3 Cellulase activity, phosphate solubilizing ability and	
IAA production by selected Actinomycetal isolates	67
Figure 5.4 Clear zone appearance on plate indicated cellulase enzyme	
production and without clear zone indicated no ability for	
cellulose production	72
Figure 5.5 Comparison of cellulase enzyme activity of the high potential isolates	72
Figure 5.6 Clear zone ratio of selected bacterial isolates obtained	
from loenardite samples	73
Figure 5.7 Clear zone appearance on plate indicated phosphate solubilizing	
ability and without clear zone indicated no ability for phosphate	
solubilizing ability	74
Figure 5.8 The standard IAA series 0, 10, 20, 50, 100 and 150 µmole/ml.	76
Figure 5.9 Comparison of the color development indicating IAA production.	76
Figure 5.10 Fungal isolate that can produce cellulase enzyme indicated by	
clear zone around the colony and isolate that cannot produce	
clear zone	80
Figure 5.11 Clear zone around a fungal colony on Czapek's medium indicating	
phosphate solubilizing ability and no fugal growth without clear zone	80
Figure 5.12 The standard IAA series 0, 10, 20, 50, 100, 150 µmole/ml	81
Figure 5.13 Clear zone around a actinomycetal colony on CMC	
medium indicating phosphate solubilizing ability and	
no growth without clear zone	83

LIST OF FIGURES (CONTINUED)

	Page
Figure 5.14 Comparison of cellulase enzyme activity of the high	
potential isolates	83
Figure 5.15 Clear zone around a actinomycetal colony on Czapek's	
medium indicating phosphate solubilizing ability.	84
Figure 6.1 Tillers and panicle per plant and grain yield as affected	
by chemical fertilizers and organic amendments	97
Figure 6.2 Nutrients uptake in rice straw at harvesting time as affected	
by chemical fertilizers and organic amendments	100
Figure 7.1 Soil preparation and incorporation of before rice	103
Figure 7.2 Data collection in the rice field at 1 (A) and 2 month (B)	
after transplanting	103

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

The WALLUNIVERSIT

ABBREVIATIONS AND SYMBOLS

ADP	Adenosine diphosphate
AIA-SEM	Automatic image analysis SEM
Al-P	Aluminum phosphate
ATP	Adenosine triphosphate
AMF	Arbuscular mycorrhizal fungi
As	Arsenic
BMs	Beneficial microorganisms
% BS	Alkali percent saturation
c 🖉	Carbon
Ca	Calcium
Ca-P	Calcium phosphate
Ca ₃ (PO ₄) ₂	Calcium phosphate
Cd	Cadmium
С	Carbon
°C	Degree celsius
CC-SEM	Computer-controlled SEM
CEC	High cation exchange capacity
CFU	Colony forming units
Cmaans	Centimeter
C:N ratio	Ratio of carbon to nitrogen
CO ₂	Carbon dioxide
-COOH groups	Carboxylic acid groups
DMSO	Dimethyl sulfoxide
DNA	Deoxyribonucleic acids
DSE	Dark septate endophytes
DW	Dry weight
e	Electron
EDX	Energy dispersive X-rays
EC	Electrical conductivity.

ABBREVIATIONS AND SYMBOLS (CONTINUED)

FA	Fulvic acid
g	Gram
Н	Hydrogen
H ⁺ -ATPase	Proton-pumping ATPase
НА	Humic acid
HCN production	Hydrogen cyanide produced
hr	Hour
HS	Humic substances
HPSEC	High performance size exclusion chromatography
IAA	Indole acetic acid
lbs	Pounds
IL	Improved leonerdite
К	Potassium
KDML 105	Khao Dawk Mali 105
kg	Kilogram
KCl	Potassium chloride
LD	Leonardite
LDAc	Leonardite
LDB	Leonardite bacteria
LDF	Leonardite fungi
rsd gauge	Least significant difference
meq g ⁻¹	Milliequivalents
Mg	Magnesium
mg/L	Milligram per litre
mM	Millimolar
mg	Milligram
mL	Milliliter
MWHC	Maximum water holding capacity
Ν	Nitrogen

ABBREVIATIONS AND SYMBOLS (CONTINUED)

NADP	Nicotinamide adenine dinucleotide phosphate
NH^{4+}	Amonium
NH ₄ OAc	Ammonium acetate
nmole	Nanomole
NO ₃ -	Nitrate
0	Oxygen
OL	100% leonardite
ОМ	Organic matter
-OH groups	Hydroxyl groups
P	Phosphorus
Pb	Lead
PGPM	Plant growth promoting microorganisms
PGPR	Plant growth-promoting rhizobacteria
PVK	Pikovskaya's
PSB	Phosphate solubilizing bacteria
pH	Potential of hydrogen ion
RCBD	Randomized complete block design
RNA	Ribonucleic acids
S	Sulfur
SEM	Scanning electron microscopy
SEM-EDX	Scanning electron microscopy coupled to energy
Copyright	dispersive X-ray
SOM	Soil organic matter
Tr	Treatments
UV	Ultraviolet
μg/mL	Microgram per millilitre
μg	Microgram
μΜ	Micromole
μmol	Micromole

ABBREVIATIONS AND SYMBOLS (CONTINUED)

XRDX-ray diffraction analysisXRFX-ray fluorescence spectrometry

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ข้อความแห่งการริเริ่ม

ข้าพเจ้าขอรับรองว่า วิทยานิพนธ์ฉบับนี้เป็นผลงานวิจัยริเริ่ม ยกเว้นในกรณีเอกสารอ้างอิง ข้าพเจ้า ขอรับรองว่า วิทยานิพนธ์นี้ไม่ได้ละเมิดลิขสิทธิ์ กรรมสิทธิ์ และ เทคนิก ใดๆ จากการทำงานของคน อื่น ๆ และผลงานของข้าพเจ้านี้ไม่ได้ถูกส่งไปเพื่อขอประกาศนียบัตร หรือ ปริญญาบัตรจากสถาบัน อื่น ๆ ของระดับการศึกษาที่สูงขึ้น

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

STATEMENTS OF ORIGINALITY

I hereby certify that this thesis is original research work except where due reference is made. I certify that, my thesis does not infringe upon anyone's copyright nor violate any proprietary rights. It has not been submitted for any other degree or diploma to any other institution of higher learning.

Copyright[©] by Chiang Mai University All rights reserved