CONTENTS

Acknowledgement	c
Abstract in Thai	f
Abstract in English	h
List of tables	m
List of figures	s
List of abbreviation	w
Statement of Originality in Thai	Z
Statement of Originality in English	
Chapter 1 Introduction	1
Chapter 2 Literature review	3
2.1 Hot Springs	3
2.2 Factors influencing the distribution of microalgae	9
2.3 Diatoms	10
2.4 Diatom Identification	11
2.5 Thermotolerant diatoms	11
2.6 Benefit of thermotolerant diatoms	13
	14
	15
I J	21

CONTENTS (continued)

Chapter 3 Water properties and distribution of hot spring diatoms	
in northern Thailand	26
3.1 Introduction	26
3.2 Materials and Methods for the preliminary investigation	27
3.3 Results and discussions for the preliminary investigation	38
3.4 Materials and Methods for Investigation of Diatom Diversity	49
3.5 Results for Investigation of Diatom Diversity	53
3.6 Discussion for Investigation of Diatom Diversity	81
3.7 Conclusion	87
Chapter 4 Diatom, Achnanthidium exiguum AARL d025-2, in	
cultivation for lipid production	142
4.1 Introduction	142
4.2 Materials and methods	144
4.3 Results	149
4.4 Discussions	157
4.5 Conclusion	159
Chapter 5 General discussions and conclusions	160
5.1 General discussions	160
5.2 Conclusions	166
5.3 Recommendations	167

CONTENTS (continued)

References	
List of Publication	
Appendices	64191916
Appendix A	s your elo
Appendix B	1 Sher san
Appendix C	
Appendix D	2000 X121
Appendix E	C- 2 10 100
Curriculum Vitae	MAI UNIVERSIT
	มหาวิทยาลัยเชียงใหม่ © by Chiang Mai University

LIST OF TABLES

Table	Page
2.1 Types of hot springs classified by surface temperature	6
2.2 The classification based on pH is divided into 6 classes	6
2.3 The classification based on usage is divided into 4 classes	7
3.1 Location and some description of 9 hot springs sampling sites	35
3.2 Physicochemical factors of nine study sites in the wet and dry seasons	39
3.3 Distribution of diatom taxa during the wet season at nine hot spring sites	47
3.4 Distribution of diatom taxa during the dry season at nine hot spring sites	48
3.5 p-value for diatom taxa during wet and dry season at nine hot spring sites	49
3.6 Location of 8 hot spring sampling sites	52
3.7. Relationships between the species ordination scores (NMDS) and the	
influenced environmental factors	78
3.8 Shannon's diversity index, evenness and the species richness of benthic diator	ms
in 8 hot springs in northern Thailand during December 2015 – April 2016	79
3.9 The list of benthic diatoms in 8 hot spring sampling sites during	
December 2015 - April 2016	134
4.1 Maximum specific growth rate and division rate of A. exiguum	
AARL D025-2, cultivated at various pH values and temperatures	150
4.2 The comparison of pH level and growth rate from diatoms cultivated	
in different conditions	152
4.3 Oil content of some microalgae	154
4.4 Biomass Lipid and FAME production of A. exiguum AARL D025-2	
cultivated at various pH values and temperatures	155
4.5 FAME profile of Achnanthidium exiguum AARL D025-2	156
6.1 The results of physico-chemical in wet season	197
6.2 The results of physico-chemical in dry season	198
6.3 The results of counted diatom cell in hot spring sampling sites in dry season	200

6.4 The results of counted diatom cell in hot spring sampling sites in wet season	202
6.5 The results of physico-chemical in San Kamphang hot spring	205
6.6 The results of physico-chemical in Theppanom hot spring	206
6.7 The results of physico-chemical in Ta Pai hot spring	207
6.8 The results of physico-chemical in Pong Ang hot spring	208
6.9 The results of physico-chemical in Chae Sorn hot spring	209
6.10 The results of physico-chemical in Mae Chok hot spring	210
6.11 The results of physico-chemical in Wat Salaeng hot spring	211
6.12 The results of physico-chemical in Ban Su Men hot spring	212
6.13 The results of counted diatom cell in hot spring sampling sites	214
6.14 The measurement of water temperature in 24 hours	231

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University AII rights reserved

LIST OF FIGURES

Figure	Page
2.1 The distribution of hot springs in Thailand classified by temperature range	4
2.2 The natural cycle of hot springs and geothermal vitality in northern Thailand	
modified from International Network for Sustainable Energy (INFORSE)	5
2.3 Diatom cell structure modified from Ian Nettleton	10
3.1 Flowchart diagram of hot spring diatoms and water properties analysis	28
3.2 Map of Thailand giving 9 sampling sites of hot springs in northern Thailand	32
3.3 Hot Springs sampling sites in northern Thailand	33
3.4 Hot Springs sampling sites in northern Thailand	34
3.5 Comparison of water temperature (°C) in the investigated localities between	
wet and dry season	40
3.6 Comparison of pH in the investigated localities between wet and dry season	40
3.7 Comparison of Conductivity (μ s.cm ⁻¹) in the investigated localities between	
wet and dry season	41
3.8 Comparison of NO ₃ -N (mg.l ⁻¹) in the investigated localities between	
wet and dry season	41
3.9 Comparison of NH4-N (mg.l ⁻¹) in the investigated localities between	
wet and dry season	42
3.10 Comparison of SRP (mg.l ⁻¹) in the investigated localities between	
wet and dry season	42
3.11 Comparison of SiO ₂ (mg.l ⁻¹) in the investigated localities between	
wet and dry season	43
3.12 Comparison of S^{2-} (mg.l ⁻¹) in the investigated localities between	
wet and dry season	43
3.13 Comparison of alkalinity (mg.l ⁻¹ as CaCO ₃) in the investigated localities bet	ween
wet and dry season	44

LIST OF FIGURES (continued)

Figure	Page
3.14 Comparison of total hardness in the investigated localities between	
wet and dry season	44
3.15 Relative abundance of diatoms in nine sampling sites in the dry season	46
3.16 Relative abundance of diatoms of nine sampling sites in the wet season	46
3.17 Water temperatures of 8 hot springs sampling sites in 4 temperature	
ranges and Tmax (T>55°C)	54
3.18 pH of 8 hot springs sampling sites in 4 temperature ranges and Tmax	
(T>55°C)	54
3.19 Conductivity of 8 hot springs sampling sites in 4 temperature ranges	
and Tmax (T>55°C)	57
3.20 Nitrate-nitrogen of 8 hot springs sampling sites in 4 temperature ranges	
and Tmax (T>55°C)	57
3.21 Ammonium-nitrogen of 8 hot springs sampling sites in 4 temperature	
ranges and Tmax (T>55°C)	58
3.22 Soluble reactive phosphorus (SRP) of 8 hot springs sampling sites in	
4 temperature ranges and Tmax (T>55°C)	58
3.23 Silicon dioxide of 8 hot springs sampling sites in 4 temperature ranges	
and Tmax (T>55°C)	59
3.24 Alkalinity of 8 hot springs sampling sites in 4 temperature ranges	
and Tmax (T>55°C)	59
3.25 Total hardness of 8 hot springs sampling sites in 4 temperature ranges	
and Tmax (T>55°C)	61
3.26 Sulfide of 8 hot springs sampling sites in 4 temperature ranges	
and Tmax (T>55°C)	61
3.27 Water temperature fluctuations of each sampling sites	
at San Kamphaeng hot springs in 24 hours	62

LIST OF FIGURES (continued)

Figure	Page
3.28 Water temperature fluctuations of each sampling sites	
at Theppanom hot springs in 24 hours	62
3.29 Water temperature fluctuations of each sampling sites	
at Ta Pai hot springs in 24 hours	63
3.30 Water temperature fluctuations of each sampling sites	
at Pong Ang hot springs in 24 hours	63
3.31 Water temperature fluctuations of each sampling sites	
at Chae Sorn hot springs in 24 hours	64
3.32 Water temperature fluctuations of each sampling sites	
at Mae Chok hot springs in 24 hours	64
3.33 Water temperature fluctuations of sampling sites	
at Wat Salaeng hot springs in 24 hours	65
3.34 Water temperature fluctuations of each sampling sites	
at Pong Gi hot springs in 24 hours	65
3.35 Relative abundance percentage of diatom genera	
in hot springs sampling sites	66
3.36 The comparison of cluster dendrogram and number of cluster analyzed	
by 7 methods carried out with the R package NbClust	71
3.37 Cluster dendrogram and heat map of sampling sites according to the	
physico-chemical factors in 8 hot spring sampling sites analyzed	
by 6 methods carried out with the R package NbClust	73
3.38 Cluster dendrogram and heat map of sampling sites according to	
the physico-chemical factors in 8 hot spring sampling sites analyzed	
by ward.D2	74
3.39 The plot of explained variance by different principal components	75

LIST OF FIGURES (continued)

Figure	Page
3.40 PCA 3D plot graph, cluster dendrogram and heat map showing	
relationship between of sampling sites according to the physico-chemical	
factors in 8 hot spring sampling sites analyzed by ward.D2 carried out	
with the R package NbClust	76
3.41 Non-metric multidimensional scaling (NMDS) ordination diagram of the hot	
springs based on species composition.	77
3.42 Diagram of diatom cells	89
3.43 Suborders of pennate diatoms with associated raphe types	89
3.44 Diagrams to show valve and girdle shapes	90
3.45 Diagrams to show valve apices	91
3.46 Some general features of pennate diatoms (composite diagram)	92
3.47 Valve striation in pennate diatoms	92
3.48 Light micrograph of benthic diatoms from some hot springs in	
the northern Thailand during December 2015 to April 2016	111
3.49 Drawing of benthic diatoms from some hot springs in the northern	
Thailand during December 2015 to April 2016	112
3.50 Scanning electron microscope photographs of some hot spring	
diatoms in 8 sampling sites during December 2015 – April 2016	127
4.1 Flowchart diagram of hot spring diatoms cultivation for lipid production	144
4.2 The experiment set up of Achnanthidium exiguum AARL D025-2	146
4.3 Growth of Achnanthidium exiguum AARL D025-2 in BBM medium	
without pH adjustment at different temperatures and compared with pH 7	
adjusted-BBM medium at 30°C.	151
4.4 Growth of Achnanthidium exiguum AARL D025-2 at 30 °C and pH values	152
4.5 Growth of Achnanthidium exiguum AARL D025–2 at 40 °C and pH values	153
4.6 Growth of Achnanthidium exiguum AARL D025-2 at 50 °C and pH values	153

ABBREVIATIONS

Aulamb	Aulacoseira ambigua (Grunow) Simonsen
Aulgra	Aulacoseira granulata Ehrenberg
Melvar	Meloseira varians Agardh
Achexi	Achnanthidium exiguum (Grunow) Czarnecki
Achmin	Achnanthidium minutissimum (Kützing) Czarnecki
Achsp	Achnanthidium sp.
Ampmon	Amphora montana Krasske
Ampova	Amphora ovalis (Kützing) Kützing
Anopha	Anomoeoneis sphaerophora (Ehrenberg) Pfitzer
Anosp	Anomoeneis sp.
Calbac	Caloneis bacillum (Grunov) Mereschkowsky
Calmol	Caloneis molaris (Grunow) Krammer
Cocpla	Cocconeis placentula Ehrenberg
Craaci	Craticula acidoclinata Lange-Bertalot & Metzeltin
Craamb	Craticula ambigua (Ehrenberg) Mann in Round, Crawford & Mann
Cracus	Craticula cuspidata (Kützing) Man
Cymtum	Cymbella tumida (Brébisson) Van Heurck
Diacon	Diadesmis confervacea Kützing
Diabal	Diatomella balfouriana Greville
Dipell	Diploneis elliptica (Kützing) Cleve 1894
Dipova 📿	Diploneis subovalis Cleve, 1894
Epizeb	Epithemia zebra (Ehrenberg) Kützing 1844
Fracro	Fragillaria crotonensis Kitton
Gomaff	Gomphonema affine Kützing
Gomaug	Gomphonema augur var. sphaerophorum Lange–Bertalot
Gomgra	Gomphonema gracile Ehrenberg 1838
Gompar	Gomphonema parvulum (Kützing) Van Heurck
Halfon	Halamphora fontinalis (Hustedt) Z. Levkov
Hanamp	Hantzchia amphioxys (Ehrenberg) Grunow in cleve et Grunow

Navgri	Navicula grimmei Krasske in Hustedt
Navros	Navicula rostellata (Kützing) Cleve
Navsub	Navicula subrhynchocephala Hustedt
Nitamp	Nitzschia amphibia Grunow
Nitcla	Nitzschia clausii Hantzsch
Nitign	Nitzschia ignorata Krasske 1929
Nitpal	Nitzschia palea (Kützing) W. Smith
Pinaba	Pinnularia abaujensis (Pantoscek) Ross
Pinbor	Pinnularia borealis Ehrenberg 1843
Pinsap	Pinnularia saprophila Lange-Bertalot, Kobayashi and Krammer
Pinmes	Pinnularia mesolepta (Ehrenberg) Smith
Plalan	Planothidium lanceolatum (Breb.) Round & Bukhtiyarova
Rhogib	Rhopalodia gibberula (Ehrenberg) O.F. Müller
Sellan	Sellaphora lanceolata D.G. Mann & S. Dropp in Mann et al.
Staanc	Stauroneis anceps Ehrenberg
Staell	Staurosira elliptica (Schumann) D.M.Williams & Round
Surbis	Surirella biseriata f. amphioxys (W. Smith) Hustedt
Surele	Surirella elegans Ehrenberg
Synuln	Synedra ulna (Nitzsch) Ehrenberg
SK	San Kamphaeng Hot Springs
TPN	Thep Phanom Hot Springs
TP	Tha Pai Hot Springs
CHD	Pong Ang Hot Springs
JS CO	Jae Sorn Hot Springs
MJ A	Mae Chok Hot Springs
SL	Sa Leang Hot Springs
SM	Su Men Hot Springs
NG	Pong Gi Hot Springs
D	Dry season
W	Wet season
e	epipelic/epilithic
р	periphytic

AARL	Applied Algal Research Laboratory
FAME	Fatty acid methyl ester
PUFAs	Polyunsaturated fatty acids
TAG	Triacylglycerols
rpm	Revolutions per minute
OD450	Optical density at 450 nm
BBM	Bold Basal medium
DW	Dry weight
μ mol.m ⁻² .s ⁻¹	Micromol per square meter per second
mL	Milliliter
L	Liter
mM	Millimol
mg L ⁻¹ d ⁻¹	Milligram per liter per day
	ALL MAI UNIVERSIT

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University AII rights reserved

ข้อความแห่งการริเริ่ม

 วิทยานิพนธ์นี้ได้นำเสนอการศึกษาการกระจายตัวและความหลากหลายของไดอะตอมในน้ำพุร้อน บางแหล่งในภาคเหนือของประเทศไทย และการเพาะเลี้ยงเพื่อการผลิตลิพิด

2) งานวิจัยที่อยู่ในวิทยานิพนธ์นี้ได้ศึกษาระหว่างเดือนตุลาคม 2556 ถึงเดือนเมษายน 2559 ซึ่งงานวิจัย นี้ไม่เคยนำถูกเสนอในระดับปริญญาหรืออนุปริญญาของสถาบันการศึกษาใดๆ มาก่อน

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University AII rights reserved

STATEMENT OF ORIGINALITY

1) This thesis was conducted to study the distribution, diversity of hot springs diatoms in northern Thailand and the cultivation for the lipid production.

2) The research work comprised in this thesis was conducted between October 2013 and April 2016. It has not been previously submitted for a degree or diploma at any educational institution.

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University AII rights reserved