

หัวข้อวิทยานิพนธ์

การทดสอบปลาป่นด้วยโปรตีนไอก็อโรไลเซทจากปลาในอาหาร

ปลากรดคั่ง

ผู้เขียน

นายคำญู ไตรยะมาด

ปริญญา

วิทยาศาสตรมหาบัณฑิต (สัตวศาสตร์)

คณะกรรมการที่ปรึกษา

ผศ.ดร.เกศินี เกตุพยัคฆ์

อาจารย์ที่ปรึกษาหลัก

อ.ดร.มนตรา ศิลปอุดม

อาจารย์ที่ปรึกษาร่วม

ผศ.ดร.วรรณพร ทะพิงค์แก

อาจารย์ที่ปรึกษาร่วม

Prof.em. Dr. Hans-Jürgen Langholz อาจารย์ที่ปรึกษาร่วม

บทคัดย่อ

การศึกษารังนี้มีวัตถุประสงค์เพื่อศึกษาผลของการใช้โปรตีนไอก็อโรไลเซทจากปลา (Fish protein hydrolysate FPH) ทดสอบปลาป่นในอาหารต่อการเจริญเติบโตของปลากรดคั่ง (*Hemibagrus wyckioides*) โปรตีนไอก็อโรไลเซทจากปลา เป็นผลิตภัณฑ์ที่ได้มาจากการกระบวนการแปรรูปอาหารทะเล ซึ่งเป็นวัตถุคุณค่าทางโภชนาการ ประกอบด้วย ส่วนหัว ผิวหนัง ครีบ กระดูก อวัยวะภายใน และไข่ปลา FPH เป็นสารเสริมอาหารซึ่งเป็นสารออกฤทธิ์ทางชีวภาพ (bio-active compound) ที่ดูดซึมง่ายในกระบวนการย่อย ช่วยกระตุ้นการกิน และการเจริญเติบโตของปลา งานวิจัยนี้ทำการทดลองแบบสุ่มสมบูรณ์ ประกอบด้วยการทดสอบปลาป่นด้วย FPH 4 ระดับ คือ 0 กรัม/กก (FPH0), 50 กรัม/กก (FPH50) คิดเป็น 16.67%, 100 กรัม/กก (FPH100) คิดเป็น 33.33% และ 150 กรัม/กก (FPH150) คิดเป็น 50% โดยใช้อาหารอัดเม็ดมีโปรตีนรวม 32% ใช้ลูกปลากรดคั่งทั้งหมดจำนวน 720 ตัว (น้ำหนักเริ่มต้นเฉลี่ย 5.45 ± 0.05 กรัม) เลี้ยงในระบบน้ำหมุนเวียนโดยมีอุณหภูมิน้ำ 26 ± 1 องศาเซลเซียส ให้อาหารปลา 2 ครั้ง/วัน ให้กินจนอิ่ม ทดลองเป็นเวลา 14 สัปดาห์ สุ่มเอาปลา 5% ต่อกลุ่มทดลองเพื่อมาวัดคุณภาพซาก คุณภาพเนื้อ และนำเลือดปลามาวัดค่าไอลิซีม์ ผลการทดลองพบว่า ค่าอัตราการเจริญเติบโตจำเพาะ (SGR) ของปลาแต่ละกลุ่ม อยู่ระหว่าง 2.79–2.86 % ในระยะเวลา 14 สัปดาห์ จากน้ำหนักเริ่มต้นเฉลี่ย 5.5 กรัม เป็นน้ำหนักสุดท้ายเฉลี่ย 87.81 กรัม มีอัตราการรอดตายสูง (99.72%) ส่วนน้ำหนักสุดท้ายของปลาในกลุ่มที่เสริมด้วย FPH 100 กรัม/กก มีค่าสูงสุด (91.67กรัม/ตัว) น้ำหนักเพิ่มของปลากลุ่ม FPH100 และ FPH150 สูงกว่ากลุ่ม FPH0 6.79 กรัม (8.01%) 5.49 กรัม (6.48%) ($P<0.05$) ค่าบ่งชี้ด้านการเจริญเติบโตประกอบด้วยค่าอัตราการเจริญเติบโตเฉลี่ย (ADG) ค่าอัตราการ

เจริญเติบโตจำเพาะ (SGR) ค่าอัตราแอกเนื้อ (FCR) และค่า protein efficiency ratio (PER) เมื่อเทียบกับกลุ่ม FPH100 กับกลุ่ม FPH0 (สูงสุดกับต่ำสุด) มีค่า ADG 0.88 และ 0.81กรัม/วัน; SGR 2.86 และ 2.79%/วัน; FCR 1.71 และ 1.79 และ PER 1.87 เทียบกับ 1.74 ตามลำดับ ค่าอัตราการเจริญเติบโตสูงนี้มีผลมาจากการปอกินอาหารเพิ่มขึ้น 147.8 กรัม/วัน (FPH100) และ 141.6 กรัม/วัน (FPH0) ($P<0.01$) น้ำหนักสุดท้ายของปลาในกลุ่มที่เสริมด้วย FPH 100 กรัม/กг มีผลต่อปอร์เช่นชาต ตับ และอวัยวะเครื่องในที่ดีกว่าส่วนค่าไขมันของเนื้อปลาลดลงตามระดับการเพิ่ม FPH ซึ่งต่ำกว่ากลุ่ม FPH0 2.56% (FPH100) และ 2.92% (FPH150) เนื่องจากไขมันในสูตรอาหารที่มีการทดแทนปลาป่นด้วย FPH มีค่าไขมันต่ำ ส่งผลให้ไขมันของเนื้อปลาลดลงจาก 13.2% เป็น 10.6% การเพิ่มระดับ FPH มีผลต่อลักษณะสีปลาเล็กน้อยโดยเฉพาะสีของหนังปลาจะเข้มขึ้นแต่ไม่มีความแตกต่างทางค้านสี ($P<0.05$) ผลการวัดปริมาณไอลโซไซม์ในเลือดปลา มีค่าค่อนข้างต่ำ แต่มีแนวโน้มเพิ่มขึ้นตามระดับของการเสริม FPH มีค่าระหว่าง 2.27 ถึง 2.42 ไมโครลิตร/มิลลิลิตร แต่ไม่มีความแตกต่างทางค้านสี ($P<0.05$) การทดแทนปลาป่นด้วย FPH ที่ระดับ 33.33% ในอาหารปลาลดลงทำให้ปลา มีน้ำหนักสุดท้ายสูงที่สุด มีค่าปอร์เช่นต์ชาตที่ดีขึ้น และมีส่วนประกอบของไขมันในเนื้อปลาต่ำลง

คำสำคัญ: ปลาดคัง โปรตีนไอก่อร์ ไอลเซ็ฟจากปลา ประสิทธิภาพการเจริญเติบโต คุณภาพเนื้อ

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright© by Chiang Mai University
All rights reserved

Thesis Title	Replacement of Fish Meal by Fish Protein Hydrolysate in Red-Tail Catfish (<i>Hemibagrus wyckioides</i>) Diet		
Author	Mr. Khambou Tayyamath		
Degree	Master of Science (Animal Science)		
Advisory Committee	Asst. Prof. Dr Kesinee Gatphayak	Advisor	
	Lect. Dr. Mintra Seel-audom	Co-advisor	
	Asst. Prof. Dr. Wanaporn Tapingkae	Co-advisor	
	Prof. em. Dr. Hans-Jürgen Langholz	Co-advisor	

ABSTRACT

The present experiment is devoted to exploit the impact of replacing fishmeal by fish protein hydrolysates on the rearing performance of red-tail catfish. Fish Protein Hydrolysate (FPH) is a conversion product of seafood waste, which includes head, skin, trimmings, fins, frames, viscera and roes from industrial processing. FPH is a nutritional supplement, which bioactive compounds more easily can be absorbed and stimulate feed intake and growth performance of fish under rearing. The experiment was designed as completely randomized comparison with 4 treatments and 3 replications each. The treatments refer to the 4 experimental diets with increased replacement of fishmeal by protein hydrolysate(FPH): 0 (FPH0), 50g/kg or 16.67% (FPH50), 100 g/kg or 33.33% (FPH100) and 150 g/kg or 50% (FPH150) pelleted compound food. Each treatment diet was standardized at 32% crude protein. A total of 720 red-tail catfish juveniles with an average initial body weight of 5.45 ± 0.05 g were reared for 14 weeks in a circulating water system at an approximate temperature of $26 \pm 1^\circ\text{C}$. Data on growth performance and food consumption were recorded for all fish at 14 days interval. At the end of experiment a random sample of 5% fish per treatment group were slaughtered for measuring parameters of carcass and meat quality. In addition blood samples of another 5% of fish per treatment were collected for evaluating the immune response by measuring the lysozyme activity. With a specific growth rate of 2.79 – 2.86 % in the

different feeding groups the fish obtained a remarkable growth development within the 14 weeks rearing phase from 5.5 – 87.8g average body weight. The high survival rate indicated by only 2 fish lost out of a total of 720 underline an unbroken development of the fish throughout the experimental phase. There was a clear growth advantage to be observed for the treatment groups with replacing fishmeal by 100g FPH and more. The total weight gain (WG) of the feeding groups FPH100 and FPH150 exceeded the 84.72g final weight of the control group by 6.79g and 5.49g or 8.01% and 6.48% respectively. Thus feeding more than 100 g FPH/kg mixed food did not yield any additional effect. The values of the other parameters studied e.g. average daily gain(ADG), specific growth rate (SGR), feed conversion ratio (FCR), protein efficiency ratio(PER) are corresponding to the growth performance. The measured values for the FPH100 feeding group versus the control group were: ADG 0.88 vs. 0.81g/d; SGR 2.86 vs. 2.79%/d; FCR 1.71 vs. 1.79 and PER 1.87 vs. 1.74. The higher growth performance of the FPH100 feeding group resulted from a higher feed intake of 147.8g/d versus 141.6g/d in the control group. All differences are highly significant at $p < 0.05$. Regarding the carcass and meat quality higher final body weight of the fish in the feeding groups with replacing fishmeal by 100g FPH and more resulted in slightly higher fillet yield and weight of liver and viscera. Noticeably is the significantly ($p < 0.05$) reduced deposition of lipids in the body cavity with 2.56% for the FPH100 and FPH150 groups versus 2.92% for the control. This lower lipid deposition for the FPH diets also is to be observed in internal muscle fat, which is reduced from 13.2% to 10.6% independent from the FPH level applied. The outer meat characteristics were little affected except the color measurements, tending to darker more bluish appearance especially of the skin from FPH fed fish. The lysozyme activity measured in the blood serum of the fish at the experimental end were fairly low in comparison to other studies but show a gradual increase with increased FPH in the diet, ranging from 2.27 to 2.42 $\mu\text{g}/\text{ml}$. In conclusion, for ensuring better growth performance, higher body weights, better carcass percentage with low muscle fat, the supplement of 33.33% of the rearing diet of red-tail catfish by fish protein hydrolysates can be clearly recommended.

Keyword: Red-tail catfish, fish protein hydrolysate, growth performance, carcass quality