CONTENTS

Acknowledgement	d
Abstract in Thai	e
Abstract in English	g
List of Tables	1
List of Figures	m
Chapter 1 Introduction	1
1.1 Historical Background	1
1.2 Research Objectives	2
1.3 Literature Review	2
1.4 Theory	6
1.4.1 Structure and properties of semiconducting oxide material	6
1.4.2 Effect of Aluminum doped ZnO	9
1.4.2 ZnO/Cu ₂ O heterojunction	11
1.5 Research Plan, Methodology and Scope	12
1.6 Expecting Benefits	13
Chapter 2 Experimental detail	14
2.1 Details of Sparking Process	14
2.2 Synthesis of nanoparticle films by sparking process	16
2.2.1 Synthesis of ZnO and AZO films	16
2.2.2 Synthesis of Cu2O film	19

2.2.3 Fabrication of AZO/Cu2O heterojunction	20
2.3 Characterization	21
2.3.1 Scanning electron microscopy (SEM)	21
2.3.2 Energy Dispersive X-ray Spectroscopy (EDS)	23
2.3.3 Raman spectroscopy	24
2.3.4 X-ray Diffraction (XRD)	24
2.3.5 Ultraviolet-visible (UV-vis) spectroscopy	27
2.4 Electrical property measurement	29
2.5 Current-Voltage (I-V curve) measurement	30
Chapter 3 Result and Discussion	31
3.1 AZO thin film	31
3.1.1 SEM images and EDS analysis	31
3.1.2 Raman spectroscopy analysis	40
3.1.3 X-ray diffraction analysis	41
3.1.4 Optical property analysis	42
3.1.5 Electrical property analysis	48
3.2 Cu ₂ O thin film	51
3.2.1 Raman spectroscopy analysis	51
3.2.2 X-ray diffraction analysis	52
3.2.3 Optical property analysis	54
3.2.4 SEM image and Cross-section analysis	57
3.2.5 Electrical property analysis	60
3.3 AZO/Cu ₂ O heterojunction	62
3.3.1 SEM Cross-section image	63
3.3.2 X-ray diffraction analysis	63
3.3.3 Optical property analysis	64
3.3.4 Current-Voltage (I-V) Characteristic	66
Chapter 4 Conclusion	69
4.1 Al doped ZnO (AZO) thin film	69
4.2 Cu ₂ O thin film	70

4.3 AZO/Cu ₂ O heterojunction	71
4.4 Suggestions	72
References	73
Appendix A X-ray diffraction database	78

Appendix B Raman spectra database

84

Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Page

Table 1.1 Fundamental properties of cuprous oxide	6
Table 1.2 Fundamental properties of zinc oxide	8
Table 1.3 Research Plan	13
Table 2.1 Conditions of study for synthesis ZnO and AZO films	17
Table 2.2 Conditions of study for synthesis Cu ₂ O film	19
Table 2.3 D-spacing value and constrains for crystal system	26
Table 3.1 The Al doping ratio and the film thickness	39
Table 3.2 Crystallographic parameters for ZnO	42
Table 3.3 Both of energy gap (E_{g1} and E_{g2}) of the AZO samples	45
Table 3.4 Resistivity of AZO films	48
Table 3.5 Crystallographic parameters for Cu2O	53
Table 3.6 Crystallographic parameters for Cu phase in Cu ₂ O	53
Table 3.7 Energy gap of Cu ₂ O for different annealing time	56
Table 3.8 The resistance and the thickness of Cu ₂ O films for	61
different sparking time	
Copyright [©] by Chiang Mai University	
All rights reserved	

LIST OF FIGURES

Figure 1.1 EQE of the Al-ZnO/Cu ₂ O solar cells under room temperature	3
Figure 1.2 Optical absorption of Cu ₂ O, ZnO, Al-ZnO (AZO)	4
and ZnO-dipcoating	
Figure 1.3 Effect of Al doping (%) on ZnO prepared by	4
spary pyrolysis method to the resistivity	
Figure 1.4 Effect of different Cu ₂ O absorber layer thickness to efficiency	5
of solar cell	
Figure 1.5 Cubic structure of Cu ₂ O	7
Figure 1.6 Cubic structure of Cu ₂ O with its dominant lattice plane	7
of (111) and (220)	
Figure 1.7 Hexagonal structure of ZnO	8
Figure 1.8 Hexagonal structure of ZnO with dominant lattice plane of	9
ZnO (0001), (1-100) and (10-11) from XRD diffraction	
Figure 1.9 A schematic diagram showing the vicinity of Al impurity	9
within the wurtzite-type structure of the ZnO crystal	
Figure 1.10 Sheet resistance of AZO thin films for different	10
Al dopant concentrations	
Figure 1.11 Schematic p-Cu ₂ O / n-ZnO heterojunction solar cell	11
Figure 1.12 Energy level diagram of ZnO(AZO)/Cu ₂ O-based solar cells	12
Figure 2.1 equivalent circuit of sparking process	1/
Figure 2.2 Schematic discuss of the machanism	17
Figure 2.2 Schematic diagram of the mechanism	15
Figure 2.3 Schematic diagram of the double tips sparking process	15
under flowing argon atmosphere for this thesis	
Figure 2.4 the double tips sparking machine	16

Figure 2.5 Schematic diagram for process of synthesis of AZO films	17
Figure 2.6 Different capacitor paralleled Al doping tips	18
Figure 2.7 Schematic diagram for process of synthesis of Cu2O films	19
Figure 2.8 Device fabrication process AZO/Cu2O heterojunction	20
Figure 2.9 Internal arrangement of SEM	22
Figure 2.10 SEM at Chiang Mai University	23
Figure 2.11 Raman spectrometer at Chuang Mai University	24
Figure 2.12 diagram shows two planes with incident light	25
and reflected light	
Figure 2.13 XRD instrument at Chiang Mai University	27
Figure 2.14 diagram shows measuring process inside	28
the UV-vis spectrometer	
Figure 2.15 UV-vis spectrometer at Chiang Mai University	28
Figure 2.16 film resistivity measuring setup	29
Figure 2.17 I-V curve measuring setup	30
Figure 3.1 (a) Surface morphology and (b) EDS spectrum of	32
Al doped ZnO with capacitance paralleled Al tips of 0.5 nF	
Figure 3.2 (a) Surface morphology and (b) EDS spectrum of	33
Al doped ZnO with capacitance paralleled Al tips of 1.1 nF	
Figure 3.3 (a) Surface morphology and (b) EDS spectrum of	34
Al doped ZnO with capacitance paralleled Al tips of 1.5 nF	
Figure 3.4 (a) Surface morphology and (b) EDS spectrum of	35
Al doped ZnO with capacitance paralleled Al tips of 3.1 nF	
Figure 3.5 (a) Surface morphology and (b) EDS spectrum of	36
Al doped ZnO with capacitance paralleled Al tips of 4.7 nF	
Figure 3.6 Surface morphology of un-doped ZnO	37
Figure 3.7 Cross-section images of (a) ZnO and AZO with capacitance	38
paralleled Al tips of (b) 0.5, (c) 1.1, (d) 1.5, (e) 3.1, and (f) 4.7 nF	
Figure 3.8 Raman spectra of un-doped and Al doped ZnO	40
Figure 3.9 XRD pattern of un-doped and Al doped ZnO	41
Figure 3.10 Optical transmittance of un-doped and Al doped ZnO	43
Figure 3.11 The relation curve of $(\alpha hv)^2$ and $h\nu$ for AZO sample	46

Figure 3.12 The relation of Al doping ratio in ZnO and their energy gap	47
Figure 3.13 The V-I curves were fitted as a linear relation	49
for each AZO sample	
Figure 3.14 The relation graph of Al doping ratio and their resistivity	50
Figure 3.15 Raman spectra of Cu_2O thin film for different annealing time	51
Figure 3.16 XRD pattern of Cu ₂ O annealed at 200 °C for	52
different annealing time	
Figure 3.17 Optical absorbance of Cu ₂ O for different annealing time	54
Figure 3.18 The relation curve of $(\alpha hv)^2$ and hv of Cu ₂ O for	55
different annealing time	
Figure 3.19 SEM surface image of Cu ₂ O	57
Figure 3.20 Cross-section images of Cu ₂ O for sparking time at	58
(a) 20 min, (b) 40min, (c) 60 min, (d) 2 hrs., (e) 3 hrs.	
Figure 3.21 Graph relation of the film thickness	59
and sparking time for Cu ₂ O	
Figure 3.22 The V-I curve of Cu ₂ O for different sparking time	60
Figure 3.23 Graph relation of the film thickness and resistance and	61
their linear fitting	
Figure 3.24 Cross-section image of AZO/Cu ₂ O heterojunction	63
Figure 3.25 XRD pattern of AZO/Cu ₂ O heterojunction prepared	64
on a FTO substrate	
Figure 3.26 absorbance of AZO, ZnO and Cu ₂ O thin films	65
Figure 3.27 I-V curve of n-type AZO/p-type Cu ₂ O heterojunction	66
Figure 3.28 ln (I)-V curve of n-type AZO/p-type Cu ₂ O heterojunction	68
with fitted linear part SERVED	