CONTENTS

	80
Acknowledgement	с
Abstract in Thai	d
Abstract in English	f
List of Tables	k
List of Figures	n
Statements of Originality in Thai	W
Statements of Originality in English	X
Chapter 1 Introduction	1
1. Historical Background	1
2. Research Objectives	3
3. Usefulness of the Research	3
UNIVE	
Chapter 2 Literature Review	4
2 1 Global View	1
2.1 Global View	- 9
2.3 Forest Restoration	11
2.4 The Framework Species Method	15
2.5 Direct seeding	16
2.6 Seed Storage	19
2.7 Hydrogels	20
2.8 Fertilizer Application	22
2.9 Preparing for Automated Restoration	24

CONTENTS (continued)

Chapter 3 Methodology	26
3.1 The Study Site	26
3.2 Species Selection and Seed Collection	27
3.3 Seed Biology	29
3.4 Seed Storage	30
3.5 Field Trial	31
3.6 Fertilizer Experiment	35
225 225	
Chapter 4 Results	39
4.1 Seed Biology	39
4.2 Seed Storage	44
4.3 Field Trial	59
4.4 Hydrogel Experiment	107
4.5 Fertilizer Experiment	123
Chapter 5 Discussion and Conclusion	139
5.1 Determining Optimal Seed Storage Condition of Native Tree Species	139
5.2 Comparing Direct Seeding Success Between Seeds Sown at the	147
Seed Collection Time and those Stored until the Optimum Direct	
Seeding Season	
5.3 Comparing Direct Seeding with Conventional Tree Planting	151
5.4 Developing Treatments to Improve Direct Seeding	152
5.5 Applications for Automated Forest Restoration	154

CONTENTS (continued)

Page

LIST OF TABLES

Table 2.1	Number of vertebrate species found in Thailand and threaten	9
Table 2.2	Simplified guide to choosing a restoration strategy	12
Table 2.3	Various reforestation approaches and their merits	14
Table 2.4	Comparison of advantage and disadvantages of two majors	23
	types of synthetic fertilizers used in tropical plant nurseries	
Table 3.1	List of study species	28
Table 4.1	Percent seed germination, median length of dormancy (MLD), initial seed moisture content (MC) and seed mass of 17 native	40
	tree species in northern Thailand.	
Table 4.2	Categories of percent germination and median length of	42
	dormancy (MLD) of 17 tree species in the nursery condition.	
Table 4.3	Effects of drying and freezing on initial germination of 17 tree	45
(species, Seed were reduced to different moisture contents.	
Table 4.4	Effects of drying and freezing on initial median length of	46
	dormancy (MLD) of 17 tree species, Seed were reduced into	
	different moisture contents (MC).	
Table 4.5	Sowing, Median length of dormancy (MLD) and median date of	67
	germination of 17 tree species in two sowing condition; sown at	
	collection time (IF) and sown after storage at the beginning of	
	rainy season (SF).	

LIST OF TABLES (continued)

Table 4.6	Comparison of mean seedling survival, over one year, of direct-	70
	seeded seedlings of 17 tree species in the field, at two sowing	
	periods, $IF = sown$ at collection time and $SF = seeds$ stored and	
	sown at the beginning of rainy season (N=3).	
Table 4.7	Seedling yield, over one year, of direct-seeded seedlings of 17	72
	tree species in the field at two sowing periods, IF = sown at	
	collection time and SF = seeds stored and sown at the beginning	
	of rainy season (N=3).	
Table 4.8	Comparison of mean size variables (height, crown width and	73
	root collar diameter) and relative growth rate (RGR) of one year	
	direct-seeded seedlings across 17 species in the field, between	
	two sowing periods.	
Table 4.9	Relative Species Performance Index (RSPI), calculation of	85
	growth index of height of direct-seeded seedlings over one year	
	in the field.	
Table 4.10	Relative Species Performance Index (RSPI), calculation of	86
0	growth index of height relative growth rate of direct-seeded	
	seedlings over one year in the field.	
Table 4.11	Relative Species Performance Index (RSPI), calculation of	87
	growth index of relative growth rate (RGR) of direct-seeded	
	seedlings over one year in the field.	
Table 4.12	Relative Species Performance Index (RSPI) based on	98
	calculation of height RGR of nursery-raised seedlings over one	
	year in the field.	

LIST OF TABLES (continued)

Table 4.13	Relative Species Performance Index (RSPI) based on	99
	calculation of growth index of nursery-raised seedlings over	
	one year in the field.	
Table 4.14	Comparison of germination and median length of dormancy	108
	(MLD) of Acrocarpus fraxinifolius seeds between nursery and	
	field	
Table 4.15	Comparison of germination and median length of dormancy	109
	(MLD) of Choerospondias axillaris seeds between nursery and	
	field	
Table 4.16	Comparison of germination and median length of dormancy	111
	(MLD) of Phyllanthus emblica seeds between nursery and field.	
Table 4.17	Percent seedling survival in the field over 231 days (09/12/15 to	115
	27/07/16) after passed 1 st dry season of tested species in	
	different amount of hydrogel (H) applied in sowing media,	
	testing in field.	
Table 4.18	Percent seedling yield in the field over 408 days (15/06/15 to	116
8	27/07/16) after passed 1 st dry season of tested species in	
	different amount of hydrogel (H) applied in sowing media.	
Table 4.19	Relative Species Performance index, calculation of height RGR	122
/	of tested species in various hydrogel treatments.	

Table 5.1Storage techniques recommendation for 18 tree species.143

LIST OF FIGURES

Figure 2.1	Estimate of (A) proportion of total area of land-use change	5
	associated with various proximate drivers of deforestation,	
	and (B) Absolute net forest area change associated with	
	proximate drivers of deforestation, by region, 2000-2010.	
Figure 2.2	Net annual average change in forest and agricultural land by	7
	climatic domain 2000-2010.	
Figure 2.3	Forest Cover in Thailand Year 1973-2015.	10
Figure 2.4	The Miyawaki method summarized as a flow chart.	13
Figure 2.5	Concept of Framework species method.	16
Figure 2.6	Survival/germination according to seed size (mass) in direct	17
	seeding experiments.	
Figure 2.7	Molecular structure of anionic polyacrylamide.	20
Figure 2.8	When hydrogels are applied as root dips, they function like	21
	the mucilage that is naturally produced by healthy roots and	
	improve water uptake, by increasing root-to-soil contact and	
ຄີ	filling in air spaces.	
C	opyright [©] by Chiang Mai University	
Figure 3.1	Average monthly rainfall and temperature at study site, Mon	26
A	Cham, Mae Rim District, Chiang Mai.	
Figure 3.2	Study site at Mon Cham, Mae Rim District, Chiang Mai.	27
Figure 3.3	Diagram of seed storage experiment.	31
Figure 3.4	Diagram of direct seeding experiment.	32

Figure 3.5	Diagram of hydrogel experiment.	35
Figure 3.6	Fertilizer experimental design.	37
Figure 3.7	Diagram of fertilizer experiment.	37
Figure 4.1	Relation of mean percent germination and median length of	41
	dormancy (MLD) of 17 tree species in the nursery condition.	
Figure 4.2	Mean percent seed germination and median of dormancy	47
	(MLD) of A. fraxinifolius.	
Figure 4.3	Mean percent seed germination and median of dormancy	48
	(MLD) of Adenanthera microsperma).	
Figure 4.4	Mean (±) percent seed germination and median of dormancy	49
	(MLD) of Alangium kurzii.	
Figure 4.5	Mean percent seed germination and median of dormancy	50
	(MLD) of Bauhinia variegata.	
Figure 4.6	Mean percent seed germination and median of dormancy	51
	(MLD) of Cherospondias axillaris.	
Figure 4.7	Mean percent seed germination and median of dormancy	52
C	(MLD) of <i>Gmelina arborea</i> .	
Figure 4.8	Mean percent seed germination and median of dormancy	53
~	(MLD) of Hovenia dulcis.	
Figure 4.9	Mean (\pm) percent seed germination and median of dormancy	54
	(MLD) of Manglietia garrettii.	
Figure 4.10	Mean (\pm) percent seed germination and median of dormancy	55
	(MLD) of Melia toosendan.	

Figure 4.11	Mean (\pm) per cent seed germination and median of dormancy	56
	(MLD) of Phyllanthus emblica.	
Figure 4.12	Mean (±) per cent seed germination and median of dormancy	57
	(MLD) of Prunus cerasoides.	
Figure 4.13	Mean (±) per cent seed germination and median of dormancy	58
	(MLD) of Spondias pinnata.	
Figure 4.14	Comparison of mean (± SE) percent seed germination of 17	59
	tree species, seeds sown at collection time, in the field (IF)	
	and in the nursery (IN).	
Figure 4.15	Comparison of mean (± SE) percent seed germination of 13	60
	tree species between two sowing conditions after seed storage,	
	in the field (SF) and in the nursery (SN).	
Figure 4.16	Comparison of mean (\pm SE) percent seed germination of 13	61
	tree species between two sowing times in the field condition.	
Figure 4.17	Mean (± SE) percent seed germination of the best	62
	performance treatment of each tree species in the field. Red	
ິລິ	bars are treatment of seed sown at collection times and green	
C	bars are treatment of seed sown at beginning of rainy season	
Λ.	after storage (N=3).	
Figure 4.18	Comparison of mean (± SE) median length of dormancy of 17	63
	tree species, seeds sown at collection time.	
Figure 4.19	Comparison of mean (\pm SE) median length of dormancy of 13	64
	tree species between two sowing conditions after seed storage,	
	in the field (SF) and in the nursery (SN), (N=3).	

Page

Figure 4.20	Comparison of mean (\pm SE) median length of dormancy of 13	65
	tree species between two sowing times in the field condition,	
	at collection time (IF) and at the beginning of rainy season	
	after storage (SF), (N=3).	
Figure 4.21	Sowing date and median length of dormancy (MLD) of 17	66
	tree species in a) nursery and b) field.	
Figure 4.22	Relationships between mean percent seed germination and	68
	median length of dormancy (MLD) of 17 tree species in the	
	field at two sowing times; a) collection time (N=17) b) at the	
	beginning of rainy season after storage (N=12) c) combining	
	the two periods (N=17).	
Figure 4.23	Comparison of mean (\pm SE) seedling survival, over one year,	69
	of direct-seeded seedlings in the field.	
Figure 4.24	Comparison of mean (\pm SE) percent seedling yield over one	71
	year of direct-seeded seedlings in the field.	
Figure 4.25	Comparison of mean (\pm SE) growth variables of 1 year direct-	74
ล	seeded seedlings of 17 tree species in the field between two	
C	sowing periods, IF = sown at collection time, SF=Stored and	
Δ	sown at the beginning of rainy season (N=3).	
Figure 4.26	Comparison of mean (± SE) seedlings performance of 1 year	75
	direct-seeded seedlings in the field.	
Figure 4.27	Comparison of mean (\pm SE) height, crown width and root	77
	collar diameter relative growth rate (RGR) of 1 year direct-	
	seeded seedlings in the field by species.	
Figure 4.28	Comparison of mean (\pm SE) relative growth rate (RGR) of one	78
	year direct-seeded seedlings in the field.	

Page

Figure 4.29	Comparison of mean (±SE) health score of one year direct-	79
	seeded seedlings in the field between two sowing periods.	
Figure 4.30	Relationship between dry seed mass (g) and a) percent	80
	germination, b) median length of dormancy (days) and c)	
	percent yield.	
Figure 4.31	Relationship between dry seed mass (g) and a) height RGR	81
	(%/year), b) crown width (%/year) and c) RCD RGR (%/year).	
Figure 4.32	Relation of mean height, crown width and root collar diameter	83
	of one year direct-seeded seedlings in the field.	
Figure 4.33	Relation of mean height, crown width and root collar diameter	84
	relative growth rate (H RGR, C RGR and R RGR,	
	respectively) of one year direct-seeded seedlings in the field.	
Figure 4.34	Sturdiness quotient of one year direct-seeded seedlings in the	88
~	field.	
Figure 4.35	Comparison of mean (\pm SE) sturdiness quotient of one year	89
С	direct-seeded seedlings in the field.	
Figure 4.36	Comparison of percent survival of nursery raised-seedlings	90
1.1	over one year in the field.	
Figure 4.37	Comparison of seedlings performance of 1-year nursery-raised	91
	seedlings in the field, N=3.	
Figure 4.38	Comparison of relative growth rate (RGR) of nursery raised-	93
	seedlings in the field.	
Figure 4.39	Health score of nursery raised-seedlings over one year in the	94

field.

Page

Figure 4.40	Sturdiness quotient of one year nursery raised-seedlings in the	95
	field.	
Figure 4.41	Relation of mean height, crown width and root collar diameter	96
	of one year nursery raised-seedlings in the field. Plotted from	
	17 species, three replicates in two sowing treatments (N=17).	
Figure 4.42	Relation of mean height, crown width and root collar diameter	97
	relative growth rate (H RGR, C RGR and R RGR,	
	respectively) of one year nursery raised-seedlings in the field.	
	Plotted from 17 species, three replicates in two sowing	
	treatments (N=17).	
Figure 4.43	Comparison of mean height (±SE) of direct seeded and	101
	nursery-raised seedlings of 17 tree species in the field,	
	monitored at 3 periods.	
Figure 4.44	Comparison of mean (\pm SE) height relative growth rate (RGR)	104
ລິ	of 11 tree species seedlings, between nursery-raised seedlings	
	(NS) and direct-seeded seedlings (DS).	
Figure 4.45	Comparison of mean (\pm SE) crown width relative growth rate	105
A	(RGR) of 11 tree species seedlings, between nursery-raised	
	seedlings (NS) and direct-seeded seedlings (DS).	
Figure 4.46	Comparison of mean (± SE) root collar diameter relative	106
	growth rate (RCD RGR) of 11 tree species seedlings, between	
	nursery-raised seedlings (NS) and direct-seeded seedlings	
	(DS).	
Figure 4.47	Mean (± SE) percent germination and MLD of Acrocarpus	107
	fraxinifolius.	

Figure 4.48 Mean (± SE) percent germination and MLD of 109 Choerospondias axillaris.

LIST OF FIGURES (continued)

Page

Figure 4.49	Mean (± SE) percent germination and MLD of <i>Phyllanthus emblica</i> .	110
Figure 4.50	Mean (± SE) percent germination and MLD of Artocarpus lacucha.	112
Figure 4.51	Mean (± SE) percent germination and MLD of <i>Prunus</i> cerasoides.	113
Figure 4.52	Mean (± SE) percent germination and MLD of <i>Gmelina</i> arborea.	114
Figure 4.53	Comparison of relative growth rate (RGR) of <i>Acrocarpus fraxinifolius</i> among hydrogel treatments in the field (N=3) monitored at December 2015 and July 2016.	117
Figure 4.54	Comparison of relative growth rate (RGR) of <i>Choerospondias</i> <i>axillaris</i> among hydrogel treatments in the field (N=3) monitored at December 2015 and July 2016.	118
Figure 4.55	Comparison of relative growth rate (RGR) of <i>Phyllanthus</i> <i>emblica</i> among hydrogel treatments in the field (N=3) monitored at December 2015 and July 2016.	119
Figure 4.56	Comparison of relative growth rate (RGR) of <i>Artocarpus</i> <i>lacucha</i> among hydrogel treatments in the field (N=2) monitored at December 2015 and July 2016.	120
Figure 4.57	Comparison of relative growth rate (RGR) of <i>Prunus</i> <i>cerasoides</i> among hydrogel treatments in the field (N=2) monitored at December 2015 and July 2016.	121

Figure 4.58	Comparison of relative growth rate (RGR) height, crown	123
	width (CW) and root collar diameter (RCD) of 8 native tree	
	species between fertilizer treatments.	
Figure 4.59	Comparison mean height of 8 native tree species between	125
	fertilizer treatments.	
Figure 4.60	Comparison mean dry mass of 8 native tree species between	128
	fertilizer treatments.	
Figure 4.61	Comparison mean root: shoot ratio of 8 native tree species	130
	between fertilizer treatments.	
Figure 4.62	Comparison mean total nitrogen of 8 native tree species	132
	between fertilizer treatments.	
Figure 4.63	Comparison mean available Phosphorus of 8 native tree	134
	species between fertilizer treatments.	
Figure 4.64	Comparison mean exchangeable Potassium of 8 native tree	136
ล	species between fertilizer treatments.	
C	opyright [©] by Chiang Mai University	
Figure 5.1	Seedlings of D. glandulosa, affected by damping off disease	144
Figure 5.2	Seedling of <i>B. variegata</i> damages by insects	146
Figure 6.1	Seed of Acrocarpus fraxinifolius	169
Figure 6.2	Seed of Adenanthera microsperma	170
Figure 6.3	Seed of Alangium kurzii	170
Figure 6.4	Seed of Artocarpus lacucha	171
Figure 6.5	Pod and seed of Bauhinia variegata	171

Figure 6.6	Seed of <i>Castanopsis tribuloides</i>	172
Figure 6.7	Pyrenes of Choerospondias axillaris	172

Figure 6.8	Seed of Dimocarpus longan.	173
Figure 6.9	Seed of Diospyros glandulosa.	173
Figure 6.10	Seed of Gmelina arborea.	174
Figure 6.11	Fruit and Seed of Horsfieldia glabra.	174
Figure 6.12	Nut and seed of Hovenia dulcis.	175
Figure 6.13	Seed of Magnolia garrettii.	175
Figure 6.14	Seed of Melia azedarach.	176
Figure 6.15	Seed of Phyllanthus emblica.	176
Figure 6.16	Pyrene of Prunus cerasoides.	177
Figure 6.17	Fruits and seed of Spondias pinnata.	177
Figure 6.18	Seeds of Syzygium albiflorum.	178
	MAI UNIVERSI	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

ข้อความแห่งการริเริ่ม

- คุษฎีนิพนธ์นี้ได้นำเสนอขอมูลแห่งการริเริ่มของการใช้วิธีการหยอดเมล็ดและการเก็บรักษา เมล็ดเพื่อนำไปสู่การฟื้นฟูป่าโดยวิธีทางอากาศโดยการใช้เครื่องบินหรือการใช้อากาศยานไร้ คนขับ ทั้งนี้เทคโลยีสมัยใหม่มีความจำเป็นอย่างยิ่งสำหรับการขยายพื้นที่การฟื้นฟูป่าตาม เป้าหมายสำคัญของโลก อาธิ โครงการ Bonn Challenge และการประกาศปฏิญญาแห่งเมือง นิวยอร์กด้านป่าไม้ (New York Declaration on forest)
- ชนิดพันธุ์ไม้ที่ใช้ในการทดลองส่วนใหญ่ยังไม่ได้รับการทดสอบกับวิธีการหยอดเมล็ดและ การเก็บรักษาเมล็ดมาก่อน
- ในการศึกษาครั้งนี้ได้มีการทดสอบประสิทธิภาพของสารปรับปรุงคิน หรือไฮโครเจลเพื่อเพิ่ม ประสิทธิภาพให้กับวิธีการหยอดเมล็ดของไม้พื้นเมือง ซึ่งโดยทั่วไปจะใช้วิธีการดังกล่าวเพื่อ การเกษตรกรรม

Copyright[©] by Chiang Mai University

 ในการศึกษาครั้งนี้ได้มีการทดสอบผลของปุ๋ยละลายช้าที่ได้รับการพัฒนาใหม่จากศูนย์นาโน เทคโนโลยีแห่งชาติ สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ ซึ่งยังไม่มีการ นำมาใช้ทดสอบกับกล้าไม้พื้นเมืองมาก่อน

STATEMENTS OF ORIGINALITY

- 1. This project presents original data on direct seeding and seed storage, aimed at paving the way for aerial seeding by conventional aircraft or drones, new technologies that are essential to upscale forest restoration to meet recent ambitious global reforestation targets, set by the Bonn Challenge and the New York Declaration etc.
- 2. Most of the tree species covered had never been tested before for direct seeding and/or seed storage.
- 3. Furthermore, this study also tested the efficacy of using hydrogel to increase direct seeding success; a technology that, until now, has mostly been applied to agriculture and horticulture.
- 4. Lastly, this study tested the effects of a brand-new type of pelleted fertilizer produced by the National Nanotechnology Center (NANOTEC), the National Science and Technology Development Agency (NSTDA), that has never been tested before in the context of growing native forest tree species.

Copyright[©] by Chiang Mai University All rights reserved