CONTENTS

	Page
Acknowledgement	c
Abstract in Thai	d
Abstract in English	f
List of tables	j
List of figures	1
Abbreviation	0
Chapter 1 Introduction	
1.1 Historical background	1
1.2 Research Objectives	3
1.3 Research Scopes	3
1.4 Educational advantage	3
Chapter 2 Literature review	
2.1 Hemostatic agent and fabrication technique	4
	8
2.2 Biomaterials2.3 Plasma technology	11
2.4 Hemostatic mechanism	15
2.5 Characterization of the hemostatic agent	17
2.6 Design of experiment (DOE)	20
Chapter 3 Research methodology	
3.1 Design of experiment of the naturally-derived hemostatic agent	22
3.2 Preparation of materials	23
3.3 Fabrication of the naturally-derived hemostatic agent	25
3.4 Preliminary characterization of the naturally-derived hemostatic agent	27

3.5 Investigation and optimization of the plasma treatment condition	30
3.6 Comparison properties of the naturally-derived hemostatic agent	
between with and without plasma treatment	33
3.7 Statistical analysis	36
Chapter 4 Result and discussion	
4.1 The fabrication of the naturally-derived hemostatic agent	37
4.2 The preliminary characterization of the naturally-derived hemostatic agent	38
4.3 The investigation and optimization of the plasma treatment conditions	48
4.4 The comparison properties of the naturally-derived hemostatic agent	
between with and without plasma treatment	54
Chapter 5 Conclusion and suggestion	
5.1 Conclusion	63
5.2 Suggestion	70
References	72
Appendix A Appendix B Appendix C	
Appendix A	80
Appendix B	84
Appendix C	90
Appendix D	93
Curriculum vitae Copyright by Chiang Mai University	98
All rights reserved	

LIST OF TABLES

		Page
Table 1	The mixing ratio between CS, Gel and RS solution for fabrication	
	the naturally-derived hemostatic agent	23
Table 2	The weight score inquires of the naturally-derived hemostatic agent	29
Table 3	Atmospheric pressure plasma jet treatment condition	32
Table 4	Average data of blood absorption rate, the maximum volume of	
	blood absorption, the equilibrium swelling ratio, and biodegradation	
	of each ratio	38
Table 5	The average of weight mean score of the naturally-derived	
	hemostatic agent	46
Table 6	Average data of blood absorption rate, and maximum volume of blood	
	absorption of the CS hemostatic agent with plasma treatment conditions	s 50
Table 7	Average data of the equilibrium swelling ratio (ESR), the porosity,	
	the hemoglobin leak testing, and biodegradation in 1, 3, and 7 days,	
	biocompatibility testing, and cytotoxic assay of the CS hemostatic agen	t
	compare between with and without plasma treatment	55
Table 8	One-way ANOVA of blood absorption rate	80
Table 9	One-way ANOVA of the maximum volume of blood absorption	81
Table 10	One-way ANOVA of the equilibrium swelling ratio	82
Table 11	One-way ANOVA of the biodegradation in 7 days	83
Table 12	Raw data blood absorption rate of each ratio in 10 times	84
Table 13	Raw data the maximum volume of blood absorption (ml) of each ratio	
	in 10 times	85
Table 14	Raw data the percentage of equilibrium swelling ratio of each ratio	
	in 10 times	86
Table 15	Raw data the percentage of biodegradation in 1 day of each ratio	
	in 10 times	87

Table 16	Raw data the percentage of biodegradation in 3 days of each ratio	
	in 10 times	88
Table 17	Raw data the percentage of biodegradation in 7 days of each ratio	
	in 10 times	89
Table 18	Raw data blood absorption rate (ml/m) of the CS hemostatic agent	
	with plasma treatment in 10 times	90
Table 19	Raw data the maximum volume of blood absorption (ml) of	
	the CS hemostatic agents with plasma treatment condition in 10 times	91
Table 20	Regression analysis of blood absorption rate	
	with plasma treatment condition	92
Table 21	Raw data the equilibrium swelling ratio (%) of the CS hemostatic agent	
	compare between with and without plasma treatment in 10 times	93
Table 22	Raw data the porosity (%) of the CS hemostatic agent	
	compare between with and without plasma treatment in 10 times	94
Table 23	Raw data the hemoglobin leak testing of the CS hemostatic agent	
	compare between with and without plasma treatment in 6 times	95
Table 24	Raw data the biodegradation (%) in 1, 3, and 7 days of the CS hemostation	С
	agent compare between with and without plasma treatment in 6 times	96
Table 25	Raw data the cell viability percentage of the CS hemostatic agent	
	compare between with and without plasma treatment in 10 times	97
	2 2 2 2 2 2 1	
	SASTINOSTINOSTINIA	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

		Page
Figure 1	Lyophilization or freeze drying process	8
Figure 2	Chemical structure of chitosan	10
Figure 3	Schematic of the basic plasma processes	12
Figure 4	Coagulation cascade compose of intrinsic and extrinsic pathway	16
Figure 5	The simplex-shaped mixture region for a three-component mixture	21
Figure 6	Simplex centroid plot of CS, Gel and RS components	22
Figure 7	(a) Squid pen CS	
	(b) CS solution was completely dissolved gelatinizes after 3 days	23
Figure 8	(a) Pork Gel	
	(b) Gel gelatinization solution	24
Figure 9	(a) The medical grade RS powder	
	(b) RS gelatinization solution	24
Figure 10	The mixing ratios between CS, Gel, RS solution	25
Figure 11	Remove micro air bubble from the hemostatic agent solution	
	by ultrasonic sonicator	25
Figure 12	The crosslinking solution by mixed with glutaraldehyde	26
Figure 13	The naturally-derived hemostatic agent after frozen	26
Figure 14	(a) The process of freeze-drying the samples	
	(b) and (c) The naturally-derived hemostatic agent after freeze drying	27
Figure 15	Photograph experiment of 0.2 ml human whole blood absorbed onto	
	the naturally-derived hemostatic agent	28
Figure 16	Photograph experiment of the maximum volume of human	
	whole blood dropped onto the naturally-derived hemostatic agent	
	until cannot absorbed	28
Figure 17	(a) Schematic of APPJ	
	(b) Experiment setup of APPI by RF power supply	30

Figure 18	The determination of porosity was immersed the naturally-derived	
	hemostatic agent into hexane	33
Figure 19	Photograph experiment showing the hemoglobin leak from	
	the naturally-derived hemostatic agent into deionized water	34
Figure 20	Photograph experiment showing the cytotoxic assay of fibroblast cells	
	with MTT	35
Figure 21	Configuration of the naturally-derived hemostatic agent in each ratio	
	between CS:Gel:RS	37
Figure 22	(a) Photograph of blood absorption rate experiment	
	(b) The result of blood absorption rate between CS:Gel:RS ratio and	
	comparison with gauze	39
Figure 23	The result of the maximum volume of blood absorption rate	
	between CS:Gel:RS ratio and comparison with gauze	40
Figure 24	(a) Photograph of equilibrium swelling ratio experiment	
	(b) The result of equilibrium swelling ratio between CS:Gel:RS ratio	42
Figure 25	(a) Photograph of biodegradation experiment	
	(b) The result of biodegradation between CS:Gel:RS ratio	
	in 1, 3, and 7 days	44
Figure 26	Comparison of (a) blood absorption rate	
	(b) the maximum volume of blood absorption onto	
	the CS hemostatic agent with plasma treatment conditions	49
Figure 27	All of plasma treatment condition fix Ar 4 L/m	
	(a) Spectrum radical of power 10 W	
	(b) Spectrum radical of power 15 W	51
Figure 28	Response optimization plot the effective plasma treatment condition	
	of blood absorption rate	53
Figure 29	(a) Comparison of the equilibrium swelling ratio (ESR)	
	(b) the porosity of the CS hemostatic agent	
	between with and without plasma treatment	56

Figure 30	Photograph showing the hemoglobin leaked of the CS hemostatic agent	
	from (a) human whole blood 0.2 ml in DI water 20 ml, and	
	(b) human whole blood 1.0 ml in DI water 10 ml compare between	
	with and without plasma treatment, and (c) The CS hemostatic agent	
	after entrapped 0.2 ml human whole blood	58
Figure 31	Comparison the hemoglobin leak of 1.0 ml of human whole blood in	
	DI water 10 ml of the CS hemostatic agent between	
	with and without plasma treatment	59
Figure 32	Comparison the biodegradation of the CS hemostatic agent in	
	1, 3, 7 days between with and without plasma treatment	60
Figure 33	Comparison the cell viability percentage of fibroblast cell in overnight	
	onto the CS hemostatic between with and without plasma treatment	61
Figure 34	Relationship of an oxygen gas plasma and blood absorption rate	65
Figure 35	The argon atom etching and modified surface of	
	the CS hemostatic agent	67
Figure 36	The oxygen plasma etching and modified surface of	
	the CS hamostatic agent	68

LIST OF ABBREVIATIONS

AC Alternating current

ANOVA Analysis of variance

APPJ Atmospheric pressure plasma jet

Ar Argon

a.u. Astronomical unit

Avg Average

°C Degree Celsius

CaCl₂ Calcium chloride

-C-O Carbonyl group

-C=O Carbonyl group

-COOH Carboxylic acid group

CS Chitosan

DC Direct current

DD Degree of deacetylation

DI Deionize water

DOE Design of experiment

ESR Equilibrium swelling ratio

Fig Figure

g Gram

GA Glutaraldehyde

Gel Gelatin

H Hour

He Helium

H₂O Water molecule

L Liter

m, min Minute

mg Milligram

ml, mL Milliliter

mm, mM Millimeter

MW Microwave

NH₂ Amine group

nm Nanometer

O Atomic oxygen

O₂ Oxygen

OES Optimal emission spectroscopy

OH Hydroxyl

P P-value

PBS Phosphate buffer saline

RBCs Red blood cells

Rep Replication

RF Radiofrequency

RS Rice starch

R-sq R square

s second

SD Standard deviation

μg Microgram

μl Microliter

UV-VIS Ultraviolet visible spectroscopy

TO MAI

v Volume

w Weight

ลิ**ปสิทธิ์มหาวิทยาลัยเชียงใหม**่ Copyright[©] by Chiang Mai University All rights reserved