

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

APPENDIX A

1) The gene of haemagglutinin domain of avian influenza A virus strain CMU H5

(A/Chicken/Chiang Mai/1/2004 (H5N1))

	20 I	40 1	60 1	80 I	100 I
H5N1 CMU	ATGGAGAAAATAGTGCTTCTTTTTGCAATA	GTCAGTCTTGTTAAAAGTG	ATCAGATTTGCATTGGTTAC	CATGCAAACAACTCGACAGA	GCAGGTTGACA
	120 I	140 I	160 I	180 I	200 I
H5N1 CMU	CAATAATGGAAAAGAACGTTACTGTTACAC	ATGCCCAAGACATACTGGA	AAAGACACACAACGGGAAGC	TCTGCGATCTAGATGGAGTG	AAGCCTCTAAT
	220	240	260	280	300
H5N1 CMU	TTTGAGAGATTGTAGTGTAGCTGGATGGCT	CCTCGGAAACCCAATGTGTG	GACGAATTCATCAATGTGCC	GGAATGGTCTTACATAGTGG	AGAAGGCCAAT
	320	340	360	380	400
H5N1 CMU	CCAGTCAATGACCTCTGTTACCCAGGGGAT	ттсаатдастатдаадаат	rgaaacacctattgagcaga.	атааассаттттдадаааат	τςασατςατςς
	420	440	460	480	500
H5N1 CMU	CCAAAAGTTCTTGGTCCAGTCATGAAGCCT	CATTAGGGGTGAGCTCAGC	ατστοςατας σασαααστ	сстсстттттсадааатдтд	GTATGGCTTAT
	520	540	560	580	600
H5N1 CMU	салаладаасадтасатасссалсалтала	GAGGAGCTACAATAATACC	AACCAAGAAGATCTTTTGGT	ACTGTGGGGGGÅTTCACCATC	CTAATGATGCG
	620	640	660	680	700
H5N1 CMU	GCAGAGCAGACAAAGCTCTATCAAAACCCA	ACCACCTATATTTCCGTTG	GGACATCAACACTAAACCAG	AGATTGGTACCAAGAATAGC	TACTAGATCCA
	720	740	760	780	800
H5N1 CMU	AAGTAAACGGGCAAAGTGGAAGGATGGAGT	TCTTCTGGACAATTTTAAA	ACCGAATGATGCAATCAACT	TCGAGAGTAATGGAAATTTC	ATTGCTCCAGA
	820	840	860	880	900
H5N1 CMU	GTATGCATACAAAATTGTCAAGAAAGGGGA	CTCAACAATTATGAAAAGT	GAATTGGAATATGGTAACTG	LAACACCAAGTGTCAAACTC	CAATGGGGGGGG
	920	940	960	980	1,000
H5N1 CMU	ATAAACTCTAGTATGCCATTCCACAATATA	CACCCTCTCACCATCGGGG	I AATGCCCCAAATATGTGAAA	I TCAAACAGATTAGTCCTTGC	GACTGGGCTCA
	1.020	1,040	1,060	1.080	1,100
H5N1 CMU	GAAATAGCCCTCAAAGAGAGAGAAGAAGAA	AAAAGAGAGGATTATTTGG	AGCTATAGCAGGTTTTATAG	AGGGAGGATGGCAGGGAATG	GTAGATGGTTG
	1.120	1.140	1.160	1.180	1,200
H5N1 CMU	GTATGGGTACCACCATAGCAATGAGCAGGG	GAGTGGGTACGCTGCAGAC	AAAGAATCCACTCAAAAGGC	AATAGATGGAGTCACCAATA	AGGTCAACTCG
	1 220	1.240	1.260	1.280	1 300
H5N1 CMU	ATCATTGACAAAATGAACACTCAGTTTGAG	GCCGTTGGAAGGGAATTTA		GAGAATTTAAACAAGAAGAT	GGAAGACGGGT
	1 320	1 340	1 360	1 380	1 400
H5N1 CMU	TCCTAGATGTCTGGACTTATAATGCTGAAC	TTCTGGTTCTCATGGAAAA	TGAGAGAAACTCTAGACTTTC	ATGACTCAAATGTCAAGAAC	CTTTACGACAA
instit cino	120		140	1 400	errineenern
H5N1 CMU	GGTCCGACTACAGCTTAGGGATAATGCAAA	CCACCTCCCTAACCCTTCT			GTGTAAGAAAC
Home ente					di di Andrine
HENT CMU					
H3N1 CMO			AGGAAATAAGTGGAGTAAAA	TIGGAATCAATAGGAATTTA	CEARATACIGI
UENIL CHIL					
HONT CMU		CACIGULAAICAIGGIAGC	IGGICIAICCITAIGGAIGI	GETECAATGGGTEGTTACAA	TUCAGAATITG

2) The amino acid of haemagglutinin domain of avian influenza A virus strain

CMU H5 (A/Chicken/Chiang Mai/1/2004 (H5N1))

20 40 H5N1 CMU (+1) MEKIVLLFAIVSLVKSDQICIGYHANNSTEQVDTIMEKNVTVTHAQDILE 60 80 100 H5N1 CMU (+1) KTHNGKLCDLDGVKPLILRDCSVAGWLLGNPMCDEFINVPEWSYIVEKAN 120 140 H5N1 CMU (+1) PVNDLCYPGDFNDYEELKHLLSR INHFEK IQI I PKS SWS SHEAS LGVS SA 160 180 200 H5N1 CMU (+1) CPYQGKSSFFRNVVWLI T I K R S Y N N T N Q E D L L V L W G I H H P N D A KKNST 220 240 H5N1 CMU (+1) AEQTKLYQNPTTY I SVGTSTLNQRLVPR I ATR SKVNGQSGRME F FWT I LK 300 I. H5N1 CMU (+1) PNDAINFESNGNFIAPEYAYKIVKKGDSTIMKSELEYGNCNTKCQTPMGA 320 340 H5N1 CMU (+1) INSSMPFHNIHPLTIGECPKYVKSNRLVLATGLRNSPQRERRRKKRGLFG 360 380 400 H5N1 CMU (+1) A I AG F I EGGWQGMVDGWYGYHH SN EQG SGYAADK E STQKA I DGVTNKVN S 420 440 H5N1 CMU (+1) I I DKMNTQFEAVGREFNNLERR I EN LNKKMEDGFLDVWTYNAELLVLMEN 460 500 H5N1 CMU (+1) ERTLDFHDSNVKNLYDKVRLQLRDNAKELGNGCFEFYHKCDNECMESVRN H5N1 CMU (+1) GTYDYPQYSEEARLKREEISGVKLESIGIYQILSIYSTVASSLALAIMVA 560 H5N1 CMU (+1) GLSLWMCSNGSLQCRICI*

- Note: The position of H5N1 HA1 is 1-338.- The position of cleavage site is 339-346.
 - The position of fusion site is 374-354.
 - The position of H5N1 HA2 is 355-537.
 - The position of trans membrane is 559-568.
 - The position of cytosal tail is 559-568.

APPENDIX B

Optimized sequence of H5N1 HA1_OPT gene (GenScript, USA.)

	Signal sequence 20	Start 6xHis-tag 40	Linker 60	Myc-tag so	Linker 100
H5N1 HA1_OPT	CTCGAGAAAAGAGAGGGCTGAAGCT	TATGCATCATCATCATCAT	CAT <mark>AATAGCGCCGTCGAC</mark> G	асаааастсатстсада	AGAGGATCTGAATAGCGCCG
	120	140	160	18	0 200
H5N1 HA1_OPT	<u>TCGAC</u> ATGGAGAAAATCGTCTTG	TTGTTCGCAATCGTTTCCC	ттотсалалотолоссалато	TGTATCGGTTACCACGCA	аатаастсаастдадсаадт
	220	240	260	28	0 300
H5N1 HA1_OPT	TGATACTATCATGGAAAAGAACG	TTACCGTCACTCATGCCCA	GGACATTTTGGAAAAGACA	CACAATGGTAAATTGTGTG	ATCTTGACGGAGTTAAGCCA
	320	340	360	38	0 400
H5N1 HA1_OPT	TTGATTCTTAGAGATTGTTCAGT	CGCAGGTTGGTTGCTTGGA	AACCCAATGTGCGACGAGT	TATTAATGTTCCTGAGTG	GAGTTACATCGTTGAAAAAG
	420	440	460	48	0 500
H5N1 HA1_OPT	CTAACCCAGTCAATGATTTGTGT	TACCCAGGAGATTTTAACG	ACTATGAAGAGCTTAAGCA	TTTGCTTTCAAGAATTAAT	CACTTCGAGAAGATCCAAAT
	520	540	560	58	0 600
H5N1 HA1_OPT	CATCCCAAAATCTTCCTGGTCGTC	CCCATGAAGCCTCCTTGGG	TGTTTCTTCCGCATGCCCT	ACCAGGGTAAATCTTCTT	тстттадааасдттдтстд
	620 I	640	660	68	0 700 I
H5N1 HA1_OPT	TTGATCAAGAAAAATTCTACTTAC	CCCAACAATTAAGAGATCC	тасаасаассаассаас	AGGATTTGCTTGTTTTGTG	GGGTATTCATCACCCAAACG
	720	740	760	78	0 800
H5N1 HA1_OPT	ACGCTGCCGAACAAACAAAGCTT	TACCAGAACCCTACTACAT	ACATCTCAGTCGGAACAAG	FACCTTGAACCAAAGACTT	GTTCCTAGAATTGCTACAAG
	820	840 1	860	88	0 900 I
H5N1 HA1_OPT	ATCAAAAGTCAATGGTCAGAGTGG	GAAGAATGGAGTTTTTCTG	GACCATTTTGAAGCCAAAC	GATGCCATCAATTTCGAGT	CTAACGGTAACTTCATCGCA
	920	940	960	98	0 1,000
H5N1 HA1_OPT	CCTGAATACGCTTATAAGATCGT	TAAGAAAGGAGACTCTACT	ATTATGAAATCCGAATTGG	AGTACGGTAACTGTAATAC	CAAGTGCCAAACTCCTATGG
	1,020	1,040	1,060	1,01	80 1,100
H5N1 HA1_OPT	GAGCTATTAACTCTTCCATGCCAT	TTCCATAATATTCACCCTT	TGACTATCGGTGAATGTCC	TAAGTATGTTAAAAGTAAT	AGATTGGTCCTTGCCACTGG
	Stop 1,120	Notl			
H5N1 HA1_OPT	TTTGAGAAATAGTCCACAG <mark>TAA</mark> GO	22 <u>222</u> 2			
		G	Ser o	55/	
		AI I	JNIVER		

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

APPENDIX C

Media recipes

1. Stock solution, reagents and media

1.1 Stock solutions

10X YNB (13.4% yeast nitrogen base with ammonium sulfate without amino acids)

Dissolve 134 g of yeast nitrogen base (YNB) with ammonium sulfate and without amino acids in 1000 ml of water heat the solution to dissolved YNB completely and filter sterilize. Store at 4°C.

500X B (0.02% Biotin)

Dissolve 20 mg of biotin in 100 ml of water and filter sterilize. Store at 4°C. The shelf life of this solution is approximately one year.

10X GY (10% Glycerol)

Mix 100 ml of glycerol with 900 ml of water. Sterilize either by filtering or autoclaving. Store at room temperature. The shelf life of this solution is greater than one year.

1 M potassium phosphate buffer, pH 6.0

Combine 132 ml of 1 M K₂HPO₄ with 868 ml of 1 M KH₂PO₄ and confirm that the pH= 6.0 ± 0.1 (if the pH needs to be adjusted, use phosphoric acid or KOH). Autoclave and store at room temperature. The shelf life of this solution is greater than one year.

2. Pichia media recipe.

2.1 Bufferred Glycerol-complex Medium (BMGY)

1% yeast extract

2% peptone

100 mM potassium phosphate, pH 6.0

1.34% YNB

4×10⁻⁵ % biotin

1% glycerol

1. Dissolve 10 g of yeast extract, 20 g of peptone in 700 ml of water.

2. Autoclave 20 minutes on liquid cycle.

3. Cool to room temperature, then add the following and mix well:

- 100 ml 1M potassium phosphate buffer, pH 6.0

- 100 ml 10X YNB

- 2 ml 500X B

100 ml 10X GY

by Chiang Mai University

ชียงใหม

4. Store media at 4°C. The shelf life of this solution is approximately two

months.

2.2 Yeast Extract Peptone Dextrose Medium (YPD 1 liter)

1% yeast extract

2% peptone

2% dextrose (glucose)

1. Dissolve 10 g of yeast extract and 20 g of peptone in 900 ml of water. Note: Add 20 g of agar if making YPD slants or plates.

2. Autoclave 20 min. on liquid cycle.

Note: Cool solution to 55°C and add zeocin (If require)

Store the liquid medium at room temperature. Store YPD slants or plates at 4°C. The shelf life of this solution is several months.

3. Escherichia coli Media Recipes.

3.1 Low salt-LB medium with zeocin

10 g tryptone

5 g NaCl

5 g yeast extract

1. Combine the dry reagents above and add distilled water to 950 ml. Adjust pH to 7.5 with 1 N NaOH. Bring the volume up to 1 liter. For plates, add 15 g/l agar before autoclaving.

2. Autoclave on liquid cycle at 15 psi and 121°C for 20 minutes.

by (

3. Allow the medium to cool at least 55°C before adding the zeocin to 50 μ g/ml final concentration.

Chiang Mai University

4. Store plates at 4°C in the dark. Plates containing zeocin are stable for up to 2 weeks.

APPENDIX D

Reagents and buffers preparation

0.1 M Tris-HCl buffer (pH 7.0) supplemented with 2 mM CaCl₂.H₂O

- Dissolve 3.025 g of Tris base in deionized water (DI-H₂O).

- Adjust pH to 7.0 with 6 N HCl.
- Add 0.055 g of CaCl₂.

- Adjust volume to 250 ml with deionized water (DI-H₂O).

0.5 M EDTA, pH 8.0

- Dissolve 186.12 g of Na₂EDTA.2H₂O in 800 ml of distilled water with magnetic stirring plate.

- Adjust pH to 8.0 with 1 M NaOH

- Adjust volume to 1 liter with distilled water.

- Sterilize by autoclaving and store at room temperature.

0

-11

50X TAE buffer, pH 8.0

- Dissolve 242 g of Tris base in 500 ml of distilled water.

- Add glacial acetic acid and 0.5 M EDTA.
- Adjust volume to 1 liter with distilled water.
- Store at room temperature.

1. 3M sodium acetate

- Dissolve 408.1 g of NaOAC.3H₂O in 800 ml of distilled water.
- Adjust pH to 5.2 with glacial acetic acid.
- Adjust volume to 1 liter with distilled water.
- Store at room temperature.

2. 0.1 M CaCl₂

- Dissolve 1.48 g of CaCl₂•2H₂O in 100 ml of distilled water.
- Sterilize by autoclaving and store at 4°C.

3.1 M sorbitol

- Dissolve 18.2 g of sorbitol in 100 ml of distilled water.
- Sterilize by autoclaving and store at 4°C.

4. 30% Acrylamide mix

- Dissolve 29 g of Acrylamide and 1 g of Bis-acrylamide in 100 ml of distilled water.

Chiang Mai University ts reserved

- Store in the dark at 4°C.

5.10% APS

- Dissolve 100 mg of ammonium persulfate (APS) in 1 ml of distilled water.

- Store in the dark at 4°C

6. 1.5 M Tris-HCl pH 8.8

- Dissolve 18.15 g of Tris base in distilled water.
- Adjust to pH 8.8 with 6 M HCl.
- Adjuste volume to 100 ml of distilled water.
- Store at 4 °C

7. 0.5 M Tris-HCl pH 6.8

- Dissolve 6.06 g of Tris base in distilled water.
- Adjust to pH 6.8 with 6 M HCl.
- Adjust volume to 100 ml with distilled water.
- Store at 4°C

8. Running buffer 1X

- Dissolve 7.21 g of Glycine and 1.51 g of Tris base in distilled water.

2102:279

นต

- Add 0.5 g of SDS (sodium dodecyl sulfate)
- Adjust volume to 500 ml with distilled water.
- Filtrate by passing through a 0.2 µm filter

9. Coomassie Blue protein stain

- Dissolve 0.5 g of Coomassie Brilliant Blue R-250 in distilled water.
- Add 500 ml of methanol and 100 ml of acetic acid into solution
- Adjust volume to 1 l with distilled water.

10. Blotting buffer

- Dissolve Glycine; 1.801 g, Tris-base; 0.378 g and 0.0625 g of SDS in distilled water.

- Add 25 ml of methanol and adjust to 100 ml with distilled water.

Copyright[©] by Chiang Mai University All rights reserved

APPENDIX E

The sequencing data of H5N1 HA2 gene

(1st_BASE_1106907_HA2_AOX1_forward)

pPICZA-H5N1 HA2 C.1	GTTTTTCGACTTTTACGAC	20 I ACTTGAGAGATCAAAAAAC	40 I CAACTAATTATTCGAAACGAG	60 I GAATTCACGTGGCCCAGCCC	80 I GGCCGTCTCGGATCGGTACC <u>TCG</u>
pPICZA-H5N1 HA2 C.1	Signal sequence 1 AGAAAAGAGAGGGCTGAAGC	20 <mark>Start</mark> TATGTTTATAGAGGGAGGA	140 I NTGGCAGGGAATGGTAGATGG	160 I TTGGTATGGGTACCACCATA	180 200 I AGCAATGAGCAGGGGGAGTGGGTA
pPICZA-H5N1 HA2 C.1	2 CGCTGCAGACAAAGAATCC	20 1 ACTCAAAAGGCAATAGATG	240 I GGAGTCACCAATAAGGTCAAC	260 I TCGATCATTGACAAAATGAA	280 I ACACTCAGTTTGAGGCCGTTGGA
pPICZA-H5N1 HA2 C.1	3 AGGGAATTTAACAACTTAG	20 1 AAAGGAGAATAGAGAATTT	340 I TAAACAAGAAGATGGAAGACG	360 I GGTTCCTAGATGTCTGGAC1	380 I TTATAATGCTGAACTTCTGGTTC
pPICZA-H5N1 HA2 C.1	4 TCATGGAAAATGAGAGAAC	20 I TCTAGACTTTCATGACTCA	440 1 NAATGTCAAGAACCTTTACGA	460 I CAAGGTCCGACTACAGCTTA	480 I AGGGATAATGCAAAGGAGCTGGG
pPICZA-H5N1 HA2 C.1	S TAACGGTTGTTTCGAGTTC	20 1 TATCATAAATGTGATAATG	540 I GAATGTATGGAAAGTGTAAGA	AATGGAACGTATGACTACCO	580 600 I CACAGTATTCAGAAGAAGCAAGA
pPICZA-H5N1 HA2 C.1	6 CTAAAAAGAGAGGGAAATAA	20 I GTGGAGTAAAATTGGAATC	640 TAATAGGAATTTACCAAATAC	660 TGTCAATTTATTCTTGC	680 700 ССССССАССТТСССССС <u>СААСААА</u>
	Myc-tag 7	20 Linker	740 OXILIS-Lag	760	700 000
pPICZA-H5N1 HA2 C.1	AACTCATCTCAGAAGAGGA	TCTCAATAGCGCCGTCGAC	CATCATCATCATCATCATTG	AGTTTTAGCCTTAGACATGA	ACTGTTCCTCAGTTCAAGTTGGG
pPICZA-H5N1 HA2 C.1 pPICZA-H5N1 HA2 C.1	AACTCATCTCAGAAGAGGA 8 CACTTACGAGAAGACCGGT	TCTCAATAGCGCCGTCGAC 20 1 CTTGCTAGATTCTAATCAA	CATCATCATCATCATCATTG 840 NGAGGATGTCAGAATGCCATT	AGTTTTAGCCTTAGACATGA 860 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ACTGTTCCTCAGTTCAAGTTGGG ACTGTTCCTCAGTTCAAGTTGGG 880 9000 ICATTTTTGATACTTTTTTATTT
pPICZA-H5N1 HA2 C.1 pPICZA-H5N1 HA2 C.1 pPICZA-H5N1 HA2 C.1	AACTCATCTCAGAAGAGGA CACTTACGAGAAGACCGGT GTAACCTATATAGTATAG	T T <u>CTG</u> AATAGCGCCGTCGAC 20 CTTGCTAGATTCTAATCAA 20 ATTTTTTTTGTCATTTTGT	ATCATCATCATCATCATCAT A A A A A A A A A A A A A	AGTTITAGCCTTAGACATG 860 TCCCTGAGAGATGCAGGCTT 960 TCCTGATCAGCCTATCTCG	Year Support Support ACTGTTCCTCAGTTCAAGTTGGG 900 BEO 900 ICATTTTGATACTTTTTATTT 980 Pin 1.000 CAGCTGATGAATATCTTGTGGTA 1.000
pPICZA-H5N1 HA2 C.1 pPICZA-H5N1 HA2 C.1 pPICZA-H5N1 HA2 C.1 pPICZA-H5N1 HA2 C.1	AACTCATCTCAGAAGAGGA 8 CACTTACCAGAAGAACCGCT 9 GTAACCTATATAGTATAGG 12 GGGGTTTGGGAAAATCATT	T TETEGAATAGCGCCGTCGAC 20 21 25 20 20 26 26 26 26 26 26 26 26 26 26 27 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 20 20 20 20 20 20 20 20 20 20 20 20	ATCATCATCATCATCATCATTG AGAGGATGTCAGAATGCCATT 940 1 TTCTTCTCGTACGAGCTTGC 1,040 GGTATTTCCCACTCCTCTTC	AGTTTTAGCCTTAGACATGA 860 TCCCTGAGAGATGCAGGCTT 960 TCCTGATCAGCCTATCTCG(1.060 AGAGTACAGAAGATTAAGT(7,80 800 ACTGTTCCTCAGTTCAAGTTGGG 900 880 900 ICATTTTGATACTTTTTATTT 980 980 1.000 CCAGCTGATGAATATCTTGTGGTA 1.000 1,080 1.100 GAGCCTTCGTTGTGGTAGCAGCTCC 1.000
pPICZA-H5N1 HA2 C.1 pPICZA-H5N1 HA2 C.1 pPICZA-H5N1 HA2 C.1 pPICZA-H5N1 HA2 C.1 pPICZA-H5N1 HA2 C.1	AACTCATCTCAGAAGAGGAG 8 CACTTACGAGAAGACCGGT 9 GTAACCTATATAGTATAGG 1 GGGGTTTGGGAAAATCATT 1 CCCACACACCATAGCTTCA	TETGAATAGCGCCGTCGAC 20 21 20 21 21 21 20 20 20 20 20 20 20 20 20 20 20 20 20	CATCATCATCATCATCATCATCAT ATCATCATCATCATCATCATCAT ATCATCATCATCATCATCATCATT ATCATCATCATCATCATCATCATCA ATCATCATCATCATCATCATCATCATCA ATTACTCTTCCCAAAATTTTTCC	AGTTTTAGCCTTAGACATG/ 860 TGCCTGAGAGATGCAGGCTT 960 TCCTGATCAGCCTATCTCGC 1.060 AGAGTACAGAAGATTAAGTC 1.160 GGACTCCGGGCATCGCCGT/	740 840 ACTGTTCCTCAGTTCAAGTTGGG 880 900 ГСАТТТТТGАТАСТТТТТТАТТТ 980 1.000 6400 1.000 5400 1.0000 5400 1.00000 5400 1.00000 5400 1.00000 540000000000000000000000000000000
pPICZA-H5N1 HA2 C.1 pPICZA-H5N1 HA2 C.1 pPICZA-H5N1 HA2 C.1 pPICZA-H5N1 HA2 C.1 pPICZA-H5N1 HA2 C.1 pPICZA-H5N1 HA2 C.1	AACTCATCTCAGAAGAGGA 8 CACTTACGAGAAGACCGGT 9 GTAACCTATATAGTATAGG 1 GGGGTTTGGGAAAATCATT 1 CCCACACACCATAGCTTCA 1 AGCATACTAAATTTCCCCT	T T T T T T T T T T T T T T	CATCATCATCATCATCATCATCAT CATCATCATCATCATCATCATCAT CAACGATGTCAGAATGCCATT 940 11 11 11 11 11 11 11 11 11 1	адттттадосттадасатди во тдостдададатдосаддостт тосотдатсадосотатотосо 1.060 абадотасадаадаттадост 1.160 доастосоддосатодосоти 1.280 дотттдоалалалалалалала	//ш 000 ACTGTTCCTCAGTTCAAGTTGGG 000 #80 900 ICATTTTGATACTTTTTATTT 960 580 1.000 580 1.100 5460 1.100 5460 1.100 5460 1.100 5466 1.200 5466 1.200 4400 1.200 4400 1.200 4400 1.200 4400 1.300 4400 1.300 4400 1.300 4400 1.300 4400 1.300
pPICZA-H5N1 HA2 C.1 pPICZA-H5N1 HA2 C.1 pPICZA-H5N1 HA2 C.1 pPICZA-H5N1 HA2 C.1 pPICZA-H5N1 HA2 C.1 pPICZA-H5N1 HA2 C.1	AACTCATCTCAGAAGAGGAG 8 CACTTACGAGAAGACCGGT 9 GTAACCTATATAGTATAGG 1 GGGGTTTGGGAAAATCATT 1 CCCACACACCATAGCTTCA 1 AGCATACTAAATTTCCCCCT 1 CCCCCAAAAAAGGAATAAAA 1	T T T T T T T T T T T T T T	240 940 1 <th>адттттадосттадасатда адттттадосттадасатда або тдостдададатдосадостт 960 тсстдатсадосстатотосос 1,060 абадстасадаадаттаадто адаастасододосатодососта 1,260 дотттодалалалалалалалала 1,260 дотттодалалалалалалалалалалалалалалалалалалал</th> <th>Умо Астастсстсаастсаасттасаас вао сааттттаатаастттттаттт осаастаастаастатттааттт осаастаасаатаастттаатаа саасастаасаатаасттаатаа саасассттсаатаастаас</th>	адттттадосттадасатда адттттадосттадасатда або тдостдададатдосадостт 960 тсстдатсадосстатотосос 1,060 абадстасадаадаттаадто адаастасододосатодососта 1,260 дотттодалалалалалалалала 1,260 дотттодалалалалалалалалалалалалалалалалалалал	Умо Астастсстсаастсаасттасаас вао сааттттаатаастттттаттт осаастаастаастатттааттт осаастаасаатаастттаатаа саасастаасаатаасттаатаа саасассттсаатаастаас

Copyright[©] by Chiang Mai University All rights reserved

APPENDIX F

Comparison of amino acids

Comparison of amino acid between the haemagglutinin domain of avian influenza A virus strain CMU H5 (A/Chicken/Chiang Mai/1/2004 (H5N1)) and the recombinant vector (pPICZA-H5N1 HA1 clone1) from *Escherichia coli* strain XL1-blue.

APPENDIX G

Calculation of transformation efficiency

Transformation efficiency was calculated by diving the number of successful transformants by the amount of DNA used during a transformation procedure (Tu *et al.*, 2004). In this study, 2.50 μ g of H5N1 HA2 gene (concentration of 1 μ g/ μ l) was used. Then, 100 μ l of cells suspension containing DNA from a test tube containing a total volume of 1100 μ l of solution were spread on YPDS plate with zeocin, so the total amount of H5N1 HA2 gene that spread on plate was calculated using the following formula;

DNA spread in μg = Total amount of DNA used in $\mu l \times$ volume spread on plate (μl)

Total sample volume in test tube (µl) = $(2.50 \times 100)/1100$ = 0.227

Each colony on the YPDS plate can be assumed to be derived from a single cell. The total number of yeast cell was determined by counting the colonies on the plates. So, these represented the total number of yeast cell that express the H5N1 HA2 gene, divided by the amount of H5N1 HA2 gene used in this study. The transformation efficiency was calculated using the following formula;

Transformation efficiency = Total number of cells growing on the plate

Amount of DNA spread on the plate

The 251 colonies were grown on YPDS agar containing 100 µg/ml of zeocin.

Transformation efficiency = $251/0.227 = 1.11 \times 10^3$ cells/µg

CURRICULUM VITAE

Author's Name	Miss Prapassorn Channoi		
Date/Year of Birth	November 2, 1989		
Place of Birth	Chiang Mai Province, Thailand		
Education	2008	Certificate of Senior High School, Montfort College Secondary Section, Chiangmai.	
Sel Sel	2012	Bachelor of Science (Agro-Industrial Biotechnology), Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University.	
Publication	Pornprasen Jannoi, P. Eupatorium <i>Technolog</i>	rt, S., Thanuthamcharoen, W., Pawichai, S., , Jannoi, S. (2007). Antibacterial activity of m odoratum leaf extract. <i>Journal of Medical</i> <i>ty Association of Thailand</i> , 35, 2010-2017.	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University rights reserved

