CONTENTS

	Page
Acknowledgements	iii
Abstract in English	iv
Abstract in Thai	vi
Table of Contents	viii
List of Figures	XV
List of Tables	xix
Abbreviations and symbols	XX
Chapter 1 Introduction	1
Chapter 2 Literatures review	5
2.1 Avian influenza virus	5
2.1.1 Influenza virus proteins	6
2.1.1.1 Haemagglutinin (HA)	6
2.1.1.2 Neuraminidase (NA)	8
2.1.1.3 The others protein and Mail University	8
2.1.2 Influenza virus receptors and replication	10
2.1.3 Antigenic shift and drift	11
2.1.4 Human Infections by Avian Influenza H5N1	12
2.1.5 Epidemiology of Human Cases of Avian Influenza H5N1	13

2.1.6 Laboratory Diagnosis	13
2.1.6.1 Virus isolation	13
2.1.6.2 Antigen detection	14
2.1.6.3 RT-PCR	14
2.1.6.4 Antibody detection	15
2.2 Pichia pastoris	15
2.2.1 Methanol metabolism in Pichia pastoris	16
2.2.2 The <i>Pichia</i> expression systems	17
2.2.2.1 Expression vector	17
2.2.2.2 The promoter in Pichia pastoris	20
2.2.2.3 Transformation and integration into the <i>P. pastoris</i> genome	21
2.2.2.4 Intracellular and secretory protein expression	23
2.2.2.5 Posttranslational modification	23
2.2.2.6 Process of Pichia pastoris fermentation	25
2.2.3 Application of <i>Pichia pastoris</i>	26
2.2.3.1 Therapeutics application	26
2.2.3.2 Enzymes production	27
2.2.3.3 Recombinant methylotrophs as a biocatalyst	27
2.2.3.4 Methanol removing	27

	Page
Chapter 3 Materials and methods	28
3.1 Bacteria, yeast, plasmid, primers and gene	28
3.1.1 Bacteria	28
3.1.2 Yeast	28
3.1.3 Plasmid	28
3.1.4 Gene	28
3.1.5 Primers	29
3.1.6 Positive serum and negative serum of avian influenza A virus CMU strain	30
3.2 General equipments and chemical	30
3.2.1 Equipments	30
3.2.2 Chemicals	31
3.3 Media	33
3.4 Buffers and reagents	33
3.5 Construction of recombinant vectors	33
3.5.1 Vector preparation	33
3.5.2 Amplification of H5N1 HA2 gene	34
3.5.3 Purification of DNA product	35
3.5.3.1 Sample Preparation	35
3.5.3.2 DNA Purification	36
3.5.4 XhoI and NotI digestion	36
3.5.5 Ligation	37
3.5.6 Preparation of competent Escherichia coli	38

3.5.7 Tranformation of recombinant plasmid into Escherichia coli	38
3.5.8 Confirmation of recombinant clones using colony PCR technique	38
3.5.9 Isolation of plasmid DNA and restriction analysis	39
3.6 Transformation of recombinant vector in Pichia pastoris	40
3.6.1 Vector preparation	40
3.6.2 Linearization of recombinant vector by SacI	40
3.6.3 Precipitation of DNA with isopropanol	41
3.6.4 Preparation of competent yeast cell	41
3.6.5 Transformation of yeast cells by electroporation	42
3.7 PCR analysis of <i>Pichia</i> integrants	42
3.8 Agarose gel electrophoresis	43
3.9 Cultivation and induction of Pichia pastoris containing H5N1	44
HA1_OPT or H5N1 HA2 gene	
3.10 Preparation of yeast cell lysate using ultrasonicator	44
3.11 Purification of recombinant H5N1 HA protein from Pichia pastoris	45
using HisPur TM Ni-NTA Spin Column under native condition	
3.11.1 Sample preparation	45
3.11.2 Purification of H5N1 HA protein	45
3.12 Analysis of H5N1 HA1_OPT or H5N1 HA2 protein using	46
SDS-PAGE and Western blot	
3.12.1 SDS-PAGE gel electrophoresis	46
3.12.2 Coomassie Blue Staining of SDS-PAGE gels	46

3.12.3 Western blot	46
3.12.3.1 Detection with HisDetector TM Western Blot Kits	46
3.12.1.2 Detection with Anti-myc antibody	47
3.12.1.3 Detection with human serum	47
3.13 Estimation of protein concentration	47
Chapter 4 Results	48
4.1 Construction of recombinant vectors	48
4.1.1 Preparation of expression vectors	48
4.1.2 Construction of recombinant plasmid containing H5N1 HA genes	49
4.1.2.1 Construction of pPICZA-H5N1 HA1_OPT and transformation into <i>Escherichia coli</i> XL1-blue	49
4.1.2.2 Construction of pPICZαB-H5N1 HA1_OPT and transformation into <i>Escherichia coli</i> XL1-blue	52
4.1.2.3 Construction of pPICZA-H5N1 HA2 and	55
transformation into <i>Escherichia coli</i> XL1-blue 4.1.2.4 Construction of pPICZαB -H5N1 HA2 and transformation into <i>Escherichia coli</i> XL1-blue	60
4.2 Linearization of recombinant vector with SacI	63
4.3 Transformation of recombinant vectors into Pichia pastoris	65
4.4 PCR analysis of <i>Pichia</i> Integrants	67
4.4.1 Analysis of recombinant <i>Pichia</i> containing H5N1	67
HAI_OPT gene	

4.4.2 Analysis of recombinant <i>Pichia</i> containing H5N1 HA2 gene	68
4.5 Expression of H5N1 HA gene by recombinant Pichia pastoris	70
4.5.1 Expression of H5N1 HA1_OPT gene by recombinant <i>Pichia pastoris</i>	70
4.5.1.1 Expression of H5N1 HA1_OPT gene by recombinant <i>Pichia pastoris</i> containing pPICZA-H5N1 HA1_OPT vector	70
4.5.1.2 Expression of H5N1 HA1_OPT gene by recombinant <i>Pichia pastoris</i> containing pPICZαB-H5N1 HA1_OPT vector	70
4.5.2 Expression of H5N1 HA2gene by recombinant Pichia pastoris	72
4.5.2.1 Expression of H5N1 HA2gene by recombinant <i>Pichia pastoris</i> containing pPICZA-H5N1 HA2 vector	72
4.5.2.2 Expression of H5N1 HA2gene by recombinant <i>Pichia pastoris</i> containing pPICZαB-H5N1 HA2 vector	76
4.6 Estimation of protein concentration	77
Chapter 5 Discussions	78
5 1 Cloning of haemagglutinin domain (H5N1 HA gene) in <i>Pichia pastoris</i>	79
5.2 Expression of Haemagglutinin domain (H5N1 HA gene) by<i>Pichia pastoris</i>	80
5.2.1 Secretory expression of haemagglutinin domain (H5N1 HA gene) by <i>Pichia pastoris</i>	80
5.2.2 Intracellular expression of haemagglutinin domain (H5N1 HA gene) by <i>Pichia pastoris</i>	81

LIST OF FIGURES

Figure 2.1	Schematic diagram of influenza A virus	6
Figure 2.2	Schematic diagram of influenza virus replication	11
Figure 2.3	Pichia pastoris	15
Figure 2.4	The methanol pathway in Pichia pastoris	17
Figure 2.5	General diagram of P. pastoris expression vector	18
Figure 2.6	Vector diagram of pPICZ and pPICZa	19
Figure 2.7	Gene insertions in Pichia pastoris	22
Figure 2.8	Gene replacements in Pichia pastoris	22
Figure 2.9	Protein glycosylation patterns	25
Figure 4.1	Agarose gel electrophoresis of expression vectors	49
Figure 4.2	H5N1 HA1_OPT gene and fusion tags	50
Figure 4.3	The colonies of <i>Escherichia coli</i> containing recombinant plasmid (pPICZA-H5N1 HA1_OPT) on LB low salt agar containing of 50 µg/ml zeocin	50
Figure 4.4	Analysis of the recombinant plasmid (pPICZA H5N1 HA1_OPT) by colony PCR technique using specific primer	51
Figure 4.5	Agarose gel electrophoresis of recombinant plasmid (pPICZA-H5N1 HA1_OPT) with <i>Xho</i> I and <i>Not</i> I restriction analysis	51
Figure 4.6	Agarose gel electrophoresis of H5N1 HA1_OPT gene purification	52

Page

Figure 4.7	The colonies of <i>Escherichia coli</i> XL1-blue containing recombinant plasmid (pPICZαB-H5N1 HA1_OPT) on LB low salt agar containing 50 μg/ml zeocin	53
Figure 4.8	Analysis of the recombinant plasmid (pPCZαB-H5N1 HA1_OPT) by colony PCR technique	54
Figure 4.9	Agarose gel electrophoresis of recombinant plasmid (pPICZαB-H5N1 HA2) with <i>Xho</i> I and <i>Not</i> I restriction analysis	54
Figure 4.10	H5N1 HA2 gene and restriction enzymes sites	55
Figure 4.11	Agarose gel electrophoresis of PCR products (H5N1 HA2 gene) amplified by using High Fidelity PCR	56
Figure 4.12	The colonies of <i>Escherichia coli</i> XL1-blue containing pPICZA- H5N1 HA2 on LB low salt agar containing 50 µg/ml zeocin	57
Figure 4.13	Analysis of the recombinant plasmid (pPICZA-H5N1 HA2) by colony PCR technique	58
Figure 4.14	Agarose gel electrophoresis of recombinant plasmid (pPICZA-H5N1 HA2) with <i>XhoI</i> and <i>NotI</i> restriction analysis	58
Figure 4.15	Nucleotide sequence of the H5N1 HA2 gene from recombinant plasmid (pPICZA-H5N1 HA2) compared with the haemagglutinin domain gene of avian influenza A (H5N1) virus strain CMU H5 (A/Chicken/Chiang Mai/1/2004)	59
Figure 4.16	Agarose gel electrophoresis of H5N1 HA2 gene purification	60
Figure 4.17	The colonies of <i>Escherichia coli</i> XL1-blue containing recombinant plasmid (pPICZ α B-H5N1 HA2) on low salt LB agar containing 50 µg/mL zeocin	61

Figure 4.18	Analysis of the recombinant plasmid (pPCZαB-H5N1 HA2) by colony PCR technique	62
Figure 4.19	Restriction analysis of recombinant plasmid (pPICZαB-H5N1 HA2) with <i>Xho</i> I and <i>Not</i> I	62
Figure 4.20	Agarose gel electrophoresis of the recombinant vectors digested with <i>Sac</i> I	64
Figure 4.21	The colonies of <i>Pichia pastoris</i> containing recombinant plasmid on selective medium using 100 μ l of transformant suspension on YPD agar containing 100 μ g/ml zeocin	66
Figure 4.22	PCR products of twelve selected recombinant <i>Pichia</i> colonies containing pPICZA-H5N1 HA1_OPT vector	67
Figure 4.23	PCR products of twelve selected recombinant <i>Pichia</i> colonies pPICZαB-H5N1 HA1_OPT vector	68
Figure 4.24	PCR products of twelve selected recombinant <i>Pichia</i> colonies containing pPICZA-H5N1 HA2 vector	69
Figure 4.25	PCR products of twelve selected recombinant <i>Pichia</i> colonies pPICZαB-H5N1 HA2 vector	69
Figure 4.26	SDS-PAGE analysis of H5N1 HA2 protein with coomassie blue staining	72
Figure 4.27	Western blot analysis of H5N1 HA2 protein detected by HisDetector TM Western Blot Kits (KPL, Inc., USA)	73
Figure 4.28	Western blot analysis of H5N1 HA2 protein detected by Anti-myc Antibody	74
Figure 4.29	Western blot analysis of H5N1 HA2 protein detected by PO3 (positive serum)	75

Figure 4.30 Western blot analysis of H5N1 HA2 protein detected by CS 75 serum negative)

Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

9
9
0
1
5
6
7
9
0
1
3
7

ABBREVIATION AND SYMBOLS

