CONTENTS

ACKNOWLEDGEMENT	iii
ABSTRACT IN THAI	iv
ABSTRACT IN ENGLISH	vii
LIST OF TABLES	xiv
LIST OF TABLES	xvi
ABBREVIATIONS AND SYMBOLS	xviii
CHAPTER 1	1
Introduction	
1.1 Statement and significant of the study	1
1.2 The objective of this study	3
	4
CHAPTER 2	4
Literature Review 2.1 Food waste	
2.1 Food waste	4
2.2 Oleaginous yeast	6
2.2.1 Lipids biosynthesis	14
2.2.2 Carotenoids biosynthesis	18
2.2.3 Factors influencing the production of lipids and carotenoids in	22
Al _{yeasts} rights reserved	
2.3 Biodiesel	26
2.3.1 Types of transesterification based on catalyst	26
2.3.1.1 Homogeneous catalyst	26
2.3.1.2 Heterogeneous catalyst	27
2.3.2 Generation of biodiesel	29
2.3.2.1 The first-generation of biodiesel	29

CONTENTS (CONTINUED)

Page

2.3.2.2 The second-generation of biodiesel	29
2.3.2.3 The third-generation of biodiesel	29
CHAPTER 3	31
Materials and Methods	
3.1 Materials	31
3.1.1 Equipment	31
3.1.2 Chemicals	32
3.2 Raw Material	34
3.3 Experimental Methods	34
3.3.1 Screening and isolation of oleaginous red yeast for lipids and	34
carotenoids productions	
3.3.2 Inoculum preparation	35
3.3.3 Identification of oleaginous red yeast strain	35
3.3.4 Production of rice residue hydrolysate from food waste	36
3.3.4.1 Production of enzymatic-rice residue hydrolysate	36
3.3.4.2 Production of acid-rice residue hydrolysate	36
3.3.5 Screening of oleaginous red yeast for lipids and carotenoids	36
productions using rice residue hydrolysate from food waste as	
a carbon source	
3.3.6 Screening of oleaginous red yeast for direct using of rice	37
residue from food waste as a carbon source	
3.3.7 Optimization of lipids and carotenoids productions by the	37
selected oleaginous red yeast Sporidiobolus pararoseus	
KX709872	
3.3.7.1 Effect of medium compositions on biomass, lipids and	37
carotenoids productions using the Plackett-Burman	
statistical design	

CONTENTS (CONTINUED)

Page

	3.3.7.2 Optimization of cultivation condition using response	39
	surface methodology (RSM) via a central composite	
	design (CCD)	
	3.3.8 Scale up production in 5.0-L stirred tank bioreactor	40
3.4	Analytical Method	40
	3.4.1 Biomass measurement	40
	3.4.2 Lipids extraction	41
	3.4.3 Carotenoids analysis	41
	3.4.4 Fatty acid composition analysis	42
	3.4.5 Composition of rice residue from food waste	43
3.5	Enzyme Activity Assay	43
CHAPTI	ER4	44
	and Discussion	
4.1	The composition of rice residue from food waste	44
4.2	Production of rice residue hydrolysate	45
4.3	Screening and isolation of oleaginous red yeast for lipids and	46
	carotenoids productions	
4.4	Screening of oleaginous red yeast for lipids and carotenoids	46
	productions using rice residue hydrolysate from food waste as a	
	carbon source	
4.5	Screening of oleaginous red yeast for lipids and carotenoids	52
	productions using rice residue from food waste as a carbon source	
4.6	Identification of oleaginous red yeast	54
4.7	Effect of medium compositions on biomass, lipids and carotenoids	56
	productions by selected oleaginous red yeast Sporidiobolus	
	pararoseus KX709872	

CONTENTS (CONTINUED)

Page

4.8 Optimization of cultivation condition using response surface	60	
methodology (RSM) via a central composite design (CCD)		
4.8.1 Optimization of condition for biomass and lipids productions	60	
4.8.2 Optimization of cultivation condition for carotenoids production	68	
4.9 Validation of the model for biomass, lipids and carotenoids productions	77	
4.10 Scale up production in stirred tank bioreactor	80	
4.11 Fatty acid composition of lipids from Sporidiobolus pararoseus	85	
KX709872		
CHAPTER 5	88	
Conclusion and Suggestion		
5.1 Conclusion	88	
5.2 Suggestion	90	
REFERENCES APPENDICES APPENDIX A	91	
APPENDICES	104	
APPENDIX A	105	
APPENDIX B	111	
APPENDIX COSUMO DA SUB SOLAU	114	
APPENDIX Dight [©] by Chiang Mai University	123	
CURRICULUM VITAE ights reserved 125		

LIST OF TABLES

Table		Page
2.1	Diversity of oleaginous yeast species	7
2.2	Lipids production from various types of oleaginous yeasts	11
3.1	Experiment variables at various levels used for biomass, lipids and carotenoids productions using the Plackett-Burman design	38
3.2	Experimental codes, ranges and levels of independent variables in the response-surface methodology experiment	40
4.1	Compositions of rice residue from food waste	44
4.2	The morphology of colony and cell and intracellular lipids of oleaginous yeast (100X)	51
4.3	Characteristics of oleaginous red yeasts TC32 and TISTR5792 when cultivation in basal medium supplemented with either soluble starch or rice residue from food waste as a carbon source	53
4.4	Twelve-trial Plackett-Burman design matrixes for eight variables and actual value of seven responses	58
4.5	Corresponding <i>p</i> -values for productions of biomass, lipids, lipids content, total carotenoids, total carotenoids yield, β -carotene and β - carotene yield for eight variables by the Plackett-Burman design experiment	59
4.6	The CCD matrix for the experimental design and actual responses for biomass, lipids and lipids content	61
4.7	The <i>p</i> -value, <i>F</i> -value, coefficient of variation (C.V.) and coefficient of determination (R^2) of the predicted second order polynomial models for biomass, lipids and lipids content	62

LIST OF TABLES (CONTINUED)

Table

4.8	The CCD matrix for the experimental design and actual responses for	
	total carotenoids, total carotenoids yield, β -carotene and β -carotene	
	yield	

- 4.9 The *p*-value, *F*-value, coefficient of variation (C.V.) and coefficient of 72 determination (R^2) of the predicted second order polynomial models for total carotenoids, total carotenoids yield, β -carotene and β -carotene yield
- 4.10 The predicted and actual value of biomass, lipids and lipids content 79 validating the fitness of model
- 4.11 The biomass and lipids productions cultivated with starchy materials 84 by various oleaginous yeast strains
- C-1 Reaction mixture of α -amylase activity assay

The MAI

121

Page

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure		Page
2.1	Biochemistry of lipids accumulation in oleaginous yeast	17
2.2	Molecular structures of carotenoids	19
2.3	Biosynthesis of carotenoids	21
2.4	Biodiesel production by transesterification	27
2.5	Solid acid catalyzed simultaneous esterification and transesterification	28
4.1	Productions of biomass, lipids and carotenoids by nine red yeast strains cultivated in the basal medium supplemented with glucose as carbon source	48
4.2	Productions of biomass, lipids and carotenoids by nine red yeast strains cultivated in the basal medium supplemented with enzymatic- rice residue hydrolysate as carbon source	49
4.3	Productions of biomass, lipids and carotenoids by nine red yeast strains cultivated in the basal medium supplemented with acid-rice residue hydrolysate as carbon source	50
4.4	Phylogenetic relationships between <i>Rhodotorula glutinis</i> KM281508 and other 26S rDNA sequence of published strains	54
4.5	Phylogenetic relationships between <i>Rhodosporidium</i> sp. KX281510 and other 26S rDNA sequence of published strains	55
4.6	Phylogenetic relationship between <i>Sporidiobolus pararoseus</i> KX709872 and other 26S rDNA sequence of published strains	55
4.7	Volumetric production of biomass in 3D graphic for quadratic response surface optimization	65
4.8	Volumetric production of lipids in 3D graphic for quadratic response surface optimization	66
4.9	Lipids content in 3D graphic for quadratic response surface optimization	67

LIST OF FIGURES (CONTINUED)

Figure Page 4.10 Volumetric production of total carotenoids in 3D graphic for quadratic 73 response surface optimization 4.11 The yield of total carotenoids in 3D graphic for quadratic response 74 surface optimization Volumetric production of β -carotene in 3D graphic for quadratic 4.12 75 response surface optimization 4.13 The yield of β -carotene in 3D graphic for quadratic response surface 76 optimization 4.14 Time course of biomass, lipids, lipids content, α -amylase activity, 80 AMG and rice residue from food waste 4.15 81 Time course of biomass, total carotenoids, total carotenoids yield, βcarotene, β -carotene yield and pH 4.16 The color changing behavior in 5.0-L stirred tank bioreactor by 82 Sporidiobolus pararoseus KX709872 Type of lipids obtained from strain KX709872 during cultivation in 87 4.17 5.0-L stirred tank bioreactor 4.18 TLC of fatty acid methyl ester (FAME) or biodiesel 87 Calibration curve of glucose 109 A-1 ng Mai C-1 Chromatogram of β -carotene analyzed by HPLC 115 Chromatogram of fatty acid analyzed by gas chromatography with C-2 117 flame-ionization detector C-3 Standard curve of glucose 120

ABBREVIATIONS AND SYMBOLS

α	alpha
β	beta
°C	degrees Celsius
±	deviation
γ	grammar
<	less than
3	grammar less than molar extinction coefficient per
1 8	per
%	percent
μ	specific growth rate
amu 🛛 🦓	atomic mass unit
cm	centimeter
e.g.	exempli gratia
g	g-force
g	gram
h	hour AI UNIVERS
μg	microgram
^{µL} Saar	microliter
μm	merometer
mg Copyrig	milligram by Chiang Mai University
mL A	milliliter hts reserved
mm	millimeter
mM	millimolar
min	minute
nm	nanometer
ppm	parts per million
pН	power of hydrogen

ABBREVIATIONS AND SYMBOLS (CONTINUED)

<i>p</i> -value	probability value
rpm	round per minute
sec	second
vvm	volume air per volume medium per minute
w/v	weight by volume
w/w	weight by weight
R^2	coefficient of determination
EI	electron ionization
F-value	Fisher's value
L	liter
M	molar
OD 30	optical density
Y _{p/s}	production yield
Y	response value
U/mL	unit per milliliter
ANOVA	analysis of variance
AOAC	Association of Official Analytical Chemist
CCD	central composite design
EDXS	energy dispersive X-ray spectrometry
FAME	fatty acid methyl ester
GC-FID OPYrig	gas chromatography with flame-ionization detection
GC-MS	gas chromatograph mass spectrometer
HPLC	high performance liquid chromatography
NCBI	National Center Biotechnology Information
PCR	polymerase chain reaction
RSM	response surface methodology
TISTR	Thailand Institute of Scientific and Technological Research
TLC	thin layer chromatography