CONTENTS

Acknowledgement c		
Abstract (in Thai)		
Abstract (in English)		
List of Tables		
List of Figures		
List of Abbreviations and symbols		
Statement of Originality (in Thei)	5	
Statement of Originality (in That)	р	
Statement of Originality (in English)	q	
Chapter 1 Introduction	1	
1.1 Heavy metals	2	
1.1.1 Cadmium	2	
1.1.2 Zinc	3	
1.2 Wastewater treatment	3	
1.2.1 Precipitation	3	
1.2.2 Electrochemical treatment	4	
1.2.3 Photocatalysis	4	
1.2.4 Ion-exchange	5	
1.2.5 Membrane filtration	5	
1.2.6 Adsorption	6	
1.3 Leonardite	9	
1.4 Adsorption kinetic	12	
1.4.1 Pseudo first order model	12	
1.4.2 Pseudo second order model	13	
1.4.3 Intra-particle diffusion model	14	

1.5	Adsorption isotherm	15	
	1.5.1 Single adsorption isotherm	17	
	1.5.2 Binary adsorption isotherm	19	
1.6	Adsorption thermodynamic	21	
1.7	Data analysis	23	
	1.7.1 Linear regression	23	
	1.7.2 Non-linear regression	23	
	1.7.3 Sum of normalized error	25	
1.8	Analytical technique	26	
	1.8.1 X-ray powder diffraction	26	
	1.8.2 X-ray fluorescence spectroscopy	28	
	1.8.3 Fourier transform infrared spectroscopy	29	
	1.8.4 Scanning electron microscopy	30	
	1.8.5 BET surface area analysis	31	
	1.8.6 Particle size analysis	32	
	1.8.7 Atomic absorption spectroscopy	32	
1.9	Research objectives	36	
Chapter 2	Experiment	37	
2.1	Chemicals	37	
2.2	Instrument and apparatus		
2.3	Material	38	
2.4	Preparation of solutions	38	
2.5	Characterization and property of leonardite	41	
2.6	Single-component adsorption study 2		
2.7	Binary-components adsorption study	44	
Chapter 3	Results and discussion	46	
3.1	Characteristic and properties of leonardite	46	
	3.1.1 Chemical compositions	46	
	3.1.2 Mineral compositions	47	
	3.1.3 Characterization by FTIR	49	
	3.1.4 Morphology	50	

	3.1.5	Properties of leonardite	51
3.2	Single	-component adsorption of Cd(II) and Zn(II) ions	52
	3.2.1	Effect of pH	52
	3.2.2	Effect of contact time	54
	3.2.3	Adsorption kinetics	55
	3.2.4	Adsorption isotherm	59
	3.2.5	Adsorption mechanism	75
	3.2.6	Effect of temperature	77
	3.2.7	Adsorption thermodynamic	83
3.3	Binary	v-component adsorption of Cd(II) and Zn(II) ions	87
Chapter 4	Conclu	usion	95
References	5	8. 0 3	97
Appendix			110
Appe	endix A		110
Appe	endix B	al NWI ZI	113
Curriculun	n Vitae	En La S	124
		MAI UNIVERSI	
	ຄີຍຄໍ	สิทธิ์มหาวิทยาลัยเชียงใหม่	
		vright ov Chiang Mai University	

All rights reserved

LIST OF TABLES

Page

Table 1.1	Comparison of techniques for removal of heavy metals 7		
Table 1.2	The difference between physical adsorption and	8	
	chemical adsorption		
Table 2.1	Preparation of binary solution of Cd(II) and Zn(II)	40	
Table 3.1	Chemical compositions of leonardite	47	
Table 3.2	The comparison of absorption bands between humic	50	
	acid and leonardite		
Table 3.3	Properties of leonardite	51	
Table 3.4	Kinetic parameters for Cd(II) and Zn(II) adsorption	59	
	onto leonardite		
Table 3.5	Adsorption isotherm parameters for Cd(II) adsorption	64	
Table 3.6	Adsorption isotherm parameters for Zn(II) adsorption	69	
Table 3.7	Comparison of adsorption capacity of adsorbents for	72	
	Cd(II) and Zn(II)		
Table 3.8	Properties of metal ion	73	
Table 3.9	Adsorption isotherm parameters for Cd(II) and Zn(II)	82	
ଗ	adsorption at 10, 20, 30, and 40 °C		
Table 3.10	Thermodynamic parameters of Cd(II) and Zn(II)	86	
Table 3.11	Multi-component isotherm equations	89	
Table 3.12	Adsorption isotherm parameters and error analysis for	91	
	binary system		

LIST OF FIGURES

Page

Figure 1.1	Model structure of humic acid	11
Figure 1.2	Model structure of fulvic acid	11
Figure 1.3	The classification of adsorption isotherms	15
Figure 1.4	Diagram of X-ray diffraction	26
Figure 1.5	Deriving Bragg's law using the reflection geometry	27
	and applying trigonometry	
Figure 1.6	Diagram of FTIR spectrometer	29
Figure 1.7	Diagram of atomic absorption spectrometer	33
Figure 1.8	The generation of radiation from hollow cathode lamp	34
Figure 3.1	XRD pattern of leonardite	48
Figure 3.2	FTIR spectrum of leonardite	49
Figure 3.3	SEM image of leonardite	51
Figure 3.4	Effect of pH on the individual adsorption of Cd(II) and	52
	Zn(II) on leonardite	
Figure 3.5	Effect of contact time on the individual adsorption of	54
	Cd(II) and Zn(II) on leonardite	
Figure 3.6	Pseudo first order plot for the adsorption of Cd(II) and	57
	Zn(II) on leonardite	
Figure 3.7	Pseudo second order plot for the adsorption of Cd(II)	58
A	and Zn(II) on leonardite	
Figure 3.8	Intra-particle diffusion plot for the adsorption of Cd(II)	58
	and Zn(II) on leonardite	
Figure 3.9	Individual adsorption isotherm of Cd(II) and Zn(II)	60
Figure 3.10	Linear plot of Langmuir isotherm of Cd(II)	63
Figure 3.11	Linear plot of Freundlich isotherm of Cd(II)	63

Figure 3.12	The comparison of Cd(II) adsorption data obtained from	65
	experiment and Langmuir model (linear regression and	
	non-linear regression, MPSD)	
Figure 3.13	The comparison of Cd(II) adsorption data obtained from	66
	experiment and Freundlich model (linear regression and	
	non-linear regression, MPSD)	
Figure 3.14	Linear plot of Langmuir isotherm of Zn(II)	68
Figure 3.15	Linear plot of Freundlich isotherm of Zn(II)	68
Figure 3.16	The comparison of Zn(II) adsorption data obtained from	70
	experiment and Langmuir model (linear regression and	
	non-linear regression, MPSD)	
Figure 3.17	The comparison of Zn(II) adsorption data obtained from	71
	experiment and Freundlich model (linear regression and	
	non-linear regression, MPSD)	
Figure 3.18	The comparison of the FTIR spectra of leonardite,	75
	leonardite-Cd, and leonardite-Zn	
Figure 3.19	Adsorption isotherm of Cd(II) on leonardite at different	79
	temperature	
Figure 3.20	Adsorption isotherm of Zn(II) on leonardite at different	79
	temperature	
Figure 3.21	Langmuir plots of Cd(II) at 10, 20, 30, and 40 °C	80
Figure 3.22	Freundlich plots of Cd(II) at 10, 20, 30, and 40 °C	80
Figure 3.23	Langmuir plots of Zn(II) at 10, 20, 30, and 40 °C	81
Figure 3.24	Freundlich plots of Zn(II) at 10, 20, 30, and 40 °C	81
Figure 3.25	Ln q_e/c_e against q_e of Cd(II) at 10, 20, 30, and 40 °C	84
Figure 3.26	Ln q_e/c_e against q_e of Zn(II) at 10, 20, 30, and 40 °C	85
Figure 3.27	Ln k_d against $1/T$ of Cd(II)	85
Figure 3.28	Ln k_d against $1/T$ of Zn(II)	86
Figure 3.29	Adsorption isotherm of Cd(II) in binary system	88
Figure 3.30	Adsorption isotherm of Zn(II) in binary system	88

Figure 3.31	The relationship between experimental and calculated	93
	adsorbed amount from multi-component isotherms for	
	adsorption of Cd(II) and Zn(II) on leonardite	
Figure 3.32	Adsorption isotherm model of Cd(II) in binary system	94
	predicted by Extended Freundlich isotherm	
Figure 3.33	Adsorption isotherm model of Zn(II) in binary system	94

Figure 3.33 Adsorption isotherm model of Zn(II) in binary system 94 predicted by Extended Freundlich isotherm

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF ABBREVIATIONS AND SYMBOLS

Å	Angstrom, 1x10 ⁻¹⁰
°C	Degree celsius
Κ	Kelvin
h	Hour
min	Minute
g	Gram
cm	Centimeter
μm	Micrometer
mol	Mole
mL	Milliliter
L	Liter
pН	Power of hydrogen ion
%wt	Percent weight
rpm	Round per minute
V	Volume
W	Weight
cmol/kg	Centimole per kilogram
m ² /g	Square meter per gram
mg/g	Milligram per gram
mg/L Copy	Milligram per liter Chiang Mai University
L/mg	Liter per milligram
g/cm ³	Gram per cubic centimeter
g/mol	Gram per mole
ERRSQ	Sum of the squares of the errors
MAPE	Mean absolute percentage error
MPSD	Marquardt's percent standard deviation
RMSE	Root mean square error
χ^2	Chi-square

ข้อความแห่งการริเริ่ม

มลพิษทางน้ำที่เกิดจากโลหะหนักเป็นปัญหาที่ร้ายแรงและซับซ้อนที่เกิดขึ้นและยังคงได้รับ ความสนใจ การปนเปื้อนของน้ำด้วยโลหะหนักเป็นอันตรายต่อมนุษย์ สัตว์และพืช แหล่งกำเนิดหลัก ของมลพิษโลหะหนักมาจากน้ำทิ้งโรงงานอุตสาหกรรมโลหะหนักเหล่านี้จะถูกปล่อยออกมากับน้ำ ทิ้งของโรงงานและปนเปื้อนไปยังแหล่งน้ำใกล้เกียงบริเวณโรงงาน

วัตถุประสงก์ของงานวิจัยนี้คือ การกำจัดโลหะหนักจากน้ำโดยการใช้วัสดุเหลือทิ้งเป็นตัวดูด ซับ ลีโอนาร์ไดต์ซึ่งเป็นวัสดุเหลือทิ้งจากเหมืองถ่านหินแม่เมาะในจังหวัดลำปาง ได้ถูกนำมาใช้เป็น ตัวดูดซับไอออนโลหะในน้ำ ลีโอนาร์ไดต์เป็นวัสดุที่มีอยู่เป็นจำนวนมากและมีราคาถูก การกำจัด โลหะหนักจากน้ำด้วยลีโอนาร์ไดต์ให้ประโยชน์ในเชิงเศรษฐศาสตร์และการลดปริมาณวัสดุเหลือทิ้ง โดยทั่วไปแล้ว น้ำทิ้งโรงงานอุตสาหกรรมจะประกอบไปด้วยโลหะหนักมากกว่าหนึ่งชนิด ดังนั้นจึง จำเป็นต้องศึกษาความสามารถในการดูดซับโลหะหนักที่สภาวะต่างๆ เพื่อให้ได้กระบวนการกำจัด โลหะหนักที่มีประสิทธิภาพ

> ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

WG MAI

STATEMENTS OF ORIGINALITY

Water pollution caused by heavy metals is a serious and complex problem that has been, and still is, a focus of attention. Water contamination with heavy metals represents a potential threat to humans, animals and plants. Most of the point sources of heavy metal pollutants are industrial wastewater. These metals are transported by runoff water and contaminate water sources downstream from the industrial site.

Aim of this research is the removal of heavy metals from water using the waste material as adsorbent. Leonardite, which is waste material from Mae Moh lignite mine in Lampang province, is utilized as adsorbent for removal of metal ions from aqueous systems. Leonardite is the abundant and low cost material. The removal of heavy metals from water by leonardite provides the usefulness in terms of economic and the reduction of waste materials. Generally, wastewater contains more than one type of heavy metals. Thus, the study of capability of leonardite in the different conditions is required in order to achieve the effective process for heavy metals removal.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

NG MAI UI