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CHAPTER 2 

Theoretical and Computational Details 

Basic concept of computational chemistry starts with the solving of Schrödinger 

equation (2.1). There are many description to explain the motion of particles. One of the 

descriptions is the wave function concept in which the wave function ( Ψ)  for an 

interested system governed by a Hamiltonian ( Ĥ)  is determined by Schrödinger 

equation as given below.  

ĤΨ = EΨ (2.1) 

Where Ĥ is the Hamiltonian operator, Ψ is the wave function and E is the total 

energy.  Unfortunately, the Schrödinger equation can be solved exactly for the one 

electron system. Therefore, the numerical method can be used to approximate the wave 

function and the theoretical approximations include ab initio method, semi empirical 

method, density functional theory and etc. 

The ab initio method ( means “the method form the beginning” in Latin)  is the 

approximation from Schrödinger equation in order to find an approximate solution 

without an inclusion of experimental data. The well-known type of ab initio calculation 

is Hartree-Fock (HF)  approximation. There are several ways in which we can proceed 

with the derivation of HF equations (2.2).  

ĥFΨI = ɛI ΨI    (2.2) 

Where the HF operator ĥF depends only on the coordinates of any electron, but 

allows for the averaging over their interactions. [91, 92] 
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2.1 Density Functional Theory [93, 94] 

Density Functional Theory ( DFT)  is one of the most popular and successful 

quantum mechanics approaches to apply in many research topics. The basic for DFT is 

the very useful proof by Hohenberg and Kohn that the ground state electronic energy is 

determined completely by the electron density. The result of the proof has resulted in a 

much less variables needed in the computation compared to directly solving the 

Schrodinger equation as shown in Figure 2.1.  

 

Figure 2.1 Basic concept for the Density Functional Theory. 

2.1.1 The Hohenberg-Kohn theorem  

Solving the problem using the single electron wave function, this method uses one 

of functions which represents the entire electron density of the molecule represented as 

ρ(r). Electronic energy of electron density is represented as 

𝐸(𝜌) = 𝐸𝑇[𝜌] + 𝐸𝑉[𝜌] + 𝐸𝑈[𝜌] (2.3) 

where 𝐸𝑇[𝜌] is the kinetic energy, 𝐸𝑉[𝜌] is the potential energy, 𝐸𝑈[𝜌] is the external 

perturbation and Coulomb repulsive force between pairs of electrons. 
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2.1.2 Kohn-Sham Equations  

A density functional is used to obtain the energy for the electron density.  The 

advantage of using electron density is that integrals for Coulombic repulsion need to be 

done only over the electron density which is a three-dimensional function.  The exact 

ground-state electron density is given by 

ρ(𝑟) = ∑ |𝛹𝑖(𝑟)|2𝑛
𝑖=1  (2.4) 

The electronic energy can be written in a simple form as 

𝐸(𝜌) = 𝐸𝑇[𝜌] + 𝐸𝑉[𝜌] + 𝐸𝑋𝐶[𝜌] (2.5) 

where the sum is overall energy of the occupied Kohn-Sham orbitals. 𝐸𝑇[𝜌] represents 

the kinetic energy of the electron, 𝐸𝑉[𝜌] is the potential energy including electron-

nucleus attraction and coulomb repulsive interaction between electros and 𝐸𝑋𝐶[𝜌] is the 

exchange-correlation term that is often split into two parts. The first part is for exchange 

effects and the second part is for correlation effects, in which both parts must be the 

functional of the electron density. 

𝐸𝑋𝐶[𝜌] = 𝐸𝑋[𝜌] + 𝐸𝐶[𝜌] (2.6) 

Therefore, exchange-correlation potential, 𝑉𝑋𝐶 can be presented as the functional 

derivatives of the exchange-correlation energy: 

𝑉𝑋𝐶[𝜌] = 
𝛿𝐸𝑋𝐶[𝜌]

𝛿𝑝
 (2.7) 

2.1.3 Hybrid Functional 

B3LYP [95-98] 

B3LYP is a hybrid functional, which includes the combination of Becke's 

parameter exchange correlation functional mixing ( B3)  in the exact HF exchange 

correlation. LYP is the Lee Yang and Parr correlation functional that recovers dynamic 

electron correlation.  The introduction of the B3LYP hybrid exchange correlation 
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functional was a turning point for DFT.  The B3LYP functional can be described as 

follow; 

𝐸𝑋𝐶
𝐵3𝐿𝑌𝑃 = 𝐸𝑋

𝐿𝐷𝐴 + 𝑎0 (𝐸𝑋
𝐻𝐹  −  𝐸𝑋

𝐿𝐷𝐴) + 𝑎𝑋(𝐸𝑋
𝐺𝐺𝐴  −  𝐸𝑋

𝐿𝐷𝐴) + 𝐸𝑐
𝐿𝐷𝐴 + 

𝑎𝐶(𝐸𝐶
𝐺𝐺𝐴  −  𝐸𝐶

𝐿𝐷𝐴) 

(2.8) 

When 𝑎0 = 0.20, 𝑎𝑋 = 0.72, 𝑎𝐶  = 0.81 

PBE0 [99] 

PBE0 is sort of similar functional to B3LYP except that it does not contain any 

empirically fitted parameters and has 25%  HF exchange (vs 20%  for B3LYP). Kieron 

Burke (the B of PBE) claims that it is popular in the physics community because it has 

no empirically fitted parameters (and is thus more “ab-initio”).  

𝐸𝑋𝐶
𝑃𝐵𝐸0 = 

1

4
 𝐸𝑋

𝐻𝐹 + 
3

4
 𝐸𝑋

𝑃𝐵𝐸 +  𝐸𝑐
𝑃𝐵𝐸 (2.9) 

M06 and M06-2X [100] 

M06 is a hybrid functional which combines parameter of transition metal and non-

metal. While, M06-2X is high-nonlocality functional which using the parameter od non-

metal only. M06 and M06-2X functional are represented as follows; 

𝐸𝑋
𝑀06 = ∑𝜎 ∫ 𝑑𝑟 [𝐹𝑋𝜎

𝑃𝐵𝐸(𝜌𝜎, 𝛻𝜌𝜎)𝑓(𝑊𝜎)  +  Ԑ𝑋𝜎
𝐿𝑆𝐷𝐴ℎ𝑋(𝑋𝜎 , 𝑍𝜎)] (2.10) 

When  𝑋𝜎 = 
|𝛻𝜌𝜎|

𝜌𝜎

4
3⁄
     σ = α, β 

(2.10.1) 

𝜏𝜎 = 
1

2
 ∑ |𝛻𝛹𝑖𝜎|2𝑜𝑐𝑐𝑢𝑝

𝑖  (2.10.2) 

𝑍𝜎 = 
𝜏𝜎

𝜌𝜎

5
3⁄
 - 𝐶𝐹  , 𝐶𝐹 = 

3

5
 (6𝜋2)2 3⁄  (2.10.3) 

𝛾(𝑋𝜎 , 𝑍𝜎) = 1 + 𝛼(𝑋𝜎
2 + 𝑍𝜎) (2.10.4) 

ℎ(𝑋𝜎 , 𝑍𝜎) = (
𝑑0

𝛾(𝑋𝜎,𝑍𝜎)
+

𝑑1𝑋𝜎
2+𝑑2𝑍𝜎

𝛾𝜎
2(𝑋𝜎,𝑍𝜎)

+
𝑑3𝑋𝜎

4+𝑑4𝑋𝜎𝑍𝜎
2 +𝑑5𝑋𝜎

2

𝛾𝜎
3(𝑋𝜎,𝑍𝜎)

) 
(2.10.5) 
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Ԑ𝑋𝜎
𝐿𝑆𝐷𝐴 = ‒ 

3

2
 (

3

4𝜋
)

1
3⁄

 𝜌𝜎
4

3⁄  
(2.10.6) 

𝑓(𝑤𝜎) = ∑ 𝑎𝑖𝑤𝜎
𝑖𝑚

𝑖=0  (2.10.7) 

𝑤𝜎 = (𝑡𝜎 − 1) (𝑡𝜎 + 1)⁄  (2.10.8) 

𝑡𝜎 = 𝜏𝜎
𝐿𝑆𝐷𝐴 𝜏𝜎⁄  (2.10.9) 

𝜏𝜎
𝐿𝑆𝐷𝐴 ≡ 

3

10
 (6𝜋2)2 3⁄ 𝜌𝜎5 3⁄  (2.10.10) 

2.1.4 Long-Range Corrected Hybrid Functionals 

The long range corrected functionals are a non-coulomb part of exchange 

functionals which typically dies off too rapidly and becomes very inaccurate at large 

distances, making them unsuitable for modeling processes such as electron excitations 

to high orbitals. 

  

ωB97XD [101] 

This functional is proposed by Head-Gordon and coworkers, which includes 

empirical dispersion. These functionals also include long range corrections.  

CAM-B3LYP [102, 103] 

CAM-B3LYP is the mix functional between B3LYP and long-range correction, 

which is represented in equation 2.11. 

𝐸𝑋𝐶
𝐶𝐴𝑀−𝐵3𝐿𝑌𝑃 = 𝐸𝑋

𝐿𝑅 + 𝐸𝑋
𝑆𝑅 [Becke88] + 0.81𝐸𝑐

𝐿𝑌𝑃 + 0.19𝐸𝑐
𝑉𝑊𝑁 (2.11) 

LC-BLYP  [104] 

Prefixed LC- may be added to any pure functional to apply the long-range 

correction of Hirao and coworkers.  The general form of the long-range corrected 

functional is given as; 

𝐸𝑋𝐶
𝐿𝐶−𝐷𝐹𝑇 = 𝐸𝐶

𝐷𝐹𝑇 + (1 − 𝐶𝐻𝐹)𝐸𝑋
𝑆𝑅−𝐷𝐹𝑇 +  𝐶𝐻𝐹𝐸𝑋

𝑆𝑅−𝐻𝐹 + 𝐸𝑋
𝐿𝑅−𝐻𝐹 (2.12) 
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2.1.5 Basis Set [105] 

A basis set is a set of functions used to approximate the exact wave functions and 

create the molecular orbitals, which are expanded as a linear combination with 

coefficients to be determined. The equation 2.13 shows the general form of basis set of 

Gaussian type functions.  

𝑔𝑝(𝛼, 𝑟) = 𝐶𝑥𝑛𝑦𝑚𝑧𝐼𝑒−𝛼𝑟2
 (2.13) 

The radial dependence is modulated by the exponent (α) and r is the electronic 

position vector with coordinates (x,y,z) .  In this work, we use the 6-311G( d,p)  for all 

calculations and the detailed basis function is given in Table 2.1.  

Table 2.1 Spitting scheme of 6-311G(d,p) basis set. 

Atomic 

number 

1-2 3-10 

Basis 

functions 

Basis functions Constructed of Basis functions Constructed of 

1s 3 gaussians 1s 6 gaussians 

1s′ 1 gaussians 2s, 2px, 2py, 2pz 3 gaussians 

1s′′ 1 gaussians 2s′, 2px′, 2py′, 2pz′ 1 gaussians 

2px, 2py, 2pz 1 gaussians 2s′′, 2px′′, 2py′′, 2pz′′ 1 gaussians 

  3dxx, 3dyy, 3dzz, 3dxy, 

3dxz, 3dyz 

1 gaussians 

Total 

number 

6 8 19 32 

 

Therefore, the full wavefunctions were approximated by 6 independent Gaussian 

functions for core electrons, and 3+ 1+ 1 Gaussian functions for valence electron.  One 

additional Gaussian function beyond the valence was also added for a more accurate 

approximation. This approximation is sufficient and accurate enough for predicting the 

investigated molecules in this research, where the valence electrons of the studied 

molecules are only in s and p orbitals.    
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2.2 Time-Dependent Density Functional Theory [106] 

Time-dependent density functional theory (TD-DFT) is the postulate of stationary 

DFT into time-dependent potential and electron densities.  For example, in the case of 

photo absorption spectra for fixed nuclei, the electric field constitutes a small 

perturbation that can be treated using linear response theory. TDDFT is a very popular 

tool for electronic excitation energies and oscillator strength.  It is a powerful tool in 

studying photochemistry because its computation cost is not expensive and it gives 

reasonable accuracy of calculated results compared with experimental data.  The 

excited-state electron density is given by Runge-Gross theorem as 

𝜌(𝑟, 𝑡) = ∑ |𝛹𝑖(𝑟, 𝑡)|2𝑛
𝑖=1  (2.14) 

As mentioned before, the exchange-correlation potential, 𝑉𝑋𝐶 can be presented as the 

functional derivatives of the exchange-correlation energy: 

𝑉𝑋𝐶[𝜌] = 
𝛿𝐴𝑋𝐶[𝜌]

𝛿𝑝
|
𝜌=𝜌(𝑟,𝑡)

 
(2.15) 

From excitation energy, the procedure starts with the construction of many particles 

with good symmetry, 𝛹𝑖, by taking a finite superposition of states 

𝛹𝑖 = ∑𝛼𝑐𝑖𝛼𝛷𝛼 (2.16) 

Where 𝛷𝛼 is the Slater determination of Kohn-Sham orbitals, and the coefficients 

𝑐𝑖𝛼 can be determined from group theory.  Simply, we can express the determinants as 

linear combinations of the many body wave functions. 

𝛷𝛽 = ∑𝑗𝑎𝛽𝑗𝛹𝑗 (2.17) 

By taking the expectation value of the Hamiltonian in the state 𝛷𝛽 we reach here 

〈𝛷𝑎|Ĥ|𝛷𝛽〉 = ∑ |𝑎𝛽𝑗|
2

𝑗 𝐸𝑗 (2.18) 

Where 𝐸𝑗 is the energy of the many body state 𝛹𝑗 and 𝛷𝛽 is built from n Kohn-Sham 

orbitals. 



25 

 

2.3 Molecular Orbitals of Benzene Derivatives [107, 108] 

Molecular orbital (MO)  of benzene provides a more satisfying and more general 

treatment of aromaticity of benzene. In addition, MO can describe π-bonding in organic 

molecules ( Figure 2. 2 ( a)  displays the MO of benzene) .  Benzene ring has a planar 

hexagonal structure in which all carbon atoms are sp2 hybridization and all the carbon-

carbon bonds are equal in length. While, the effect of heteroatom on benzene ring such 

as the nitrogen heteroatom on pyridine is shown in Figure 2.2(b). The hybridization of 

nitrogen atom is sp2 hybridization whereas two of the three sp2 orbitals form sigma 

overlaps with the sp2 orbitals of neighboring carbon atoms and the third nitrogen 

sp2 orbital contains the lone pair.  While, the unhybridized p orbital contains a single 

electron, which is part of the 6 π-electron system delocalized around the pyridine ring. 

From the previous study, the lone pair electrons of nitrogen affect the delocalization of 

π-electron. They stabilize the HOMO or LUMO energy levels because of the lone pair 

of electron in the substituted hetero nitrogen is involved in π-conjugation which might 

help lower the HOMO-LUMO energy gap [57-59]. 

 

Figure 2.2 The molecular orbital of Benzene (a) and Pyridine (b). 

 

In summary, the effect of heteratom on aromaticity of benzene can disrupt the 

delocalization of π-electron of the aromatic compounds, and thus effect in the 

photophysical and photochemical properties. 


