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CHAPTER 2 

Theory and computational details 

 2.1 Theoretical background of computational chemistry 

Computational theoretical chemistry focuses on the numerical computation of 

electronic structures and molecular interaction, in which the formulation of analytical 

expressions for the properties of molecules and their reactions are given in the mathematic 

equation. Computational chemistry is often referred to when chemists use a quantum 

calculation software to theoretically investigate their systems of interest through solving 

the equations that contain important information. 

 Computational chemistry is employed in all divisions of chemistry particularly in 

physical chemistry, organic chemistry, and inorganic chemistry. All chemists want to 

understand all properties of their interested systems in molecular level. Particularly, they 

are interested in molecular design of new materials using computational chemistry tools 

which is an effective method prior to actual synthesis. Computational tools such as 

quantum chemistry software can help chemist reduce the number of trial and error of 

synthesis of molecules that they design.  Moreover, computational chemistry tools can 

help in understanding their designed materials when some important information cannot 

be obtained directly from experimental method. There are some properties of a molecule 

that can be obtained computationally more easily than by experimental means. The tools 

can provide more insights into molecular level in terms of chemical bonding between 

elements in the composition of synthesized molecules. With these advantages of using 

computational chemistry tool, thus now, experimental chemists have been using 

computational tools to gain additional understanding of the compounds being examined 

in the laboratory.
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2.1.1 Schrödinger equation 

Schrödinger equation is the basic equation of quantum chemistry [42] that can 

contain information of a given system in term wave function. The ultimate target of the 

most quantum chemical methods is to solve solution of the time-independent and non-

interaction Schrödinger equation given in equation 2.1 by the approximate approaches 

ĤΨ = EΨ (2.1) 

where Ψ is the many-electron wave function and Ĥ is the Hamilton operator for a 

molecular system including electrons and nuclei in the lack of magnetic or electric fields. 

Generally, Schrödinger equation with the detailed Hamiltonian is expressed as; 

(𝑇𝑇𝑛𝑛 + 𝑇𝑇𝑒𝑒 + 𝑉𝑉𝑒𝑒𝑒𝑒 + 𝑉𝑉𝑒𝑒𝑒𝑒 + 𝑉𝑉𝑛𝑛𝑛𝑛)𝛹𝛹 = 𝐸𝐸𝐸𝐸 (2.2) 

Tn: kinetic energy of nuclei 

Te: kinetic energy of electron 

Ven: electron-nuclei interaction Coulomb potential 

Vnn: repulsive Coulomb potential of nuclear-nuclei 

Vee: repulsive Coulomb potential of electron-electron 

 in which Ĥ is a differential operator playing the total energy: 
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(2.3) 

 

Here, Z is defined as nuclei charge, MA is the mass of nucleus A, m is the mass of 

the electron, RAB is the distance between nuclei A and B, rij is the distance between 

electrons i and j and riA is the distance between electron i and nucleus A, 𝜀𝜀0 is the 

permittivity of free space and ħ is the Plank constant. 
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 The many-electron Schrödinger equation cannot be solved exactly even for a simple 

two-electron system example of hydrogen molecule (H2) or helium atom (He). 

Approximations as practical methods are necessary to be used to solve for wave function 

and energy of a given system. 

2.1.2 Born-Oppenheimer approximation 

To make the Schrödinger equation easy for molecular systems one must suppose 

that fixed the nuclei does not move. Absolutely, nuclei can be moved, but their movement 

is slower than electrons whose speed is equal to speed of light. So, this estimation is called 

the Born-Oppenheimer approximation (BOA). Because of nucleus-nucleus repulsion is 

just a constant, therefore, it is feasible to get solution from the exact Hamiltonian provided 

in equation 2.3 which can be reduced to electronic Hamiltonian [42, 43]. 

Ĥ𝑒𝑒𝑒𝑒𝛹𝛹𝑒𝑒𝑒𝑒 =  𝐸𝐸𝑒𝑒𝑒𝑒𝛹𝛹𝑒𝑒𝑒𝑒 (2.4) 

Ĥel = 𝑇𝑇𝑒𝑒 +  𝑉𝑉𝑁𝑁𝑁𝑁 + 𝑉𝑉𝑒𝑒𝑒𝑒 (2.5) 
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 (2.6) 

E = Eel + � �
ZAZB
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nuclei
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 (2.7) 

From formula above, it can be clearly seen that the last term of equation 2.3 which 

explains the nuclear kinetic energy is absent and the repulsive Coulomb potential of 

nuclear-nuclear is a constant providing equation 2.6. The approximate solution into 

Schrödinger equation can be obtained by using the BOA. In the BOA formula, nuclei mass 

term does not appear in the electronic Schrödinger equation. Therefore, the extent of the 

BOA is usable for one electron system but not for all case.  
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2.1.3 Ab initio method 

 The ab initio is Latin word for “from the beginning”. This name is given to 

computations that are proposed directly from theoretical principles. This method can 

predict molecular structure and properties of molecules and their reaction types either 

exothermic or endothermic can be predicted as well. Ab initio is beginning from 

Schrödinger equation supported by properly approximated theory. This process can 

evaluate more than one-electron system.   

1) Hatree-Fock approximation 

Hatree-Fock (HF) method uses the variational method to solve the solution of 

the electronic Schrödinger equation. The first assumption is that the movements of 

electrons are independent from each other.  Therefore, each electron is constrained to a 

function called molecular orbitals in which each of them moves in the average field of 

other electrons. The correct wave function can be written using a Slater determinant to 

ensure the anti-symmetry characteristic as shown below.  

Ψ =
1
√N!
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⎢
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χ1(1) χ2(1) ⋯ χn(1)
χ1(2) χ2(2) ⋯ χn(2)
⋮
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⋮
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⋮
⋯

⋮
χn(N)⎦

⎥
⎥
⎤
 

(2.7) 

Where, χi is the product of spatial and spin wave functions in which a spin function 

can be either α or β but the way to put a spin up or down must follow the Pauli principle. 

The wave function with lowest energy can be solved with a self-consistent field or SCF 

process. This SCF is normally called HF method that includes density functional methods. 

The SCF provides the wave function as follow which is called Fock operator:  

f(i)χ(xi) = ɛχ(xi) 
(2.8) 

Here, the Fock operator f(i) can be written in a shorter form as: 

f(i) = −
1
2
𝛻𝛻i2 + υeff(i) (2.9) 
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xi are the coordinates of the electron i both spatial and spin, χ are the spin orbitals 

and υeff is the effective potential of each electron i in the field of other electrons. Normally, 

this effective potential is dependent on SCF procedure. 

2) Post HF approximation 

Because HF method has a serious problem in term ignoring the electron correlation. 

There are improved methods that account the electron correlation by using the HF as the 

starting equation and expand the wave function and the Hamilton. These methods are 

called post HF. By taking correlation between electrons into account the wave function 

and the energy of a considered system can be improved.  Post HF methods include 

configuration interaction (CI), perturbation theory (MPn), coupled-cluster method (CC) 

and quantum Monte Carlo (QMC) [44]. Normally, post-HF methods give more accurate 

energy than HF method however with expanded wave function, all post HF methods are 

very expensive in term of time consumption compared to HF. However, there is another 

different approach that can provide a comparable accuracy with cost effective which is 

presented in the next section.  

2.1.4 Density functional theory (DFT)  

DFT has become a powerful and popular method among the physicists and chemists 

because of its accuracy and cost effect. DFT uses a concept of the electron probability 

density, 𝜌𝜌(r), as assumed to the many-electron wave function [45]. DFT results are most 

of the time in good agreement with experimental data and more accurate than HF method. 

Computational costs (time) are relatively low when compared with HF theory and post-

HF that includes electron correlation.  

Originally, theoretical framework of DFT was first proposed by Hohenberg-Kohn 

theorem and then Kohn-Sham developed the theory that formulated a method considering 

systems with two electrons with different spin sign (up or down) which are in the same 

spatial one-electron orbitals in the ground-state and its corresponding energy (E) is given 

as following expression:  

E[𝜌𝜌] =  ET[𝜌𝜌] +  EV[𝜌𝜌] + EJ[𝜌𝜌]) + EXC[𝜌𝜌] (2.10) 
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where, ET represents the kinetic energy, EV represents the interaction energy between 

electron and nuclei, EJ represents the Coulomb energy, and the EXC represents the 

exchange-correlation energy. All energies are dependent of the total electron density, ρ(r), 

except the ET. Thus, the exact electron density in the ground-state is written as 

𝜌𝜌(r) = 2 � |Ψi(r)|2
orbitals

i

 
(2.11) 

where 𝜌𝜌 (r) is the total electron density at a specific point r in space for a given system of 

n electrons and Ψi is Kohn-Sham orbitals and the summation accounts for all pair 

electrons.  The accuracy of DFT methods depends on the choice of Exc functionals. The 

most widely used method among physicists and theoretical chemists is hybrid three 

parameters of Beck and Lee-Yang-Parr correlation functional (B3LYP). 

Hybrid functional is one of approximations to the exchange correlation energy 

functional in DFT. This approximation is extensively utilized because it provides very 

excellent results compared to available experimental data. The distinguishing feature of 

such hybrid approximations is that it mixes in a certain amount of the exact HF exchange 

energy into the exchange and correlation received from others functional. This observation 

of Becke’s leads to conclusion that a fraction of exact exchange should be mixed with 

GGA exchange and correlation. The simplest such hybrid functional is given as following: 

𝐸𝐸𝑋𝑋𝑋𝑋
ℎ𝑦𝑦𝑦𝑦 = 𝑎𝑎𝐸𝐸𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + (1 − 𝑎𝑎)𝐸𝐸𝑋𝑋𝐺𝐺𝐺𝐺𝐺𝐺 + 𝐸𝐸𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺 (2.12) 

where the constant a can be fitted and theoretically evaluated as around 0.2 for molecules. 

One of the most commonly used versions is B3LYP, which stands for two parts; the first 

part, B3 is Becke 3 parameter exchange correlation functional which uses 3 parameters to 

mix in the 20% HF exchange correlation and the second part, LYP is the Lee Yang and 

Parr correlation functional that recovers dynamic electron correlation. B3LYP has now 

become the most widely used alternative [46] method and its formulation is shown in 

equation 2.13. 

𝐸𝐸𝑥𝑥𝑥𝑥𝐵𝐵3𝐿𝐿𝐿𝐿𝐿𝐿 = 0.2𝐸𝐸𝑥𝑥𝐻𝐻𝐻𝐻 + 0.8𝐸𝐸𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿 + 0.72𝐸𝐸𝑥𝑥𝐵𝐵88 + 0.81𝐸𝐸𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿 + 0.9𝐸𝐸𝑥𝑥𝑉𝑉𝑉𝑉𝑉𝑉 (2.13) 
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B3LYP is generally not only faster than most Post HF techniques and usually yields 

comparable results but it also shows excellently great performance in the calculation of 

structures, energies and properties of molecules.   

2.1.5 Time-dependent density functional theory (TD-DFT) 

The time-dependent density functional theory (TD-DFT) is the generalization of 

stationary DFT to time-dependent potentials and electron densities, 𝜌𝜌 (r, t). TD-DFT is 

very popular tool for electronic excitation energies and ocsillator strength. It is a powerful 

tool in studying photochemistry because its computation cost is not expensive compared 

to the post HF methodes. The time-dependent Kohn-Sham equation in TD-DFT is shown 

in the following equaiton: 

𝜌𝜌(𝑟𝑟, 𝑡𝑡) = �|𝛹𝛹𝑖𝑖(𝑟𝑟, 𝑡𝑡)|2
𝑁𝑁

𝑖𝑖=1

 (2.14) 

2.1.6 Basis set 

To solve Schrödinger equation using a computational chemistry tool, one needs to 

have a hamiltonian and a wave function which are denoted by a method and basis set, 

respectively. Each method is unique with different accuracy, and basis set has also a 

unique set to approximate Schrödinger equation. Choosing a suitable method and basis set 

for a given system normally depends on accuracy and computational cost. However, more 

accurate methods and larger basis sets results in an expensive cost (much longer time). 

Principally, the correct wave function is Slater determinant which is a set of basis 

functions to represent the spin-orbitals [47].  Normally, basis function is the Slater-type 

orbitals (STOs) with all permitted integral values of n, l, and ml and all positive values of 

the orbital exponents of the STO. However, taking full STOs is numerically difficult to be 

solved. Therefore, in a real calculation only a small number of all possible functions are 

used. Another choice to overcome the difficult calculation is to use Gaussian-type orbitals 

(GTOs) to make ab initio calculations computationally feasible. The simplest basis set is 

a minimal basis set in which one function is used to represent the orbitals of valence 

theory, for example 1s-orbital for one function however, the electrons of most elements 

are not only in s but also in p, d, f orbital depending on its number of atomic number. 

Therefore, a significant improvement is required by adopting a bigger basis set such as 
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double-zeta basis set (DZ basis set) and a triple-zeta basis set (TZ basis set) to describe 

each of the orbitals encountered in valence theory. Moreover, there are other types of basis 

function describing changing in size and shape of molecular orbitals [48] such as split 

valence, polarized and diffusion function. However, to use the accurate basis set for a 

given system, one has to carry out a systematic comparison of difference basis set and also 

compare the results with experimental results or theoretical data in case there is no 

experiment available.    

2.1.7 Adiabatic dynamics 

Molecular dynamics is a technique for computer simulation of molecular process at 

the atomic level. The equations of motion are solved numerically to follow the time 

evolution of the system, allowing the derivation of kinetic and thermodynamic properties. 

The main challenge in molecular dynamic simulations of molecules is to obtain 

information of the time-dependent Schrödinger equation (TD-SE) for a given system [49]. 

�𝑖𝑖ħ
𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝐻𝐻�𝛹𝛹(𝒓𝒓,𝑹𝑹, 𝑡𝑡) = 0 (2.14) 

Where Ψ is the wavefunction depending of time (t) and R is the coordinates of 

nuclei. the molecular wave function depended on time t. The electronic coordinates are 

represented in r and H is the total Hamiltonian. In terms of motions of nuclei, it can be 

estimated by the molecular wave function using a Born-Oppenheimer expansion. 

𝛹𝛹(𝐫𝐫,𝐑𝐑, 𝑡𝑡) = �𝛷𝛷j(𝐫𝐫,𝐑𝐑
𝑗𝑗

))𝜒𝜒𝑖𝑖(𝐑𝐑, t) (2.15) 

Where 𝜒𝜒𝑖𝑖 represents the nuclei wave function and 𝛷𝛷j represents the electronic wave 

function, for electronic state j. 

1) Initial conditions 

The initial conditions for each representative for nuclei must be set up before being 

integrated by Newton’s equation. In general, the initial condition is sampled with a phase 

space distribution in the ground state before going to the excite-state. The distribution in 

ground state can be prepared both by a ground state trajectory simulation and from a 
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probabilistic sampling. Nevertheless, due to the classical nature of the trajectory 

simulations in the ground state and the quantum nature of typical distributions like that 

given by the Wigner function, the two sets may differ substantially. 

2)  Wigner distributions 

Assuming that potential energy surface in the ground-state as a quadratic estimation 

is the minimum, the 3Nat−6 internal coordinates can be defined in terms of normal modes 

Q and the nuclear wave function which can be solved using a harmonic oscillator [50]. 

The classical phase space distribution can be approximated by a Wigner distribution. 

𝑃𝑃𝑊𝑊�𝑄𝑄𝑖𝑖,𝑃𝑃𝑖𝑖� = (𝜋𝜋ħ)−1 �𝑑𝑑𝑑𝑑𝜒𝜒𝐻𝐻𝐻𝐻0 �𝑄𝑄𝑖𝑖 + 𝜂𝜂�
∗
𝜒𝜒𝐻𝐻𝐻𝐻0 (𝑄𝑄𝑖𝑖 − 𝜂𝜂)𝑒𝑒2𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖/ħ (2.16) 

Here, 𝜒𝜒𝐻𝐻𝐻𝐻0  is the harmonic oscillator wavefunction for the vibration of ground state 

and Pi is the momentum associated with the normal coordinate Qi. This integral of 

evolution gives 

𝑃𝑃𝑊𝑊�𝑄𝑄𝑖𝑖,𝑃𝑃𝑖𝑖� = (𝜋𝜋ħ)−1 𝑒𝑒𝑒𝑒𝑒𝑒�−𝜇𝜇𝑖𝑖𝜔𝜔𝐻𝐻𝐻𝐻
𝑖𝑖 𝑄𝑄𝑖𝑖2/ħ�  𝑒𝑒𝑒𝑒𝑒𝑒 �𝑃𝑃𝑖𝑖2/�𝜇𝜇𝑖𝑖𝜔𝜔𝐻𝐻𝐻𝐻

𝑖𝑖 ħ�� (2.17) 

where 𝜇𝜇𝑖𝑖 represent the reduced mass and 𝜔𝜔𝐻𝐻𝐻𝐻
𝑖𝑖  representthe harmonic frequency and i is 

normal mode of the equilibrium distance. 

To sample coordinates and momentum, independent randomly choose values are 

determined to Qi and Pi and then the acceptance of the pair is evaluated according to the 

probability given by equation 2.17. Due to uncorrelated value of Qi and Pi, this process 

will result in a Gaussian distribution in the (Qi and Pi) space. The distribution of initial 

energy occurs around the harmonic zero-point value. This procedure takes place 

repeatedly for each normal mode and then the normal momentum and coordinates have 

been converted back into Cartesian coordinates. 

When equation 2.16 is estimated for a vibrationally excited level 𝜒𝜒𝐻𝐻𝐻𝐻𝑛𝑛  instead for the 

vibrational ground state, the Wigner function can suppose negative values and cannot be 

used as a distribution. To obtain this main cause, it can be written as 
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𝑃𝑃𝑊𝑊�𝑄𝑄𝑖𝑖,𝑃𝑃𝑖𝑖� = �𝜒𝜒𝐻𝐻𝐻𝐻𝑜𝑜 �𝑄𝑄𝑖𝑖��
2
�𝜉𝜉𝐻𝐻𝐻𝐻0 �𝑃𝑃𝑖𝑖��

2
 (2.18) 

where 𝜉𝜉𝐻𝐻𝐻𝐻0  represents the harmonic oscillator wavefunction. Although the equation X is 

exact only for the ground vibrational level, therefore, the excited vibrational states is 

𝑃𝑃𝑊𝑊�𝑄𝑄𝑖𝑖,𝑃𝑃𝑖𝑖� = �𝜒𝜒𝐻𝐻𝐻𝐻𝑜𝑜 �𝑄𝑄𝑖𝑖��
2
�𝜉𝜉𝐻𝐻𝐻𝐻𝑛𝑛 �𝑃𝑃𝑖𝑖��

2
 (2.19) 

the initial conditions are used by sampling for example, to create biased distributions 

leading to specific normal modes  

2.2 Computational details 

2.2.1 Static calculation 

For the theoretical calculations, ground state (S0) and excited state (S1) structure 

optimizations were carried out using the DFT and TD-DFT at B3LYP with TZVP basis 

set, respectively. Optimizations were performed without constraints of bond, angle or 

dihedral. Vibrational frequencies were calculated using optimized structures to confirm 

that these structures correspond to characteristic of the local minimum by the absence of 

an imaginary mode. The simulated infrared (IR) spectra were computed to investigate 

vibrational frequencies involved in PT process. The vertical excitation energy calculations 

were computed from the S0 state optimized structure using TD-DFT with five low-lying 

absorbing transition. To further investigate the occurrence of ESPT, the potential energy 

curves (PECs) on proton transfer (PT) coordinates of S0 and S1 state were scanned by 

constrained optimizations in their relevant electronic state keeping distance of bond O1–

H1 at a series of values. All electronic calculations were performed using Gaussian09 

program [51]. 

2.2.2 Dynamic simulations 

Classical dynamics simulations were carried out for 3HF and 3HF with solvents on 

the first singlet excited state (S1) energy surface. The initial conditions were generated 

using harmonic-oscillator Wigner distribution for each normal mode as implemented with 

the NEWTON-X [52] interfaced with TURBOMOLE program [53]. The Velocity-Verlet 

algorithm [54] was applied to solve the Newton’s equations of nuclear motion. The Born-

Oppenheimer energies and gradients computed at TD-DFT approach using B3LYP 
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functional with TZVP basis set. Fifty trajectories were simulated using a time step of 0.5 

fs and up to a maximum of 300 fs, enough to cover pre- and post-PT process. In addition, 

each trajectory was classified into two types of reactions: ESPT (ESIntraPT and 

ESInterPT) and no PT. All active ESPT trajectories were analyzed. Furthermore, details 

of dynamics simulations such as energy difference between S0 and S1 state, probabilities 

and time evolutions in the excited state were ascribed by a statistical analysis.  

 


