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CHAPTER 2 

Theoretical and computational detail 

2.1 Theoretical background of computational chemistry 

Computational chemistry has been immediately developed over the last 50 years, 

and has vividly changed the way of research. One of the first ways in 1998, Sir John 

Anthony Pople recognized the importance of turning a computer program into an 

everyday tool that bench chemists can use to complement their experimental work. After 

that, he was a Nobel Prize winning theoretical chemist, and was awarded the Nobel Prize 

in Chemistry with Walter Kohn in the year 1998. The Nobel Prize in Chemistry 1998 was 

divided equally between Walter Kohn "for his development of the density-functional 

theory" and John A. Pople "for his development of computational methods in quantum 

chemistry". And recently, Martin Karplus, Michael Levitt, and Arieh Warshel won the 

2013 Nobel Prize in Chemistry for work that they did in the 1970s. They successfully 

developed methods that combined quantum and classical mechanics to calculate the 

courses of chemical reactions using computers. 

Computational chemistry is one of the branches of chemistry concerning with high 

performance computing in theoretical studies. The results of the calculation can help 

develop and find new materials, which reducing laboratory costs. The computational 

chemistry covers the topics of cheminformatics, molecular mechanics, statistical 

mechanics, ab initio quantum chemistry, and semi-empirical methods. 

2.1.1 Quantum mechanics 

In the 20th century, quantum mechanics (QM) and relativity are the most significant 

class in science. They are used in a variety of many fields such as physics, chemistry, 

biochemistry, medicinal chemistry, and material of science. In chemistry, the Schrödinger 

equation is the fundamental principle in quantum mechanics [52]. The QM is an 

expansion of the electrons behavior by corrected mathematical formula. The QM 
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principle can predict the property of an individual atom or a molecule. The solution 

of QM has been solved for single electron systems only [53]. 

2.1.2 Schrödinger equation 

The Schrödinger equation is an equation that is fundamental to quantum mechanics. 

It is also based on the physical situation. The common forms are the time-dependent and 

time-independent Schrödinger equation, which give a description of a system evolving 

with time and without time, respectively. Here, we will present only the time-independent 

Schrödinger equation. The time-independent Schrödinger equation is 

H Eψ ψ=  (2.1) 

where H is the Hamiltonian operator, the wavefunction or eigenfunction in term of 

mathematics is ѱ, and E is the energy or eigenvalue. The H operator is a matrix and the 

eigenfunction can be a vector, but this is not always the case. The ѱ is a function of 

electron and nuclear positions, this is the description of an electron as a wave. The 

wavefunction obtains the electron part of the Schrödinger equation for fixed nuclear 

coordinates. 

The H is separated into the kinetic energy (T) operator and the potential energy (V) 

operator as shown in equation (2.2). A stationary key of the Schrödinger equation 

corresponds to a constant energy. In this case, it is the quantum mechanical equivalent of 

the energy conservation law. 

H T V= +   (2.2) 
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  (2.4) 

The many electron H operator that manages the behavior of an interacting of 

electrons and nuclei in atomic units are shown in equation (2.4) where the overall value 

of i and j is represented to electrons, and the overall value of I and J is represented to 
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nuclei. The T terms is the spatial differential operator or ∇ where the I nuclei, with atomic 

number Zi, has a mass ratio of MI to that of an electron. The three-dimensional vector 

positions of the i electron and I nuclei are implied to ri and RI, respectively [53]. 

2.1.3 Born-Oppenheimer approximation 

To elucidate both nuclei and electrons of atom. An observation in employing 

quantum mechanics to atoms is that proton or neutron in nuclei has more than 1800 times 

the mass of an electron [54]. So, that means the nuclei respond slower to changes than 

electrons which is represented by the equations (2.5) that describes the movement of 

electron. The ground state of the electrons is known as the lowest energy state and the 

separation of the nuclei and electrons splits into the mathematical problems. This is called 

Born-Oppenheimer approximation. 
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Here, the kinetic energy of the electrons shows at the first term of eq. (2.5). The 

second term is the attraction of electrons to nuclei, and the last term is the repulsion of 

electrons. The repulsion energy of nuclei is added at the end of the calculation. The 

potential energy term describes the movement of nuclei [53]. 

2.1.4 Ab initio calculations 

The term ab initio (from Latin “from first principle”) was first used in quantum 

chemistry. This method solves the Schrödinger equation for a molecule and gives us the 

molecule’s energy and wavefunction. The wavefunction is a mathematical function that 

can be used to calculate the electron distribution. The ab initio calculations can describe 

chemical phenomena such as geometry prediction, electronic structure, and molecular 

properties.
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2.1.4.1 Hartree-Fock Approximation 

The Hartree-Fock (HF) approximation is the simple kind of ab initio calculation 

[55]. The HF approximation is exact only for a one electron system. The HF problem 

occurs from the true data for any atoms or molecules with more than one electron, so the 

Schrödinger equation (2.1) cannot describe such system with many electrons because of 

the term of repulsion between electrons. The HF ground state energy (EHF) will be an 

upper bound to the exact ground state energy (Eexact).  

Ecorr   =   Eexact - EHF (2.6) 

The correlation energy (Ecorr) is the difference between the exact energy and HF 

approximation energy. This energy is often large enough to be discarded. To calculate 

Ecorr, it needs to use what is known as post-Hartree-Fock approximation. 

2.1.4.2 Post Hartree-Fock Approximation 

For the high level of electron correlation occurring from repulsion of electron, the 

method is called post HF approximation. Post-HF methods are the set of methods 

developed to improve on the HF or self-consistent field (SCF) method. The term of 

electron correlation is added to improve the accuracy by including the electron-electron 

repulsions which is different from the HF method. Normally, the post-HF methods give 

more accurate calculation results than HF method, but time and computational cost are 

also higher. The higher-level methods including the electron correlation are for examples 

Configuration interaction (CI), Møller–Plesset (MP) perturbation theory, Coupled cluster 

(CC), Quantum Montecarlo (QMC), etc. 

2.1.5 Density function theory 

In many electron systems, it is unworkable to solve the Schrödinger equation. 

Clearly, we must use some approximations to solve the equation. Here, the density 

functional theory (DFT), it has simplest definition. A DFT theory obtains an approximate 

solution to the Schrödinger equation of a many electron systems.  

To date, DFT is one of the most popular and successful quantum mechanical 

approaches. The DFT theory is based on probability of electron or electron density 

https://en.wikipedia.org/wiki/M%C3%B8ller%E2%80%93Plesset_perturbation_theory
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function (ρ(x,y,z)) in ground state [55], which is used to describe physical properties and 

electronic properties of atoms and molecules as well as simple crystals in both gas and 

liquid phase. Moreover, the DFT has become a first-principles calculation to describe or 

predict the properties of molecules systems. 

2.1.5.1 Hohenberg-Kohn theorems 

Hohenberg-Kohn theorem is the heart of DFT theory. Firstly, Hohenberg-Kohn 

theorem applies the ground state density to determine the external potential energy, the 

Hamiltonian (H) and the wavefunction (ѱ). Generally, it has a system of electrons moving 

in an external field v(r) generated by the nuclei. The external field, v(r) is a unique 

functional of the electron density. In addition, since v(r) assigns the H, the full many-

particle in ground state, the wavefunction (ѱ (r1,…,rN)) is a unique functional of ρ(r). The 

integral of the exact ground state density is related to the number of n electrons. Secondly, 

Hohenberg-Kohn theorem is an important and variational principle for the electron 

density in ground state. The correct ground state density minimizes the total energy. 

Therefore, the Hohenberg-Kohn theorems prove the existence of an energy functional 

E(ρ). 

1 ( ) ( ')[ ( )] ( ) ( ) ' [ ( )]
2 '
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−∫ ∫ ∫   ( 2.7(  

Where the first term v(r) is the potential of nuclear charges, next term is the 

electrons-electrons repulsion, and the last term G[n(r)] 21
2 i

i
= − ∇∑  is the kinetic energy 

of the electrons. 
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2.1.5.2 Kohn-Sham equation 

The Kohn-Sham approach to the electrons-electrons interacting is to modify the 

Hohenberg-Kohn theorem for the energy functional corresponding to the ground state. 

The term of exchange-correlation (xc) potential interprets the difference between the 
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interacting and non-interacting between electron-electron systems. So, the electronic 

energy in the ground state is obtained by 

  =  + + +KS T v coulomb xcE E E E E  
(2.9) 

where ET represents the kinetic energy, Ev represents the energy of electron and 

nuclei interaction, Ecoulomb indicates the Coulomb self-interaction, and Exc indicates the 

term of exchange-correlation energy. 

2.1.5.3 Hybrid three parameters of Beck and Lee-Yang-Parr 

correlation functional (B3LYP) 

Hybrid functional is one kind of approximations to the exchange-correlation DFT, 

which amalgamates a section of exchange from HF method with exchange-correlation 

from ab initio or empirical sources. The exchange energy functional is exhibited in the 

Kohn-Sham equation, thus the exact exchange energy functional is a certain density 

functional. The most popular approximation is Becke-3-LYP or B3LYP method. The 

B3LYP which means Becke, 3-parameter, Lee-Yang Parr is well-known because it 

provides the best results on predicting some important properties of the organic molecules 

compared to experimental data. The hybrid model of B3LYP is expressed in equation 2.9:  

0.2* ( ) 0.8* ( ) 0.72* ( 88)
0.81* ( ) 0.19* ( )

XC X X X

C C

E E HF E LSDA DE B
E LYP E VWN
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+ +   

(2.10) 

 

2.1.5.4 Basis set 

The atomic orbitals or AOs depend on a set of functions which are combined in 

linear combinations, so for computational chemistry they are called basis set. Basis 

functions can be mathematic functional. Three types of basis functions are used in the 

scientific method. Slater-type functions (STFs) [52] was the first basis function. The STFs 

was efficient in representing the AOs in one electron system only. After that in 1950, 

Boys [56] used Gaussian-type functions (GTFs), whose exponent term is difference from 

the STFs function. The GTFs function is less accurate compared with the STFs function 
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when the equal number of functions are used in linear least-squares fittings. The third 

basis function is plane wavefunctions, this basis function does not depend on the positions 

of nuclei. A minimal basis set is the simplest type of basis set, which would include one 

function for 1s-orbital such as H and He atoms. When used a higher basis set, the result 

will be more accurate. Consequently, the development of minimal basis set replaced by 

two basis functions for each AOs (double-zeta or DZ basis set) and three basis functions 

for each AOs (triple-zeta or TZ basis set) was introduced. A split-valence basis set (SV 

basis set) changes the size and shape of atomic orbitals of molecules. This basis set can 

give inner-shell atomic orbital and valence atomic orbital by one and two basis functions, 

respectively [1]. 

2.1.6 Time-dependent density functional theory 

Time-dependent density functional theory or TD-DFT is the augmentation of 

stationary DFT and electronic density (ρ(r,t)). TD-DFT uses the quantum mechanical to 

explore the properties and dynamics of many electron systems. Moreover, this theory 

calculates the photon of absorption spectra for fixed nuclei or recurrence subordinate 

reaction properties. TD-DFT theory is a famous tool for studying about electronic 

excitation energies and oscillator strength. It is a powerful tool in studying 

photochemistry. The time-dependent Kohn-Sham equation in TD-DFT is 

2

1
( , ) ( , )

N
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i

r t r tρ ψ
=

=∑   (2.11) 

 

2.1.7 Dynamics simulation 

Dynamics simulations are concerned with the time-dependent behavior of a system. 

In this way, chemical processes can be directly observed and more information is gained 

then just by considering the stationary points or other cuts out of the potential energy 

surface. In principle, the time-dependent Schrödinger equation (2.25) has to be solved. 

( ( , , )) ( , , )H R r t i R r t
t

ψ ψ∂=
∂

  (2.12) 
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2.1.7.1 Initial condition 

For assembling the Newton's conditions for the nuclei, it needs to arrange the initial 

conditions [57]. Normally, the problem of initial conditions represents a classical phase 

space as the initially excited quantum wave packet is approached by building a phase 

space distribution in ground state and then projecting it in the excited-states. The ground 

state trajectory simulation or from a probabilistic sampling is used to arrange the ground 

state distribution. In addition, the quantum nature of typical distributions is given by the 

Wigner function. 

2.1.7.2 Wigner distributions 

Wigner distribution is used to approximate the classical phase space distribution. 

Assuming a quadratic approximation for the ground state potential energy surface around 

the minimum, the 3N−6 internal coordinates can be described in terms of normal modes 

Q and the nuclear wave function can be approximated as that of a quantum harmonic 

oscillator [57]. 

1 0 * 0 2 /( , ) ( ) ( ) ( ) ,
ii i i i i P

w HO HOP Q P d Q Q e ηπ ηχ η χ η−= + −∫   (2.13) 

where the term of 0
HOχ  is the wave function quantum harmonic oscillator for ground 

state and term of Pi is the momentum associated with the Qi (Qi is normal coordinate). 

1 2( , ) ( ) exp( / ) exp( / ( )),i i i i i i i
w HO HOP Q P Q Pπ µ ω µ ω−= − −    (2.14) 

where the term of μi and i
HOω  are the reduced mass, and the harmonic frequency 

and the equilibrium distance of i normal mode, respectively.  

To sample coordinates and momentum, independent random values are assigned to 

Pi and Qi, then, the acceptance of the pair is evaluated according to the probability given 

by equation (2.13). To solve the problem, the equation (2.12) can be written in equation. 

(2.14). 
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If equation (2.12) is evaluated for a vibrationally excited level n
HOχ  instead for the 

ground vibrational state, the Wigner function can assume negative values and cannot be 

used as a distribution. To solve this problem, note that equation (2.13) can be written as 

2 20 0( , ) ( ) ( )i i i i
W HO HOP Q P Q Pχ ξ=  (2.15) 

where 0
HOξ  is the representation of harmonic oscillator wave function in the 

momentum. Even though equation (2.14) is usable for the ground vibrational level, it 

activates to compose a quasi-Wigner distribution for the excited vibrational states. 

2 2
( , ) ( ) ( )i i n i n i

QW HO HOP Q P Q Pχ ξ=  (2.16) 

2.1.7.3 Sampling with Trajectory Simulations 

From equation (2.15) is a sampling of initial conditions. For the random sampling, 

this method should play out a classical ground state trajectory reproduction and selection 

is focused from it to start the excited-state dynamics [57]. The main process to create the 

initial conditions for large systems using a normal mode analysis is not possible. One 

problem with this process is that it takes a long time to find sampling of the phase space. 

Furthermore, the energy distribution of the degrees of freedom also be regarded. 

Therefore, using Wigner distribution as the sampling of trajectory simulations is more 

appropriate and practical. 

 

2.2 Computational detail in this study 

2.2.1 Static calculations 

Geometry optimizations of HBQ and its derivatives; (1a) HBQ, (1b) 9-Hydroxy-

3H-benzo[g]indole (HBID), (1c) 5H-indeno[1,2-b]pyridine-9-ol (IPDO), (1d) 3,4-

dihydro indene[1,2-b]pyrrole-8-ol (IPRO), (1e) 2-(Pyridin-2-yl)phenol (PDP), and (1f) 2-

(4H-pyrrol-2-yl)phenol (PRP), as depicted in Figure 1 were performed using density 

functional theory (DFT) and time-dependent density functional theory (TD-DFT) 

descriptions for the electronic structures for ground state (S0) and the first excited-state 

(S1), respectively. Becke’s three-parameter hybrid exchange functional with Lee-Yang-
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Parr gradient-corrected correlation (B3LYP functional) was used in both the DFT and 

TD-DFT calculations [58-62]. The triple-ζ valence quality with one set of polarization 

functions (TZVP) [61] was chosen as the basis set for all atom types, which is an 

appropriate basis set for all systems. Bond lengths, angles or dihedral angles were not 

constrained during the geometry optimization calculations. All the local minima were 

confirmed by the absence of an imaginary mode in vibrational analysis calculations. The 

simulated infrared (IR) spectra of all compounds both in the S0 and S1 states were 

computed. In addition, the simulated absorption and emission spectra were calculated 

using optimized structures from the S0 and S1 states, respectively. For the S0 and S1 states 

potential energy curves, PT coordinates of all compounds were scanned by constrained 

optimizations in their corresponding electronic state fixing the O–H bond distance at a 

series of values. All calculations were performed using the Gaussian 09 program suite 

[63]. 

2.2.2 Dynamics simulations 

Classical dynamics simulations were performed for HBQ and its derivatives on the 

S1 energy surface. The Velocity-Verlet algorithm [64] was applied to solve the Newton’s 

equations of nuclear motion. The Born–Oppenheimer energies and gradients were 

obtained by means of the TD-DFT (B3LYP) approach, which has been employed in 

previous studies [47, 65, 66]. The twenty-five trajectories as a representative set for each 

system were simulated at TD-DFT/B3LYP/TZVP level with a time step of 1 fs with 

maximal duration of 300 fs, enough to cover the pre- and post-PT regimes. The initial 

conditions for each trajectory were generated by sampling the coordinates and momenta 

so as to reproduce the ground-vibrational quantum harmonic distribution of the electronic 

ground state by means of a Wigner distribution. The classical dynamic simulations were 

performed in NEWTON-X interfaced [67, 68] with Turbomole 6.3 program package . As 

results in classical dynamic simulation details such as average breaking and forming 

bonds showing time evolutions, energy difference of S1 and S0 states (S1-S0), and average 

C1C2C3N torsion angles between phenyl and pyridinic nitrogen groups were described 

by statistical analysis. 


