CONTENTS

Acknowledgement	c
Abstract in Thai	d
Abstract in English	f
List of Tables	k
List of Figures	1
List of Abbreviations	0
List of Symbols	q
Chapter 1 Introduction	1
1.1 Photochemical and photophysical process	1
1.2 Jabonski diagram	2
1.3 Background of excited-state intramolecular proton transfer reaction	3
1.4 10-hydroxybenzo[h]quinoline (HBQ) and literature review	5
1.5 Objectives	9
Chapter 2 Theory and Computational detail	10
2.1 Theoretical background of computational chemistry	10
2.1.1 Quantum mechanics	10
2.1.2 Schrödinger equation	11
2.1.3 Born-Oppenheimer approximation	12
2.1.4 Ab initio calculations	12
2.1.4.1 Hartree-Fock Approximation	13
2.1.4.2 Post Hartree-Fock Approximation	13
2.1.5 Density function theory	13
2.1.5.1 Hohenberg-Kohn theoremsIntroduction	14

2.1.5.2 Kohn-Sham equation	14
2.1.5.3 Hybrid three parameters of Beck and Lee-Yang-Parr	15
correlation functional (B3LYP)	
2.1.5.4 Basis set	15
2.1.6 Time-dependent density functional theory	16
2.1.7 Dynamics simulation	16
2.1.7.1 Initial condition	17
2.1.7.2 Wigner distributions	17
2.1.7.3 Sampling with Trajectory Simulations	18
2.2 Computational detail in this study	18
2.2.1 Static calculations	18
2.2.2 Dynamics simulations	19
Chapter 3 Results and discussion	20
3.1 Static calculations	20
3.1.1 Geometry optimizations	20
3.1.2 Electronic spectra and frontier molecular orbitals (MOs)	25
3.1.3 Potential energy curves of ESIPT reactions	31
3.2 Dynamics simulation	33
3.2.1 10-Hydroxybenzo[h]quinoline (HBQ)	33
3.2.2 9-Hydroxy-3H-benzo[g]indole (HBID)	35
3.2.3 5H-indeno[1,2-b]pyridine-9-ol (IPDO)	37
3.2.4 3,4-dihydroindene[1,2-b]pyrrole-8-ol (IPRO)	39
3.2.5 2-Pyridin-2-yl)phenol (PDP)	41
3.2.6 2-(4 <i>H</i> -pyrrol-2-yl)phenol (PRP)	43
3.3 Comparative analysis	45
Chapter 4 Conclusions	49
References	50
Appendix	60
Appendix A	60

Appendix B	61
Appendix C	67
Appendix D	68
Appendix E	70

Curriculum Vitae

76

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

- Table 3.1 Summary of hydrogen bond distances (O-H), intramolecular 22 hydrogen-bonded distances (N···H), the important distances between heavy atoms (O···N, and C1···N) (Å), and a dihedral angle (°) of HBQ and its derivatives (normal form) computed at B3LYP/TZVP level
- Table 3.2
 Relative O1–H stretching between the S₀ and S₁ states of all
 23

 compounds
 23
- Table 3.3 Electronic and photophysical properties of HBQ and its derivatives 30 computed at B3LYP/TZVP level. Calculated normal absorption and tautomer emission (nm, eV), oscillator strength (f), and major contributions (%)
- Table 3.4Summary of the excited-state dynamic simulations performed at33TD-B3LYP/TZVP and the relative PT barriers (kcal/mol) of all
compounds along the ES-PECs33

MAI UNIVE

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure 1.1	Jabonski diagram	2
Figure 1.2	Mechanism of excited state intramolecular proton transfer	4
	(ESIPT) for HBQ	
Figure 1.3	HBQ structure	5
Figure 1.4	Simplified schematic of the ESIPT process in HBQ	6
Figure 3.1	Optimized geometries of HBQ and its derivatives computed at	20
	B3LYP/TZVP level: (a) HBQ, (b) HBID, (c) IPDO, (d) IPRO,	
	(e) PDP, and (f) PRP. Intramolecular hydrogen-bonded distances	
	show in dashed line and the atoms involving proton transfer were	
	labeled	
Figure 3.2	The vibrational frequencies of the O-H stretching vibrational	24
	mode of the calculated IR spectra of HBQ both in the ground	
	(black line) and the excited-states (red line) of HBQ and its	
	derivatives	
Figure 3.3	Simulated absorption (black solid line) and emission spectra (red	26
	dashed line) of HBQ and its derivatives computed at	
	B3LYP/TZVP level	
Figure 3.4	Diagram of calculated HOMO and LUMO energy levels as well	28
	as HOMO-LUMO gaps (eV) at B3LYP/TZVP level of normal	
1	absorption and tautomer emission of HBQ and its derivatives	
Figure 3.5	Frontier molecular orbitals of normal forms for HBQ and its	29
	derivatives computed at B3LYP/TZVP level	
Figure 3.6	The calculated potential energy curves in the S_0 and S_1 states of	32
	HBQ and its derivatives. The energies of the S_1 state were	
	calculated using the geometries of the corresponding the S ₀ state	

- Figure 3.7 Average values for all ESIPT trajectories of the HBQ: (a) Average 34
 breaking and forming bonds showing time evolutions, (b) Average
 relative energies of excited-state (S₁), ground state (S₀), and energy
 difference of S₁ and S₀ states (S₁-S₀), and (c) Average torsion angle
- Figure 3.8 Snapshots of the HBQ dynamics showing the time evolutions of 35 the ESIPT reactions through the hydrogen-bonded network.
 Normal (N), proton transfer (PT), and tautomer (T), the side view of T form shown as the right figure. The values correspond to the average over all ESIPT trajectories in femtosecond
- Figure 3.9 Average values for all ESIPT trajectories of the HBID: (a) Average 36 breaking and forming bonds showing time evolutions, (b) Average relative energies of excited-state (S₁), ground state (S₀), and energy difference of S₁ and S₀ states (S₁-S₀), and (c) Average torsion angle
- Figure 3.10 Snapshots of the HBID dynamics showing the time evolutions of 37 the ESIPT reactions through the hydrogen-bonded network. Normal (N), proton transfer (PT), and tautomer (T), the side view of T form shown as the right figure. The values correspond to the average over all ESIPT trajectories in femtosecond
- Figure 3.11 Average values for all ESIPT trajectories of the IPDO: (a) Average 38 breaking and forming bonds showing time evolutions, (b) Average relative energies of excited-state (S₁), ground state (S₀), and energy difference of S₁ and S₀ states (S₁-S₀), and (c) Average torsion angle
- Figure 3.12 Snapshots of the IPDO dynamics showing the time evolutions of 39 the ESIPT reactions through the hydrogen-bonded network. Normal (N), proton transfer (PT), and tautomer (T), the side view of T form shown as the right figure. The values correspond to the average over all ESIPT trajectories in femtosecond
- Figure 3.13 Average values for all ESIPT trajectories of the IPRO: (a) Average 40 breaking and forming bonds showing time evolutions, (b) Average relative energies of excited-state (S₁), ground state (S₀), and energy difference of S₁ and S₀ states (S₁-S₀), and (c) Average torsion angle

- Figure 3.14 Snapshots of the IPRO dynamics showing the time evolutions of 41 the ESIPT reactions through the hydrogen-bonded network. Normal (N), proton transfer (PT), and tautomer (T), the side view of T form shown as the right figure. The values correspond to the average over all ESIPT trajectories in femtosecond
- Figure 3.15 Average values for all ESIPT trajectories of the PDP: (a) Average 42 breaking and forming bonds showing time evolutions, (b) Average relative energies of excited-state (S₁), ground state (S₀), and energy difference of S₁ and S₀ states (S₁-S₀), and (c) Average torsion angle
- Figure 3.16 Snapshots of the PDP dynamics showing the time evolutions of the 43
 ESIPT reactions through the hydrogen-bonded network. Normal (N), proton transfer (PT), and tautomer (T), the side view of T form shown as the right figure. The values correspond to the average over all ESIPT trajectories in femtosecond
- Figure 3.17 Average values for all ESIPT trajectories of the PRP: (a) Average 44 breaking and forming bonds showing time evolutions, (b) Average relative energies of excited-state (S1) ground state (S0), and energy difference of S1 and S0 states (S1-S0), and (c) Average torsion angle
- Figure 3.18 Snapshots of the PRP dynamics showing the time evolutions of the 45 ESIPT reactions through the hydrogen-bonded network. Normal (N), proton transfer (PT), and tautomer (T), the side view of T form shown as the right figure. The values correspond to the average over all ESIPT trajectories in femtosecond

LIST OF ABBREVIATIONS

IC	Internal conversion
ISC	Intersystem crossing
ESPT	Excited state proton transfer
ESIPT	Excited-state intramolecular proton transfer
Ν	Normal form
Т	Tautomer form
ICT	Intramolecular molecular charge-transfer state
ны	2-(2'-hydroxyphenyl)benzimidazole
нво	2-(2'-hydroxyphenyl)benzoxazole
НВТ	2-(2'-hydroxyphenyl)benzothiazole
HBQ	10-hydroxybenzo[h]quinoline
IMP	2-(iminomethyl)phenol
H-bond	Hydrogen bond
PT	Proton transfer
МСН	Methylcyclohexane
Κ	Kelvin
nm	Nanometer
DFT	Density functional theory
TD-DFT	Time-dependent density functional theory
EE-MCSI/MM	Electronically embedded multi-configuration shepard
AÍÍ	interpolation and molecular mechanical
MD	Molecular dynamics
MOs	Molecular orbitals
TRF	Time-resolved fluorescence
PECs	Potential energy curves
d_{DA}	Distance between proton donor and proton acceptor
HBID	9-Hydroxy-3H-benzo[g]indole

IPDO	3,4-dihydro indene[1,2-b]pyrrole-8-ol
IPRO	H-indeno[1,2-b]pyridine-9-ol
PDP	2-(Pyridin-2-yl)phenol
PRP	2-(4 <i>H</i> -pyrrol-2-yl)phenol
QM	Quantum mechanics
HF	Hartree-Fock calculation
B3LYP	Becke-3-LYP method
AOs	Atomic orbitals
STFs	Slater-type functions
GTFs	Gaussian-type functions
DZ	Double-zeta basis set
TZ	Triple-zeta basis set
TZVP	Triple- ζ valence quality with one set of polarization functions
IR S	Infrared spectrum
НОМО	Highest occupied molecular orbital
LUMO	Lowest unoccupied molecular orbital
eV	Electron volts
kcal/mol	Kilocalorie per mole
GS-PECs	Ground state potential energy curves
ES-PECs	Excited-state potential energy curves
fs	Femtosecond

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF SYMBOLS

S_0	Ground states
\mathbf{S}_1	Excited states
T_1	Triplet states
Н	Hamiltonian operator
Ψ	Wavefunction
Ε	Energy
Т	Kinetic energy operator
V /	Potential energy operator
v / G	Spatial differential operator
Zi	Atomic number
ħ	Planck constant
e	Electron
P(x,y,z)	Electron density function
Ε(ρ)	Energy functional
G[n(<i>r</i>)]	Kinetic energy of Hohenberg-Kohn theorems
E_T	Kinetic energy as a function of electron density
E _v	Potential energy as a function of electron density
Ecoulomb	Coulomb self-interaction
Exc dddi	Exchange-correlation energy as a function of electron density
$\rho(r,t)$ Copyri	Time-dependent potentials and electron densities
χ^0_{HO}	Wavefunction quantum harmonic oscillator for ground state
P_i	Momentum associated with the normal coordinate
Q_i	Normal coordinate
μ^i	Reduced mass of normal mode
$\omega^{i}_{\scriptscriptstyle HO}$	Harmonic frequency of normal mode
ξ^0_{HO}	The harmonic oscillator wavefunction
Å	Angstrom

0	Degree
π	Pi
π*	pi*
$\pi \rightarrow \pi^*$	Pi to pi* transition (proton transfer)
%	Percent
S_1 - S_0	Relative energy difference between excited and ground states

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved