หัวข้อวิทยานิพนธ์ การพัฒนาซีเควนเชียลอินเจคชันอะนาลิซิสร่วมกับ

อิเล็กโทรเคมิคัลอิมมูโนเซนเซอร์สำหรับการหาปริมาณ

อิมมูโนโกลบูลินจีของคนอย่างไว

ผู้เขียน นางสาวชิคกมล ทูลคำรักษ์

ปริญญา วิทยาศาสตรมหาบัณฑิต (เคมี)

อาจารย์ที่ปรึกษา รองศาสตราจารย์ คร. จรูญ จักร์มุณี

บทคัดย่อ

ซีเควนเชียลอินเจคชันร่วมกับอิเล็กโตรเคมิคัลอิมมูโนเซนเซอร์ได้ถูกพัฒนาขึ้นสำหรับการหา ปริมาณฮิวแมนอิมมูโนโกลบูลินจีอย่างไว อิเล็กโตรเคมิคัลอิมมูโนเซนเซอร์ที่ไม่ติคฉลากถูกประดิษฐ์ ขึ้นโดยการปรับปรุงขั้วไฟฟ้าพิมพ์สกรีนคาร์บอนด้วยกราฟินออกไซด์และเชื่อมด้วยแอนติ ฮิวแมนอิมมูโนโกลบูลินจี้ด้วยพันธะโควาเลนต์ วัสดุนาโนถูกนำมาเพิ่มความไวของการเกิดปฏิกิริยา ไฟฟ้าเคมีของเฟอริ-เฟอโรไซยาในด์ซึ่งเป็นรีดอกซ์โพรบ ความจำเพาะของเซนเซอร์ได้จากการตรึง แอนติฮิวแมนอิมมูโนโกลบูลินจี้นสารตัวอย่าง ระบบซีเควนเชียลอินเจกชันช่วยให้ลำดับการฉีดสารละลายสะดวกมากขึ้นในการตรวจวัดด้วยวิธี ทางภูมิคุ้มกัน จากสภาวะที่เหมาะสมของระบบคืออัตราการไหล 2 มิลลิลิตรต่อนาที สักย์ไฟฟ้า กระตุ้น +350 มิลลิโวลต์ เฟอริ-เฟอโรไซยาในด์เข้มข้น 10 มิลลิโมลาร์และเวลาในการบ่มฮิวแมนอิมมูโนโกลบูลินจี้ 10 นาที ได้ผลการทดลองดังนี้ ช่วงความเป็นเส้นตรงของการวิเคราะห์ 2 ถึง 100 นาโนกรัมต่อมิลลิลิตร ซีดจำกัดการตรวจวัด 1.70 นาโนกรัมต่อมิลลิลิตร ซึ่งระบบที่พัฒนาขึ้นถูกนำไปประยุกต์ใช้ในการวัดตัวอย่างจริงคือตัวอย่างน้ำปัสสาวะ ผลการวิเคราะห์จากวิธีการเดิมสารมาตรฐานพบปริมาณฮิวแมนอิมมูโนโกลบูลินจี้ในห้อลการทำซ้ำและการทวนซ้ำที่ดีและสามารถประยุกต์ใช้ ในการตรวจวัดสารในตัวอย่าง ปัสสาวะได้จริง **Thesis Title** Development of Sequential Injection Analysis

with Electrochemical Immunosensor for Sensitive

Determination of Human Immunoglobulin G

Author Miss Chidkamon Thunkhamrak

Degree Master of Science (Chemistry)

Advisor Assoc. Prof. Dr. Jaroon Jakmunee

Abstract

Sequential injection (SI) system incorporated with electrochemical immunosensor was developed for sensitive determination of human immunoglobulin G (HIgG). A label-free electrochemical immunosensor was fabricated based on a screenprinted carbon electrode (SPCE) modified with graphene oxide (GO) and covalently bonded with anti-human immunoglobulin G (anti-HIgG). The nanomaterial was employed to enhance sensitivity of the electrochemical reaction of [Fe(CN)₆]^{3-/4-} redox probe. The selectivity of the sensor was obtained from the immobilized anti-HIgG antibody which is specifically bound to HIgG in samples. The SI system provided convenient manipulation of solutions injection in various steps of immunoassay operation. Under the optimum condition: flow rate of 2 mL min⁻¹, applied potential of +350 mV, [Fe(CN)₆]^{3-/4-} of 10 mM and 10 min of incubation time of HIgG in sample with the sensor, a linear calibration in the range of 2 - 100 ng mL⁻¹ was achieved, with detection limit of 1.70 ng mL⁻¹. The SIA system was applied to determine HIgG in real urine samples. The results obtained from standard addition method showed that amounts of HIgG were in the range of 0.119 - 0.453 ng mL⁻¹. The proposed system provided good repeatability and reproducibility and it is applicable to urine samples analysis.