REFERENCES

- [Affymetrix eBioscience, 2016] Affymetrix eBioscience, "Immunoglobulin G," http://www.ebioscience.com/knowledge-center/antigen/immunoglobulin/igg.htm, August 2016.
- [Ahour, 2016] F. Ahour, M.K. Ahsani, "An electrochemical label-free and sensitive thrombin aptasensor based on graphene oxide modified pencil graphite electrode," Biosensors and Bioelectronics, 86, 2016, 764-769.
- [Amouzadeh Tabrizi, 2016] M. Amouzadeh Tabrizi, M. Shamsipur, A. Mostafaie, "A high sensitive label-free immunosensor for the determination of human serum IgG using overoxidized polypyrrole decorated with gold nanoparticle modified electrode," Materials Science and Engineering: C, 59, 2016, 965-969.
- [Burguera, 2005] J.L. Burguera, M. Burguera, R.E. Antón, J.-L. Salager, M.A. Arandia, C. Rondón, P. Carrero, Y.P. de Peña, R. Brunetto, M. Gallignani, "Determination of aluminum by electrothermal atomic absorption spectroscopy in lubricating oils emulsified in a sequential injection analysis system," Talanta, 68, 2005, 179-186.
- [Chan-Eam, 2011] S. Chan-Eam, S. Teerasong, K. Damwan, D. Nacapricha, R. Chaisuksant, "Sequential injection analysis with electrochemical detection as a tool for economic and rapid evaluation of total antioxidant capacity," Talanta, 84, 2011, 1350-1354.
- [Chen, 2016] Y.-H. Chen, R. Kirankumar, C.-L. Kao, P.-Y. Chen, "Electrodeposited Ag, Au, and AuAg nanoparticles on graphene oxide-modified screen-printed carbon electrodes for the voltammetric determination of free sulfide in alkaline solutions," Electrochimica Acta, 205, 2016, 124-131.

- [Chocholouš, 2017] P. Chocholouš, L. Dědková, T. Boháčová, D. Šatínský, P. Solich, "Fast separation of red colorants in beverages using cyano monolithic column in sequential injection chromatography," Microchemical Journal, 130, 2017, 384-389.
- [Díaz-González, 2005] M. Díaz-González, D. Hernández-Santos, M.B. González-García, A. Costa-García, "Development of an immunosensor for the determination of rabbit IgG using streptavidin modified screen-printed carbon electrodes," Talanta, 65, 2005, 565-573.
- [Eguílaz, 2016] M. Eguílaz, F. Gutierrez, J.M. González-Domínguez, M.T. Martínez, G. Rivas, "Single-walled carbon nanotubes covalently functionalized with polytyrosine: A new material for the development of NADH-based biosensors," Biosensors and Bioelectronics, 86, 2016, 308-314.
- [Espada-Bellido, 2013] E. Espada-Bellido, Z. Bi, C.M.G. van den Berg, "Determination of chromium in estuarine waters by catalytic cathodic stripping voltammetry using a vibrating silver amalgam microwire electrode," Talanta, 105, 2013, 287-291.
- [Galán-Malo, 2014] P. Galán-Malo, J.-A. Valares, V. Langa, P. Razquin, L. Mata, "Determination of IgG levels in bulk ewe's milk," Small Ruminant Research, 119, 2014, 156-160.
- [Immune Deficiency Foundation, 2013] Immune Deficiency Foundation, "IgG Subclass Deficiency," http://primaryimmune.org/about-primaryimmunodeficiencies/specific-disease-types/igg-subclass-deficiency/, August 2016.
- [Jia-Ming, 2005] L. Jia-Ming, Z.G. hui, W. Aihong, L. Pingping, X. Huanhuan, L.-D. Li, Z.-b. Liu, "Determination of human IgG by solid substrate room temperature phosphorescence immunoassay based on an antibody labeled with nanoparticles containing Rhodamine 6G luminescent molecules, "Spectroschimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61, 2005, 923-927.

- [Jie, 2008] G. Jie, J. Zhang, D. Wang, C. Cheng, H.-Y. Chen, J.-J. Zhu, "Electrochemiluminescence immunosensor based on CdSe nanocomposites," Analytical Chemistry, 80, 2008, 4033-4039.
- [Jumpathong, 2016] W. Jumpathong, J. Jakmunee, K. Ounnunkad, "A Sensitive and Disposable Graphene Oxide Electrochemical Immunosensor for Label-free Detection of Human Immunoglobulin G," Analytical Sciences, 32, 2016, 323-328.
- [LeThanh, 2000] H. LeThanh, B. Lendl, "Sequential injection Fourier transform infrared spectroscopy for the simultaneous determination of organic acids and sugars in soft drinks employing automated solid phase extraction," Analytica Chimica Acta, 422, 2000, 63-69.
- [Li, 2017] M. Li, P. Wang, F. Li, Q. Chu, Y. Li, Y. Dong, "An ultrasensitive sandwich-type electrochemical immunosensor based on the signal amplification strategy of mesoporous core-shell Pd@Pt nanoparticles/amino group functionalized graphene nanocomposite," Biosensors and Bioelectronics, 87, 2017, 752-759.
- [Liang, 2016] J. Liang, M. Guan, G. Huang, H. Qiu, Z. Chen, G. Li, Y. Huang, "Highly sensitive covalently functionalized light-addressable potentiometric sensor for determination of biomarker," Materials Science and Engineering: C, 63, 2016, 185-191.
- [Liu, 2015] B. Liu, B. Xiao, L. Cui, "Electrochemical analysis of carbaryl in fruit samples on graphene oxide-ionic liquid composite modified electrode," Journal of Food Composition and Analysis, 40, 2015, 14-18.
- [Liu, 2015] J. Liu, G. Lin, C. Xiao, Y. Xue, A. Yang, H. Ren, W. Lu, H. Zhao, X. Li, Z. Yuan, "Sensitive electrochemical immunosensor for α-fetoprotein based on graphene/SnO₂/Au nanocomposite," Biosensors and Bioelectronics, 71, 2015, 82-87.

- [Liu, 2015] L. Liu, Y. Li, L. Tian, T. Guo, W. Cao, Q. Wei, "A label-free voltammetric immunoassay based on 3D-structured rGO-MWCNT-Pd for detection of human immunoglobulin G," Sensors and Actuators B: Chemical, 211, 2015, 170-176.
- [Ogi, 2007] H. Ogi, K. Motohisa, K. Hatanaka, T. Ohmori, M. Hirao, M. Nishiyama, "Concentration dependence of IgG-protein A affinity studied by wireless-electrodeless QCM," Biosensors and Bioelectronics, 22, 2007, 3238-3242.
- [Intechopen, 2015] Intechopen, "Outline of Biosensor and its application," http://www.intechopen.com/source/html/37959/media/image9.png, August 2016.
- [Qiu, 2010] L.-P. Qiu, C.-C. Wang, P. Hu, Z.-S. Wu, G.-L. Shen, R.-Q. Yu, "A label-free electrochemical immunoassay for IgG detection based on the electron transfer," Talanta, 83, 2010, 42-47.
- [Reanpang, 2015] P. Reanpang, S. Themsirimongkon, S. Saipanya, O. Chailapakul, J. Jakmunee, "Cost-effective flow injection amperometric system with metal nanoparticle loaded carbon nanotube modified screen printed carbon electrode for sensitive determination of hydrogen peroxide," Talanta, 144, 2015, 868-874.
- [Roerdink, 2005] A.R. Roerdink, J.H. Aldstadt Iii, "Sequential injection absorption spectrophotometry using a liquid-core waveguide: Determination of *p*-arsanilic acid in natural waters," Analytica Chimica Acta, 539, 2005, 181-187.
- [Ruzicka, 1990] J. Ruzicka, G.D. Marshall, "Sequential injection: a new concept for chemical sensors, process analysis and laboratory assays," Analytica Chimica Acta, 237, 1990, 329-343.

- [Samphao, 2015] A. Samphao, P. Butmee, J. Jitcharoen, L' Švorc, G. Raber, K. Kalcher, "Flow-injection amperometric determination of glucose using a biosensor based on immobilization of glucose oxidase onto Au seeds decorated on core Fe₃O₄ nanoparticles," Talanta, 142, 35-42.
- [Sanaeifar, 2017] N. Sanaeifar, M. Rabiee, M. Abdolrahim, M. Tahriri, D. Vashaee, L. Tayebi, "A novel electrochemical biosensor based on Fe₃O₄ nanoparticles polyvinyl alcohol composite for sensitive detection of glucose," Analytical Biochemistry, 519, 2017, 19-26.
- [FIAlab, 2009] FIAlab, "Sequential injection analysis," http://www.flowinjection.com/images/Sequential_Injection.pdf, August 2016.
- [Shu, 2015] J. Shu, W. Shen, H. Cui, "Ultrasensitive label-free electrochemi-luminescence immunosensor based on N-(4-aminobutyl)-N-ethylisoluminol-functionalized graphene composite," Science China Chemistry, 58, 2015, 425-432.
- [Tian, 2010] D. Tian, C. Duan, W. Wang, H. Cui, "Ultrasensitive electrochemiluminescence immunosensor based on luminol functionalized gold nanoparticle labeling," Biosensors and Bioelectronics, 25, 2010, 2290-2295.
- [Tyszczuk-Rotko, 2013] K. Tyszczuk-Rotko, R. Metelka, K. Vytřas, "Screen-printed carbon electrodes modified with lead film deposited using different plating methods as sensors in anodic stripping voltammetry," Electrochimica Acta, 92, 2013, 335-340.
- [Upan, 2016] J. Upan, P. Reanpang, O. Chailapakul, J. Jakmunee, "Flow injection amperometric sensor with a carbon nanotube modified screen printed electrode for determination of hydroquinone," Talanta, 146, 2016, 766-771.

- [Wang, 2017] H. Wang, Y. Zhang, Y. Wang, H. Ma, B. Du, Q. Wei, "Facile synthesis of cuprous oxide nanowires decorated graphene oxide nanosheets nanocomposites and its application in label-free electrochemical immunosensor," Biosensors and Bioelectronics, 87, 2017, 745-751.
- [WebMD, 2015] WebMd, "Immunoglobulin," http://www.webmd.com/a-to-z-guides/immunoglobulins#1, August 2016.
- [Zarei, 2012] H. Zarei, H. Ghourchian, K. Eskandari, M. Zeinali, "Magnetic nanocomposite of anti-human IgG/COOH-multiwalled carbon nanotubes/Fe₃O₄ as a platform for electrochemical immunoassay," Analytical Biochemistry, 421, 2012, 446-453.
- [Zhang, 2016] H. Zhang, L. Ma, P. Li, J. Zheng, "A novel electrochemical immunosensor based on nonenzymatic Ag@Au-Fe₃O₄ nanoelectrocatalyst for protein biomarker detection," Biosensors and Bioelectronics, 85, 2016, 343-350.
- [Zhang, 2013] H. Zhang, D. Song, S. Gao, J. Zhang, H. Zhang, Y. Sun, "Novel SPR biosensors based on metal nanoparticles decorated with graphene for immunoassay," Sensors and Actuators B: Chemical, 188, 2013, 548-554.
- [Zhang, 2016] S. Zhang, N. Huang, Q. Lu, M. Liu, H. Li, Y. Zhang, S. Yao, "A double signal electrochemical human immunoglobulin G immunosensor based on gold nanoparticles-polydopamine functionalized reduced graphene oxide as a sensor platform and AgNPs/carbon nanocomposite as signal probe and catalytic substrate," Biosensors and Bioelectronics, 77, 2016, 1078-1085.

[Zhao, 2007] C. Zhao, W. Liu, H. Ling, S. Lu, Y. Zhang, J. Liu, R. Xi, "Preparation of anti-gatifloxacin antibody and development of an indirect competitive enzyme-linked immunosorbent assay for the detection of gatifloxacin residue in milk," Journal of Agricultural and Food Chemistry, 55, 2007, 6879-6884.

[Zhao, 2006] H.W. Zhao, C.Z. Huang, Y.F. Li, "Immunoassay by detecting enhanced resonance light scattering signals of immunocomplex using a common spectrofluorometer," Talanta, 70, 2006, 609-614.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

LIST OF PUBLICATION

1) C. Thunkhamrak, P. Reanpang, K. Ounnunkad, J. Jakmunee, "Sequential injection system with amperometric immunosensor for sensitive determination of human immunoglobulin G," Talanta, 171, 2017, 53-60.

