CONTENTS

Acknowledgement	d	
Abstract in Thai	e	
Abstract in English	f	
List of Tables	i	
List of Figures	j	
List of Abbreviations	m	
List of Symbols	n	
Chapter 1 Introduction	1	
1.1 Properties of zinc hydroxystannate and its applications	3	
1.2 Photocatalytic Activity	6	
1.3 Synthesis	11	
1.4 Characterization Techniques		
1.5 Literature Review		
1.6 Research Objectives	35	
1.7 Usefulness of the Research (Theoretical and/or Applied)	35	
Chapter 2 Experimental	36	
2.1 Chemical reagents, equipments and instruments	36	
2.2 Synthesis of ZnSn(OH) ₆	38	

2.3 Characterizations	39
2.4 Photocatalytic activity measurement	40
Chapter 3 Results and Discussion	42
3.1 Structural and morphological characteristics	42
3.2 Surface area analysis	55
3.3 Optical characterization	55
3.2 Surface area analysis3.3 Optical characterization3.4 Photocatalytic activity	59
Chapter 4 Conclusions	68
Reference	69
Appendix	79
Appendix A	79
Appendix A Curriculum Vitae	83
VAI UNIVER	
ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่	
Copyright [©] by Chiang Mai University All rights reserved	

LIST OF TABLES

Table 3.1 Crystallite size of ZHS prepared at different pH values	45
Table 3.2 Results of photocatalyst measurement of synthesized samples	62

Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure 1.1	Crystallographic structure of ZnSn(OH) ₆ and ZnSnO ₃	3
Figure 1.2	Comparison between the band gaps of metals, insulators and	7
	Semiconductors	
Figure 1.3	Photocatalytic redox reaction on semiconductor photocatalytic	10
Figure 1.4	Top down and bottom up approaches in nanotechnology	11
Figure 1.5	Electromagnetic waves spectrum	12
Figure 1.6	Schematic illustration of the two main dielectric heating	13
	mechanisms: dipolar polarization and ionic conduction	
Figure 1.7	Difference between conventional heating and microwave heating	14
Figure 1.8	X-ray diffraction spectrometer	15
Figure 1.9	Geometry for interference of a wave scattered from two planes	16
	separated by a spacing, d	
Figure 1.10	X-ray photoelectron spectrometer	18
Figure 1.1	Schematic representation of the X-ray photoelectron process	19
Figure 1.12	2 Fourier transform infrared spectrometer	20
Figure 1.13	3 Scanning electron microscope	21
Figure 1.14	4 Schematic diagram of scanning electron microscope	22
Figure 1.15	5 Transmission electron microscope	23
Figure 1.16 Schematic diagram of transmission electron microscope		
Figure 1.17	7 Surface area analyzers	26
Figure 1.18	3 Schematic of the adsorption of gas molecules onto the surface	27
	of a sample showing the monolayer adsorption model assumed	
	by the Langmuir theory and the multilayer adsorption model	
	assumed by the BET theory	
Figure 1.19	Photoluminescence spectrometer	27

Figure 1.20	0 Schematic diagram of photoluminescence spectrometer	28
Figure 1.2	1 UV-visible spectrometer	29
Figure 1.22	2 Schematic diagram showing a single beam and a double beam	30
	spectrophotometer	
Figure 2.1	Schematic diagram used for synthesized ZnSn(OH) ₆ in alkaline	38
	solutions under microwave radiation	
Figure 2.2	Schematic diagram used for photocatalytic testing	41
Figure 3.1	XRD patterns of cubic ZnSn(OH) ₆ synthesized in the solutions	43
	with the pH of 8 to 14 by a microwave method	
Figure 3.2	XRD patterns of the ZnSn(OH) ₆ microcubes prepared at different	44
	lengths of microwave irradiation	
Figure 3.3	XPS spectra of ZnSn(OH) ₆ samples: survey spectrum, Zn 2p,	46
	Sn 3d, and O 1s	
Figure 3.4	FTIR spectra of the cubic ZnSn(OH) ₆ synthesized at different pH	49
	solutions	
Figure 3.5	SEM images of the cubic ZnSn(OH) ₆ synthesized by microwave	50
	irradiation at the pH of 8 to 14, respectively and EDX spectrum	
	of the cubic $ZnSn(OH)_6$ synthesized at the pH of 14	
Figure 3.6	TEM images of the ZnSn(OH) ₆ cubes obtained at the pH of 11 to	51
	14, respectively and SAED pattern of the individual $ZnSn(OH)_6$	
	cube obtained at the pH of 14	
Figure 3.7	SEM images and schematic illustration of morphology evolution	52
	of the ZnSn(OH) ₆ microcubes prepared at different lengths of	
	microwave irradiation: 5 min, 15 min, 20 min and 30 min	
Figure 3.8	Schematic of ZnSn(OH) ₆ formation process	53
Figure 3.9	Schematic illustration of morphology evolution of the ZnSn(OH) ₆	54
	microcubes prepared at different microwave radiation times	
Figure 3.1	0 UV-visible absorption spectrum of cubic-like ZnSn(OH) ₆	56
	synthesized under microwave radiation	

Figure 3.11 Plot of $(\alpha hv)^2$ versus hv of cubic ZnSn(OH) ₆ synthesized in the	57
solution with the pH of 14	
Figure 3.12 PL spectra of ZnSn(OH) ₆ microstructure	58
Figure 3.13 UV–visible absorption of methyl orange (MO) dye in the solution	59
containing ZnSn(OH) ₆ irradiated by UV radiation for different	
lengths of time	
Figure 3.14 Decolorization efficiency of methyl orange (MO) dye solutions	60
containing ZnSn(OH) ₆ photocatalyst synthesized in the solution	
with the pH of 11 to 14, comparing with that of the blank under	
UV radiation	
Figure 3.15 First-order reaction kinetic plots of the photodegradation of methyl	61
orange (MO) dye solutions containing ZnSn(OH)6 photocatalyst	
synthesized in the solutions with the pH of 11 to 14, comparing	
with that of the blank under UV radiation	
Figure 3.16 Recyclability for the photodagradation of methyl orange (MO) dye	64
solution by ZnSn(OH)6 photocatalyst under UV radiation up to five	
cycles	
Figure 3.17 Pseudo first order kinetics of ZnSn(OH) ₆ photocatalyst for repeated	65
degradation of methyl orange (MO) dye up to five cycles	
Figure 3.18 XRD pattern of the recovered ZnSn(OH) ₆ after five cycle testing,	66
and FTIR spectra of the as-synthesized and recovered ZnSn(OH) ₆	
samples rights reserved	

LIST OF ABBREVIATIONS

ZHS	Zinc hydroxystannate	
OSHA	Occupational Safety and Health Administration	
IARC	International Agency for Research on Cancer	
NTP	Nation Toxicology Program	
ACGIH	American Conference of Governmental Industrial Hygienists	
XRD	X–ray diffraction	
XPS	X-ray photoelectron spectroscopy	
FTIR	Fourier transform infrared	
SEM	Scanning electron microscopy	
TEM	Transmission electron microscopy	
SAED	Selected-area electron diffraction	
EDX	Energy dispersive X-ray spectroscopy	
BET	Brunauer Emmett Teller	
PL	Photoluminescence spectroscopy	
UV-Vis	UV-visible spectroscopy	
JCPDS	Joint Committee for Powder Diffraction Standard	
FWHM	Full width at half maximum	
VBaaa	Valence band	
СВ	Conduction hand	
SE	Secondary electron	
BSE	Back-scattered electron	
НОМО	Highest occupied molecular orbital	
LUMO	Lowest unoccupied molecular orbital	
MO	Methyl orange	
рН	Potential of hydrogen ion	

LIST OF SYMBOLS

Eg	Energy gap
eV	Electron Volt
kV	Kilo Volt
m	Meter
μm	Micrometer
Nm	Micrometer Nanometer Angstrom
Å	Angstrom
mA	Milliamp
cm^{-1}	Wavenumber
g g	Gram
ml	Milliliter
mol	Mole
М	Molarity
0	Degree
°C	Degree Celsius
Κ	Kelvin
GHz	Gigahertz
w adai	Watt มหาวิทยาลัยเชียงใหม่
α Copyr	Alpha, Absorption coefficient
λ	Lambda, Wavelength
ν	Nu, Frequency
θ	Theta, Diffraction angle
β	Beta, Full width at half maximum
3	Epsilon, Molar absorption coefficient/Dielectric
hv	Photon energy
А	Absorbance

h	Hour
min	Minute
S	Second
t	Time
%	Percentage

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved