CONTENTS

Acknowledgement	iii
Abstract in Thai	iv
Abstract in English	v
Abstract in English List of Tables	ix
List of Figures	Х
List of Abbreviations	xii
List of Symbols	xiv
CHAPTER 1 Introduction	1
1.1 Research background	1
1.2 Objective	3
1.3 Study survey of this thesis	3
1.4 Scope of study	9
1.5 Expecting benefit	10
CHAPTER 2 Materials and methods	11
2.1 Soil analysis and soil samples	11
2.1.1 Physical properties	11
2.1.2 Chemical properties	12
2.2 Data pretreatments	14
2.2.1 Data screening or outlier detection	15
2.2.2 Data preprocessing	15

2.3 Chemometrics	16
2.3.1 Principal component analysis (PCA)	18
2.3.2 Self-organizing map (SOM) or Kohonen network	20
2.3.3 Multiple self-organizing maps (MSOMs)	25
2.3.4 Other classification models	28
2.4 Model optimization	29
2.4.1 Growing self-organizing map (GSOM)	30
2.5 Model validation	32
 2.5 Model validation 2.5.1 Bootstrap cross validation 2.5.1 1 Percentage of predictive ability (%PA) 	32
2.5.1.1 Percentage of predictive ability (%PA)	33
2.5.1.2 Percentage of model stability (%MS)	34
2.5.1.3 Percentage of correctly classified (%CC)	34
CHAPTER 3 Results and discussion	36
3.1 Data pretreatment	36
3.2 Model optimization for classification models	36
3.2.1 Single and multiple self-organizing maps (SSOM and MSOMs)	37
3.2.2 Other linear pattern recognition methods	39
3.2.3 Other non-linear pattern recognition methods	39
3.3 Chemometrics	40
3.3.1 Exploratory data analysis (EDA)	40
3.3.1.1 Principal component analysis (PCA)	41
3.3.1.2 Single self-organizing map (SSOM)	46
3.3.1.3 Multiple self-organizing maps (MSOMs)	49
3.3.2 Classification models	53
3.3.2.1 Classification based on regions (NE, R1 and N, R2)	53
3.3.2.2 Classification based on provinces (P1-10)	55

CHAPTER 4 Conclusion and suggestion	58
4.1 Conclusion	58
4.2 Suggestion	58
References	60
Appendix	64
Curriculum Vitae	65
્ ગામાધાર્મ છે.	

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table 1.1 Some chemometric techniques used for soil analysis	7
Table 2.1 Averages and standard deviation of %Sand, %Silt and %Clay of the soil samples	12
Table 2.2 Average and standard deviation of soil pH, extractable element	13
concentrations and % organic matter (% OM) of samples from 10 provinces	
Table 3.1 %PA, %MS and %CC for the soil data with 2 classes using CPN, SKN,	54

Table 3.2 % PA, % MS and % CC for the soil data with 10 classes using CPN, SKN, 55 *k*-NN, LDA, SIMCA, PLS- DA, SSOM and MSOMs

k-NN, LDA, SIMCA, PLS- DA, SSOM and MSOMs

LIST OF FIGURES

Page

Figure 2.1 A chromatogram demonstrates retention times of compound No. 1-6	14
Figure 2.2 Standardization diagram	16
Figure 2.3 Visualization for class modelling method (a) and classification (b)	17
Figure 2.4 Example of principal component analysis (PCA)	18
Figure 2.5 PCA diagram	19
Figure 2.6 Initial SOM map with 4 parameters where P and $Q = 4$ (a)	21
and training process (b)	
Figure 2.7 Map visualization of SOM (a) unified distant matrix or u-matrix (b)	23
supervised color sheading and (c) component plane	
Figure 2.8 Overview of the single SOM for the soil classification	25
Figure 2.9 Supervised color shading of single SOM (a), component plane of	27
parameter j^{th} based on single SOM (b) and multiple SOMs (c)	
Figure 2.10 Overview of the multiple SOMs for the soil classification	28
Figure 2.11 Insertion of (a) a column and (b) a row of map units (shaded green)	30
in between the error unit e and the neighborhood unit d	
Figure 2.12 Diagram of bootstrap cross validation	33
Figure 3.1 The %CCs of the training sets of the MSOM models using	37
different %MQEs as thresholds for the GSOM	
Figure 3.2 The histograms where the distribution of the smaller dimension, (a),	38
and the bigger dimension, (b), of the trained maps after	
the development of GSOM	

Figure 3.3 Score plot of the first three PCs where the samples were labelled	41
according to the regions they were collected, blue represent northeast	
region and red represent north region.	
Figure 3.4 %Eigen values of the 704 (a) and 330 (b) soil samples	42
which are contained by each principal component (PC)	
Figure 3.5 A score plot of the first two PCs where the samples were labeled	43
based on the regions they were collected (a) and a score plot of	
the first three PCs where the samples were labeled according to	
the provincial origins (b)	
Figure 3.6 Loading plot of PCA model based on 330 soil samples in PC1	44
Figure 3.7 Loading plot of PCA model based on 330 soil samples in PC2	45
Figure 3.8 SOM visualization of class structure with the BMUs indicated	47
and all units shaded according to the nearest class for (a) SSOM1	
and (b) SSOM2 using the GSOM with the 50% MQE as stopping criterion.	
The shading colors were the same as for the symbols in Fig. 3.5	
Figure 3.9 Component planes of pH (a), %OM (b), P (c), K (d), Na (e), Fe (f),	48
%Sand (g) and %Silt (h) from SSOM1 trained map.	
Figure 3.10 Maps visualization of MSOM1 and MSOM2 class structure	50
with the BMUs indicated and all units shaded based on dissimilarity,	
(a) and (b), and provincial sampling areas, (c) and (d), of northeast	
(left column) and north (right column) map using the GSOM	
with the 50% MQE as stopping criterion.	
Figure 3.11 Component planes of pH (a), %OM (b), Na (c), Fe (d), %Sand (e) and	51

%Silt (f) from MSOM2, northeastern (left) and northern (right) trained maps

LIST OF ABBREVIATIONS

ANN	Artificial Neural Networks
BDK	Bi-Directional Kohonen Network
BMU	Best Matching Unit
%CC	Percentage of Correctly Classified
CPN	Counter Propagation Network
EDA	Exploratory Data Analysis
EDXRF	Energy Dispersive X-Ray Fluorescence
GC-MS	Gas Chromatography Mass Spectroscopy
GSOM	Growing Self-Organizing Map
HSOM	Hierarchical Self-Organizing Map
KDML 105	Oriza sativa L. cv. Khao Dawk Mali 105
k-NN	k-Nearest Neighbors
LDA	Linear Discriminant Analysis
%MS	Percentage of Model Stability
MQE	Mean Quantization Error
%MQE	Percentage of Mean Quantization Error
MSOMs	Multiple Self-Organizing Maps
NAIIri	North Region of Thailand
NE	Northeast Region of Thailand
NIR	Near Infrared
ОМ	Organic Matter
%OM	Percentage Organic Matter
%PA	Percentage Predictive Ability
PCA	Principal Component Analysis

PCs	Principal Components
PLS	Partial Least Squares
PLS-DA	Partial Least Squares Discriminant Analysis
PT 1	Oriza sativa L. cv. Pathumthani 1
QDA	Quadratic Discriminant Analysis
QE	Quantization Error
RBFN	Radial Basis Function Network
RMSECV	Root Mean Square Error of Cross Validation
SKN	Supervised Kohonen Network
SIMCA	Soft Independent Modelling of Class Analogy
SOM	Self-Organizing map
SQA	Soil Quality Assessment
SQIs	Soil Quality Indicators
SSOM	Single Self-Organizing map
U-matrix	Unified distance matrix
USDA	United States Department of Agriculture
WRB	World Reference Based for Soil Resources
XYF	XY-Fused Network

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

LIST OF SYMBOLS

A	Number of principal components
c_{g}	Centroid of a class membership g
E	Residual
Fcorrected	Number of time that a sample was correctly classified
Fpicked	Number of time that the sample was picked as a test sample
I	Number of samples
J	Number of parameters
P	Loadings
P	Number of rows of initial map
Q	Number of columns of initial map
T	Iterations
T	Scores
Sij	Standardized of sample i^{th} of parameter j^{th}
$s(\mathbf{w}_k, \mathbf{c}_g)$	Dissimilarity between a centroid of class g and a map unit w_k
X	Data matrix
	Sample i^{th} of parameter j^{th}
\bar{x}_j Copyright	Mean for variable <i>j</i> calculated over all <i>I</i> samples
x_r All r	A random sample
W	Weight matrix
\boldsymbol{w}_k	Weight vector of sample k