CONTENTS

	Page
Acknowledgement	c
Abstract in Thai	d
Abstract in English	f
List of Tables	1
List of Figures	n
List of Abbreviations/ Symbols Chapter 1 Introduction	q
Chapter 1 Introduction	
1.1 Tea	1
1.2 Chemical composition in tea leaves	3
1.3 Miang (Fermented tea)	10
1.4 Antioxidant activity	12
1.4.1 Total phenolic contents assay	15
1.4.2 DPPH radical scavenging activity assay	15
1.4.3 Ferric ion reducing antioxidant power assay (FRAP)	16
1.4.4 Antioxidant activity of tea leaves	17
1.5 The scope and aims of this research	19
Chapter 2 Experimental	
2.1 Apparatus and chemicals	
2.1.1 Apparatus	20
2.1.2 Chemicals by Chiang Mai University	21
2.2 Materials	22
2.3 Extraction of volatile constituents by simultaneous distillation	23
extraction (SDE)	
2.4 Percentage of extraction yield	24
2.5 Analysis of volatile constituents by GC-MS	24
2.6 Optimization of solvent extraction	25

2.7 Determination of total phenolic content	
2.7.1 Preparation of solutions	25
2.7.2 Protocol for total phenolic content	26
2.8 DPPH radical scavenging assay	
2.8.1 Preparation of solutions	27
2.8.1 Protocol for DPPH radical scavenging activity	27
2.9 FRAP assay	
2.9.1. Preparation of reagents	28
2.9.2. Protocol for reducing power	29
2.10 Quantitative analysis by HPLC	
2.10.1 Isolation of caffeine	30
2.10.2 Preparation of the solutions	30
2.10.3 Preparation of mobile phase for analysis of phenolic	30
compounds and caffeine	
2.10.4 Optimization of separation conditions	
1) Column type	31
2) Mobile phase composition	32
3) Gradient profile of mobile phase	33
4) Wavelength	34
2.10.5 Method validation of HPLC analysis	
1) Detection limit	35
2) Precision	35
3) Percent recovery	36
2.10.6 Calibration curves	37
2.10.7 Determination of phenolic compounds and caffeine in	37
samples	
2.11 Statistical analysis	37
Chapter 3 Results and discussion	
3.1 General	38
3.2 Volatile oils	
3.2.1 Extract of volatile oils	39
3.2.2 Determination of chemical components of the volatile oils	40

3.2.3 Total phenolic contents of volatile oil	47
3.2.4 Antioxidant activity of the volatile oils	48
1) DPPH assay of volatile oils	49
2) FRAP assay of volatile oils	49
3.3 Optimization of solvent extraction	50
3.3.1 Total phenolic contents of solvents extract	52
3.3.2 DPPH assay of the extract by various solvents	53
3.3.3 FRAP assay of the extract by various solvents	55
3.4 Optimization of HPLC condition	
3.4.1 Effect of type column on separation	57
3.4.2 Effect of mobile phase composition	58
3.4.3 Effect of gradient profile of mobile phase	59
3.4.4 Effect of wavelength	60
3.4.5 Summary of the optimum HPLC condition	61
3.5 Method validation	
3.5.1 Detection limit	62
3.5.2 Precision	63
3.5.3 Recovery assay	65
3.6 Quantitative HPLC analysis of phenolic compounds and caffeine	
in samples	
3.6.1 Extraction yield	66
3.6.2 HPLC analysis of phenolic compounds and caffeine in	67
ล ขล _{samples} บัทว่าวิทยาล ยเชยงเหม	
3.7 Total phenolic content and antioxidant activities of Assam tea	
3.7.1 Total phenolic contents of extract	78
3.7.2 Antioxidant activity of the leaves extracts and waters	
1) DPPH assay of leaves extracts and water	79
2) FRAP assay of leaves extracts and water	80
3.8 Correlation between total phenolic contents and antioxidant	83
activities	
Chapter 4 Conclusion	84
References	87

Appendices Curriculum Vitae

LIST OF TABLES

		Page
Table 1.1	Antioxidant compounds found in various food	12
Table 1.2	The major classes of phenolic compounds in plants	14
Table 2.1	Concentration of standard mixtures for determination of detection limit	35
Table 2.2	Concentration of standard mixtures for determination of % recovery	37
Table 3.1	Physical properties of fresh, steamed, fermented leaves, steamed and fermented water from Assam tea	39
Table 3.2	Percentages yields (%yield) of volatile oils from Assam tea	40
Table 3.3	Chemical composition of volatile oils from Assam tea	43
Table 3.4	Total phenolic content and antioxidant activities of essential oils of Assam tea	50
Table 3.5	Physical properties and percentages yields of solvent extract of fresh leaves from Assam tea	52
Table 3.6	Total phenolic contents of fresh leaves extract obtained from various type of solvent extraction	53
Table 3.7	Antioxidant activities of fresh leaves extract obtained by different solvent extractions.	56
Table 3.8	Peak areas of phenolic compounds at various wavelength	60
Table 3.9	Peak areas of phenolic compounds and caffeine at various concentrations for determination of LOD and LOQ	62
Table 3.10	Summary of LOD and LOQ of phenolic compounds and caffeine	63
Table 3.11	Repeatability of the peak area of each phenolic compound and caffeine	64
Table 3.12	Reproducibility of the peak area of each phenolic compound and caffeine	64

Table 3.13	The percentage recovery of extraction for fresh and 45 days 6	
	fermented leaves from Assam tea at 5LOQ and 10LOQ	
	concentration	
Table 3.14	Physical properties and percentages yields of fresh, steamed and	66
	fermented leaves extracts from Assam tea	
Table 3.15	Contents of phenolic compounds and caffeine of leaves extracts	74
	from Assam tea	
Table 3.16	Content of phenolic compounds and caffeine of water samples	75
	from Assam tea	
Table 3.17	Total phenolic contents of leaves extracts and water samples	78
Table 3.18	Antioxidant activities of fresh, steamed, fermented leaves,	
	streamed and fermented water of Assam tea	
Table 3.19	Correlation coefficient between total phenolic contents and the	83
	DPPH activity of solvent extracts, essential oils sample extracts	
	and sample waters	
	AI UNIVERSIT	
	AI UNIVER	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Page

Figure 1.1	C. sinensis plant	2
Figure 1.2	An outline of the manufacturing process for green tea, oolong tea	2
	and black tea	
Figure 1.3	Structure of chemical compound from Assam tea	6
Figure 1.4	The manufacturing process of Miang	11
Figure 1.5	Reaction of DPPH [•] with antioxidant	16
Figure 1.6	The manufacturing process of Miang Reaction of DPPH [•] with antioxidant Reaction of FRAP assay A modified Likens-Nickerson apparatus	16
Figure 2.1	A modified Likens-Nickerson apparatus	23
Figure 2.2	Various concentration of gallic acid standard for TPC	26
	measurement	
Figure 2.3	The samples at various concentrations in DPPH solution	28
Figure 2.4	The gallic acid (standard) at various concentrations in FRAP	29
Figure 2.5	Isolation of caffeine from tea leaves	30
Figure 3.1	Structure of major compounds identified in volatile oil from	42
	Assam tea	
Figure 3.2	Calibration curve of gallic acid used for calculating the total	48
	phenolic content.	
Figure 3.3	Calibration curve of gallic acid used for calculating FRAP value	49
Figure 3.4	% DPPH radical scavenging of fresh leaves extract obtained by	54
	different solvent extractions.	
Figure 3.5	IC ₅₀ values of fresh leaves extract obtained by different solvent	54
	extractions.	
Figure 3.6	FRAP (mgGAE/g DW) of fresh leaves extract obtained by	55
	different solvent extractions.	
Figure 3.7	HPLC chromatograms of GA, GC, caffeine, EGC, C, EC,	57
	EGCG, GCG and ECG standard obtained using VertiSep UPS	
	C18	

Figure 3.8	HPLC chromatograms of GA, GC, caffeine, EGC, C, EC,	58
	EGCG, GCG and ECG standard obtained using Wakosil-II	
	5C18 HG	
Figure 3.9	The characteristic peak of catechin, GCG and EGCG using two	59
	moblie phase system	
Figure 3.10	Chromatogram of phenolic compounds and caffeine in a various	59
	gradient elution. A: series 1; B: series 2	
Figure 3.11	Chromatogram of standard phenolic compounds and caffeine	61
Figure 3.12	Calibration curve used for calculating concentration of GA in	67
	samples	
Figure 3.13	Calibration curve used for calculating concentration of GC in	68
	samples	
Figure 3.14	Calibration curve used for calculating concentration of caffeine	68
	in samples	
Figure 3.15	Calibration curve used for calculating concentration of EGC in	69
	samples	
Figure 3.16	Calibration curve used for calculating concentration of C in	69
	samples	
Figure 3.17	Calibration curve used for calculating concentration of EC in	70
	samples	
Figure 3.18	Calibration curve used for calculating concentration of EGCG in	70
	samples	
	Calibration curve used for calculating concentration of GCG in	71
	samplesright [©] by Chiang Mai University	
Figure 3.20	Calibration curve used for calculating ECG concentration in	71
	samples	
Figure 3.21	Chromatograms of phenolic compounds in sample extracts	73
	obtained using 1% ethyl acetate in methanol/ 0.1% (v/v)	
	phosphoric acid in water	
Figure 3.22	Content of GA, GC, caffeine, EGC, C, EC, EGCG, GCG and	76
	ECG from extract samples	
Figure 3.23	Content of GA, GC, caffeine, EGC, C, EC, EGCG, GCG and	77

ECG from water samples

Figure 3.24 %DPPH radical scavenging activity of sample extracts and	79
water samples	
Figure 3.25 IC ₅₀ values of sample extracts and water samples	80
Figure 3.26 FRAP of sample extracts and water samples	81
Figure 3.27 Structural features of flavonoids important to antioxidant	82
chemistry	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

LIST OF ABBREVIATIONS/ SYMBOLS

А	absorbance
amu	atomic mass unit
°C	degree celsius
DAD	diode array detector
DW	dry weight
g	gram gallic acid equivalent
GAE	gallic acid equivalent
GC	gas chromatography
HPLC	high performance liquid chromatography
I.D.	internal diameter
L	liter
LOD	limit of detection
LOQ	limit of quantification
MS	mass spectrometry
MW	molecular weight
ml	milliliter
min	minute
m/z	mass to charge ratio
	maximum absorption wavelength
n.d.Copyright ^C	not detected ang Mai University
^{nm} All ri	nanometer s reserved
%	percent
ppm	part per million
R ²	correlation coefficient
RI	refractive index
RSD	relative standard

SD	standard deviation
TIC	total ion chromatogram
UV-VIS	ultraviolet-visible
\mathbf{v}/\mathbf{v}	volume by volume
W	peak width

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved