

# Appendix (A)

# **Questionnaire of household Survey**

Respondent code:

Date: / /2017

Ward No.:

# I. Family Background

Owner-occupancy or Home-ownership? •

|    | 1. Own 2.Rent(Hostel) 3.Squatter          |       |         |                    |          |                     |         |        |        |
|----|-------------------------------------------|-------|---------|--------------------|----------|---------------------|---------|--------|--------|
|    | • Duration of stay in Hlaing Tharya Tsp.? |       |         |                    |          |                     |         |        |        |
|    |                                           | ye    | ar/mc   | onth ago           |          | ~ ~                 | 21      |        |        |
|    |                                           |       | 5       | 12                 | うぼい      | $\leq$ $\backslash$ | 3       |        |        |
| Si | Relations                                 | Sex   | 67      | Educati            | Occupati | Avera               | Ethnici | Religi | Do     |
| r  | hip to HH                                 | M=    | Ag      | on                 | on       | ge                  | ty      | on     | Househ |
|    | head                                      | 1     | e       | U                  | They are | Incom               | 900     |        | old    |
|    |                                           | F=    | 2       |                    | NZ       | e                   | 131     |        | Chores |
|    |                                           | 2     | B       |                    | MA       | (/mont              | 5       |        | (Y/N)  |
|    |                                           |       | $U_{3}$ | 10                 | 66331    | h)                  | ÷ //    |        |        |
| 1  |                                           |       |         | MA                 | Trans    | FRSI                |         |        |        |
| 2  |                                           |       |         |                    | UNI      |                     |         |        |        |
| 2  |                                           |       |         | <                  | 0        |                     | - 7     |        |        |
| 3  | 3                                         | 366   | ina     | ธบหา               | วทยา     | ลยเข                | 1638    | าบ     |        |
| 4  | (                                         | Copy  | righ    | nt <sup>©</sup> by | Chiang   | Mai I               | Univer  | sity   |        |
| 5  |                                           | A È Ì |         | righ               | ts i     | eso                 | erv     | e d    |        |
| 6  |                                           |       |         | 0                  |          |                     |         |        |        |
| 7  |                                           |       |         |                    |          |                     |         |        |        |
| 8  |                                           |       |         |                    |          |                     |         |        |        |
| 9  |                                           |       |         |                    |          |                     |         |        |        |
| 1  |                                           |       |         |                    |          |                     |         |        |        |
| 0  |                                           |       |         |                    |          |                     |         |        |        |
|    |                                           |       |         |                    |          |                     |         |        |        |

\*Circle the respondent's serial number. Write the letter "H" to indicate HH Head

\*Express all types of income (express if there is any financial support from family members and relatives)

#### **Incidences of Diarrhea**

Did any FM get diarrhoea or loose motion at least three times a day during (i) the last two weeks?

If yes,

| Age group | Male | Female |          |
|-----------|------|--------|----------|
| <1        |      |        |          |
| 1-<5      |      | \$ 918 | 18140 21 |
| 5-<18     |      | 240    | 200 2    |
| 18-<64    | 8    | 1. 5   |          |
| >=65      | a    | De     | 10/2/2   |

- (ii) How do you cure diarrhoea?
  - 1. Traditional cure, 2. self-description, 3. Ask pharmacy, 4. See doctor 5. .....
- What do you think the causes of diarrhoea? (Take the first answer) (iii)

#### **II.** Water

**Drinking Water**) เหาวิทยาลัยเชียงใหม่

2a (i). What is the main source? W Chiang Mai University

1. Purified drinking water, 2. Pond, Well, Stream, Piped, 3.Rainfall, 4. Other.....

2a (ii). Is there any second source of water? Yes No

If so, what is it? Pond, Well, Stream, Piped, Rainfall, Other.....

#### If you use Commercial Purified Drinking Water, 2b

| Brand Name                           |           |
|--------------------------------------|-----------|
| The price of 20-litre plastic bottle | Ks        |
| No. of bottles used per week for H   | H bottles |

#### (Not for commercial drinking water bottle user)

2c (i). Do you make any treatment/**cleansing** method for drinking water? Yes No

2c(ii). If yes, how? Boil, Filter, chlorinate, other.....

#### • Water for General use

2d. What is the main source?

1. Well 2. Pond, Stream, Piped 3. Rainfall 4. Other.....

Food preparationPurified bottle, well, Pond, stream, piped, rainfall,trolley vendor, other......

The restPurified bottle, well, Pond, stream, piped, rainfall,trolley vendor, other......

If pond, any protection against animals, (fence)?YesNoIs there any Water Scarcity problem?YesNo

- 2e (for squatter and rent)
   Do you have to pay for water access? Yes No

   If so, How much
   ......Ks

   Price of water per ceramic tank/plastic
   .....Ks
- 2f (i). Do you make any **treatment/ cleaning** to water for HH use? Yes No

2f (ii). If yes, how Filter, boil, sediment, chlorinate, Other.....

#### 2g Household perception on water quality

|                  | Drinking water | Water for general use |
|------------------|----------------|-----------------------|
| Absolutely clean |                |                       |
| Clean            |                |                       |
| Not so clean     |                |                       |
| Very unclean     |                |                       |
| Don't know (98)  |                |                       |

#### III. Latrine usage and Environmental sanitation

#### **3a(i) Defecation practice**

. . . . . . . .

Where do your FM go to defecate?

1. Own2. Other HH's3. Share in Hostel4. Public latrine5.

3a (ii). For those choose No.1 "Own", do any other people share your latrine?YesNo

3a(iii). If Yes, and *those choosing No. 2 and 4*, How many people share it? ......person/HH

3b. What kind of latrine is used?

Piped sewer, 2.septic tank, 3. ventilated improved pit latrine, *open* pit 4. Pit *with slab*, 5. composting toilet, 6.Bucket,

3c. What facilities used for cleansing?

1. Water, 2. water & soap, 3. paper, 4. water & paper

#### (3d) HH having no latrines (not for those who live in hostel)

3d. What is the main reason for not building and utilising the latrine?

| 1. | I'm a squatter                             |     |    |
|----|--------------------------------------------|-----|----|
|    | >> 3di. If you have space, will you build? | Yes | No |
| 2. | No space to build (squatter)               |     |    |
|    | >> 3di. If you have space, will you build? | Yes | No |
| 3. | Can't dig the pit (swamp, daily tide)      |     |    |

- 4. Can't dig the pit (hardness of earth)
- 5. Neighbors don't approve of
- 6. Can't afford,

>> 3dii. Express max amount you can afford to build the latrine?

.....Ks

7. Other.....

3e. Do you have any plan to build one?YesNo

If yes, When? 1. three months 2. six months 3. One year 4. Two years 5. >3 years

3f. What is the main reason to build a latrine? Or why do you want to build?

#### (3g) Maintenance of Individual HH latrine

Have latrine got full?

Yes No

If Yes, What do you usually do?

1.Sort yourself, 2.with municipal, 3. private service 4.....

#### (3h) Child defecation practice

3h (i)Do you have a child of <u>under one year</u>? Yes No

3h (ii)Do you have a child of under two years?YesNoIf yes how does the child mostly defecate?YesYes

1. In dress2.child bucket3. Bathroom4. Toilet5.Compound6. Other6.6.6.6.

3h (iii) How does the caregiver clean the child's bottom?

1. Water, 2. water & soap, 3.cotton pad, 4.cloth,....

3h (iv)Where does caregiver dispose the faeces? .....

3h (v)Does she wash hands? Yes No

How does she clean hands?

1. With water, 2. with soap and water, 3. other.....

3h (vi)Do you have a child of age **bet two and five?** Yes No

3h (vii)How does the child mostly defecate?

1. In dress2.child bucket3. Bathroom4. Toilet5.Compound6. Other

3h (viii)Who clean the child's bottom?1.Itself2. the caregiverIf cleansing itself, how does it clean?

1.Water, 2.water and soap, 3. cotton pad, 4.cloth,

5.other.....

If the caregiver cleansing, how does the caregiver clean the child's bottom?1.Water,2.water and soap,3.other.....

3h (ix)How does caregiver dispose of the faeces? (not for toilet using)

•••••

3h (x) Does she wash hands? How does she clean hands?

1. With water, 2. with soap and water, 3. other.....

Yes

by Chiang Mai University

No

# IV. Hygiene อิปสิทธิ์มหาวิทยาลัยเชียงใหม่

#### Hand Washing

4a. What activities come to your mind **first** when you think of personal hygiene?
Choose. .. 1.facial clean, 2. tooth clean, 3.hand wash, 4.bath,
5.nail cut, 6.shampoo, 7.other.....

#### 4b. When do you wash your hand?

| 1. | Before eating         | Yes | No  |    |
|----|-----------------------|-----|-----|----|
| 2. | After eating          |     | Yes | No |
| 3. | After defecation      |     | Yes | No |
| 4. | Before preparing food | Yes | No  |    |

5. After dirty work

6. .....

#### V. Disposal of waste

5a.Where do you dispose?

1. Private trolley collector, 2. Municipal Dustbin/car 3. back alley,

4. within compound 5. Vacant land

*If use Private collector;* express the amount .......... Ks / Pac

#### 5b.(Not for squatter households)

Do municipal workers work on your street? Yes No

week/month

#### VI. Contingent valuation (willingness to pay and ability to pay)

- Water
  - 6a(i) Let's say public **piped** water system will be installed in Hlaing Tharya.

Do you want to access to?1. Strongly agree,2. Agree3. Not agree,4. Strongly not agree

5. DK

 6a(ii) If it makes into the situation where the drinking water can be used by this public piped water system (the water to be disinfected) in Hlaing Tharya.

Do you want to access to?

1. Strongly agree, 2. Agree 3. Not agree, 4. Strongly not agree 5. DK

6a(iii) How much do you want to and able to contribute, via municipal tax payment (per month) for No.6a(i) case? .....Ks 6a(iv) How much do you want to and able to contribute, via municipal tax payment (per month) for No.6a(ii) case?

.....Ks

6b(i). Why do you think you should pay for piped water?

6b(ii). Why do you think you should pay for piped water?

#### • Waste management

1. 6c(i) Let's say the waste collection service will be improved to the condition at downtown Yangon.

(show photos of street and back alley) Do you want?

strongly agree,
 Agree,
 Not agree,
 Strongly not agree
 DK

6c(ii) If yes, how much do you want to and able to contribute to public service via municipal tax (per month)?

```
.....Ks
```

6c(iii) Why do you think you should pay for it?

## VII. Health Information Source

7a. Where do you mostly get any health info? (Rank Number 1,2,3 for first **three main** sources)

| Radio | Television | Internet | Newspapers | Magazines | Family   | School/        | Friends |
|-------|------------|----------|------------|-----------|----------|----------------|---------|
|       | 0          | 0 5      | 0          | ~         | - S      | Uni            |         |
|       | 81         | ansi     | เหาวิท     | IRAPI     | RSIA     | 1411           |         |
|       | 00         |          |            | 0 1001    | 000      |                |         |
|       | Cor        | might (  | C by Chi   | ichl par  | Liminary | and the second |         |
|       | CO         | yngni    | - by Cill  | ang mar   | Onive    | isity          |         |

All rights reserved

## VIII. Mobile phone usage

8a. Does your household have a mobile phone?YesNo

If yes, fill the table.

| Put sir no. of | Type of phone                          | Internet (Y/N) | App he/she uses |
|----------------|----------------------------------------|----------------|-----------------|
| HH members     | (smart=1, keypad=2,                    |                |                 |
|                | sitting=3)                             |                |                 |
|                |                                        |                |                 |
|                |                                        |                |                 |
|                |                                        |                |                 |
|                |                                        | 61912          |                 |
|                | 0 910                                  | 10 10 91       |                 |
|                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 200 2          |                 |
|                | 5/0                                    | 感じく、必          |                 |
|                | 13.                                    |                |                 |



**ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่** Copyright<sup>©</sup> by Chiang Mai University All rights reserved

# Appendix (B)

#### **Binary Logistic**

Summary of dummy dependent variables used in binary logistic regressions

| Variable | Obs | Mean     | Std. Dev. | Min | Мах |
|----------|-----|----------|-----------|-----|-----|
| dw       | 402 | .7338308 | .4425045  | 0   | 1   |
| CW       | 402 | .4353234 | .4964171  | 0   | 1   |
| apn      | 402 | .8880597 | .3156859  | 0   | 1   |
| h        | 402 | .6691542 | .471104   | 0   | 1   |

Summary of continuous variables in binary logistic regressions

. summarize inc he set

| Мах     | Min   | Std. Dev. | Mean     | Obs | Variable |
|---------|-------|-----------|----------|-----|----------|
| 3000000 | 20000 | 292331.2  | 409587.1 | 402 | inc      |
| 15      | 0     | 2.84208   | 8.850746 | 402 | he       |
| 56      | 1     | 9.28701   | 11.28358 | 402 | set      |

Logistic regression for dummy of safe drinking water or not . logistic dw he ib(last).lo

| Logistic regre<br>Log likelihood | ession<br>1 = -130.2309 |                      |              | Number<br>LR chi<br>Prob ><br>Pseudo | of obs<br>2(3)<br>chi2<br>R2 |            | 402<br>205.38<br>0.0000<br>0.4409 |
|----------------------------------|-------------------------|----------------------|--------------|--------------------------------------|------------------------------|------------|-----------------------------------|
| dw                               | Odds Ratio              | Std. Err.            | Z            | P> z                                 | [95% c                       | conf.      | Interval]                         |
| he                               | 1.160739                | .0753252             | 2.30         | 0.022                                | 1.0221                       | .07        | 1.318173                          |
| 1o<br>1<br>2                     | 47.31903<br>40.41223    | 20.56148<br>16.02617 | 8.88<br>9.33 | 0.000                                | 20.19<br>18.576              | )13<br>508 | 110.8938<br>87.91672              |

. estat gof Copyright<sup>©</sup> by Chiang Mai University

Logistic model for dw, goodness-of-fit test

| number of observations =       | 402    |
|--------------------------------|--------|
| number of covariate patterns = | 35     |
| Pearson chi2(31) =             | 41.89  |
| Prob > chi2 =                  | 0.0917 |





Logistic regression for dummy of purified water for cooking or not

| . logistic cw<br>Logistic regre | he ib(last).<br>ession |                      |                | Number           | of obs           | =          | 402                  |
|---------------------------------|------------------------|----------------------|----------------|------------------|------------------|------------|----------------------|
| Log likelihood                  | I = -271.10029         |                      |                | Prob ><br>Pseudo | chi2<br>R2       | =          | 0.0394<br>0.0152     |
| CW                              | Odds Ratio             | Std. Err.            | z              | P> z             | [95%             | Conf.      | Interval]            |
| he                              | 1.074291               | .0432578             | 1.78           | 0.075            | . 9927           | 668        | 1.16251              |
| lo<br>1<br>2                    | .4667504<br>.5009182   | .1389831<br>.1397665 | -2.56<br>-2.48 | 0.011<br>0.013   | . 2603<br>. 2899 | 901<br>106 | .8366522<br>.8655049 |

| Goodness of Fit test<br>. estat gof                                   | หาวิทย                | าลัยเ  | ชียงใหม่   |
|-----------------------------------------------------------------------|-----------------------|--------|------------|
| Logistic model for cw, goodness-of                                    | <u>-fit test</u>      | 10101  | 11.1       |
| number of observations =                                              | 402 ha                | ng Mai | University |
| number of covariate patterns =<br>Pearson chi2(31) =<br>Prob > chi2 = | 35<br>33.71<br>0.3379 | res    | erved      |



## Logistic regression for dummy of sharing latrine or not

| . logistic h   | ib(last).lo inc      |           | Junion Constanting |                            | - 1                    |          |                         |
|----------------|----------------------|-----------|--------------------|----------------------------|------------------------|----------|-------------------------|
| Logistic regro | ession -             | E         |                    | Number<br>LR chi<br>Prob > | of obs<br>2(3)<br>chi2 |          | 402<br>109.54<br>0.0000 |
| Log likelihoo  | d = -200.40987       |           | N                  | Pseudo                     | R2                     | 4        | 0.2146                  |
| h              | Odds Ratio           | Std. Err. | z                  | P> z                       | [95% C                 | onf.     | Interval]               |
| lo<br>1<br>2   | 2.309559<br>.1752009 | .8447784  | 2.29<br>-5.80      | 0.022<br>0.000             | 1.1276<br>.09724       | 68<br>37 | 4.730174<br>.3156539    |
| inc            | 1.000001             | 6.54e-07  | 2.19               | 0.028                      | 3.                     | 1        | 1.000003                |

Goodness of Fit test . estat gof

Logistic model for h, goodness-of-fit test ng Mai University

| Prob > chi2 = 0.0003 | number of observations =<br>number of covariate patterns =<br>Pearson chi2(149) =<br>Prob > chi2 = | = 402<br>= 153<br>= 214.94<br>= 0.0003 | e | S | e | ľ | V | e |
|----------------------|----------------------------------------------------------------------------------------------------|----------------------------------------|---|---|---|---|---|---|
|----------------------|----------------------------------------------------------------------------------------------------|----------------------------------------|---|---|---|---|---|---|

# AUROC curve



Logistic regression for dummy of appropriate waste disposal or not

| . logit apn he                                                               | set, or                                                                      | 1-15                                                                   | TTTT BY                         |                                      |                                           |                                  |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------|--------------------------------------|-------------------------------------------|----------------------------------|
| Iteration 0:<br>Iteration 1:<br>Iteration 2:<br>Iteration 3:<br>Iteration 4: | log likeliho<br>log likeliho<br>log likeliho<br>log likeliho<br>log likeliho | d = -140.92<br>d = -128.4<br>d = -126.88<br>d = -126.87<br>d = -126.87 | 225<br>715<br>531<br>227<br>226 | $\sum$                               | 影                                         |                                  |
| Logistic regre<br>Log likelihood                                             | ssion<br>= -126.87226                                                        | 1 <sub>G</sub>                                                         |                                 | Number<br>LR chi<br>Prob ><br>Pseudo | r of obs =<br>i2(2) =<br>chi2 =<br>o R2 = | 402<br>28.10<br>0.0000<br>0.0997 |
| apn                                                                          | Odds Ratio                                                                   | Std. Err.                                                              | UzI                             | P> z                                 | [95% Conf.                                | Interval]                        |
| he<br>set                                                                    | 1.245286<br>1.063425                                                         | .070709<br>.0263732                                                    | 3.86<br>2.48                    | 0.000<br>0.013                       | 1.114132<br>1.012971                      | 1.391879<br>1.116393             |
| Goodness of F<br>. estat gof                                                 | ït test                                                                      | t <sup>©</sup> by 0                                                    | Chian                           | าสยเ<br>g Mai                        | Universi                                  | <b>i</b> ty                      |
| Logistic model                                                               | for apn, good                                                                | ness-of-fit te                                                         | st                              | res                                  | erve                                      | d                                |
| number o<br>number of cova<br>Pea                                            | f observations<br>riate patterns<br>rson chi2(149)<br>Prob > chi2            | s = 402<br>s = 152<br>0 = 152.<br>2 = 0.                               | 72<br>4005                      |                                      |                                           |                                  |



# Appendix (C)

#### **Contingent Valuation**

Summary data of variables in truncated regression for WTP of piped water . summarize wtp lnwtp inc i.lo

| Variable           | Obs             | Mea          | an St  | d. Dev.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Min        | Max         |
|--------------------|-----------------|--------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|
| wtp                | 327             | 4457.18      | 87 30  | 26.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0          | 15000       |
| lnwtp              | 327             | 7.9366       | 68 1.  | 683336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0          | 9.615872    |
| inc                | 327             | 412305       | .8 27  | 0022.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40000      | 2500000     |
| lo                 |                 |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |
| 2                  | 327             | . 370030     | 06 .4  | 1835525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0          | 1           |
| 3                  | 327             | .223243      | 16 .4  | 170572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200        | 1           |
| Truncated <b>R</b> | Regression r    | esult for V  | VTP of | piped v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | vater      |             |
| . truncreg lnv     | vtp ib(last).1  | .0, 11(0)    |        | RAS -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | > \ ' 3    | 18 18       |
| (note: 12 obs.     | . truncated)    | S. /         | 7      | Yes and the second seco |            |             |
|                    |                 | 1/-          | /      | AT N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>   | 51          |
| Fitting full m     | nodel:          |              | Jun    | - LUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11         | - 11        |
|                    | 11              |              | 121    | 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |             |
| Iteration 0:       | log likeliho    | pod = -307.  | 1134   | = m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 696         |
| Iteration 1:       | log likeliho    | pod = -307.1 | 0621   | 183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 5351        |
| Iteration 2:       | log likeliho    | pod = -307.1 | 0621   | F-SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | · · · · ·   |
| Trupasted read     |                 |              | 1      | V ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | A           |
| Truncated regr     |                 | 1 5          |        | Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of ohe     | 0 / 215     |
| TTULL: TOMEL       | <br>. = +inf    | $>$ \        | [      | Wald ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $i_2(2) =$ | 22 99       |
| Log likelihoor     | d = -307, 10621 | Z            |        | Prob >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | chi2 =     | 0.0000      |
| bog iikeiinoot     |                 | (Vh)         | 6      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 0.0000      |
|                    |                 | CC.          |        | lad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SY/        |             |
| lnwtp              | Coef.           | Std. Err.    | ATT    | P> z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [95% Conf  | . Interval] |
| 10                 |                 |              |        | 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |             |
| 1                  | 2820711         | .0949219     | -2.97  | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4681146    | 0960276     |
| 2                  | 4633991         | .0966577     | -4.79  | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6528448    | 2739534     |
|                    | adar            |              | 101    | 19.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |             |
| _cons              | 8.524285        | .0761281     | 111.97 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.375076   | 8.673493    |
| /sigma             | .6414666        | .0255566     | 25.10  | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .5913765   | .6915567    |
|                    | AH              | r 1 g        | ht     | S ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eser       | ved         |

#### Wald test

```
. test 1.10 2.10 3.10
```

```
( 1) [eq1]1.lo = 0
```

```
( 2) [eq1]2.lo = 0
```

- ( 3) [eq1]3b.lo = 0
  - Constraint 3 dropped

chi2(2) = 22.99 Prob > chi2 = 0.0000

```
. test 1.lo = 2.lo = 3.lo
( 1) [eq1]1.lo - [eq1]2.lo = 0
( 2) [eq1]1.lo - [eq1]3b.lo = 0
chi2( 2) = 22.99
Prob > chi2 = 0.0000
```

**Regression of squared residuals against explanatory variables** 

| . predict sl,  | residual   |           |           |         |             |           |
|----------------|------------|-----------|-----------|---------|-------------|-----------|
| . gen sls = sl | _^2        |           |           |         |             |           |
| . reg sls i.lo | )          | 015       | 18124     | 8       |             |           |
| Source         | SS         | df        | MS        | Numb    | er of obs = | 327       |
|                |            | NV /      | S D.D.A   | - F(2,  | 324) =      | 0.09      |
| Model          | 30.3985507 | 2         | 15.199275 | 53 Prob | > F =       | 0.9100    |
| Residual       | 52204.2016 | 324       | 161.12407 | 79 R-sq | uared =     | 0.0006    |
|                | 1 9 .      | 1         |           | - Adj   | R-squared = | -0.0056   |
| Total          | 52234.6001 | 326       | 160.22883 | 35 Root | MSE =       | 12.693    |
| sls            | Coef.      | Std. Err. |           | P> t    | [95% Conf.  | Interval] |
| 10             |            |           | TAX       | 2)      |             |           |
| 2              | .1381082   | 1.594698  | 0.09      | 0.931   | -2.999162   | 3.275379  |
| 3              | 6516938    | 1.848956  | -0.35     | 0.725   | -4.289169   | 2.985781  |
| _cons          | 2.967478   | 1.100663  | 2.70      | 0.007   | .8021291    | 5.132826  |
|                |            | GI        | CODO -    | - ST    | ×//         |           |

# Summary data of variables in truncated regression for WTP of disinfection to piped water

# . summarize wtp lnwtp inc i.cw

| Variable | Cor Obs | Mean     | Std. Dev. | 5 M Min          | Max                    | y |
|----------|---------|----------|-----------|------------------|------------------------|---|
| wtp      | 298     | 2169.128 | 1921.381  | res <sub>0</sub> | e r <sub>10000</sub> e | d |
| lnwtp    | 298     | 6.468672 | 2.781293  | 0                | 9.210441               |   |
| inc      | 298     | 418922.8 | 274904.3  | 45000            | 2500000                |   |
| 1.cw     | 298     | .4395973 | .497173   | 0                | 1                      |   |

#### Truncated Regression result for WTP of disinfection to piped water

. truncreg lnwtp inc i.cw, ll(0)
(note: 44 obs. truncated)

Fitting full model:

| Iteration | 0: | log | likelihood | = | -274.54335 |
|-----------|----|-----|------------|---|------------|
| Iteration | 1: | log | likelihood | = | -274.53443 |
| Iteration | 2: | log | likelihood | = | -274.53443 |

| Trur | ncated | regre | ess | sion       |  |
|------|--------|-------|-----|------------|--|
| Limi | t:     | lower | =   | 0          |  |
|      |        | upper | =   | +inf       |  |
| Log  | likel  | ihood | =   | -274.53443 |  |

| lnwtp  | Coef.    | Std. Err. | 91 2 J | P> z  | [95% Conf. | . Interval] |
|--------|----------|-----------|--------|-------|------------|-------------|
| inc    | 4.87e-07 | 1.57e-07  | 3.09   | 0.002 | 1.78e-07   | 7.95e-07    |
| 1.cw   | .2318061 | .0903042  | 2.57   | 0.010 | .0548131   | .408799     |
| _cons  | 7.280143 | .0898206  | 81.05  | 0.000 | 7.104098   | 7.456188    |
| /sigma | .713128  | .0316399  | 22.54  | 0.000 | .6511149   | .7751412    |

MAI

Number of obs = Wald chi2(2) = Prob > chi2 =

254 16.20 0.0003

#### Wald Test

- . test inc 1.cw 0.cw
- ( 1) [eq1]inc = 0
- (2) [eq1]1.cw = 0 (3) [eq1]0b.cw = 0
- Constraint 3 dropped

# Prob > chi2 =

chi2( 2) =

16.20 0.0003

- . test inc 1.cw 0.cw
- ( 1) [eq1]inc = 0
- ( 2) [eq1]1.cw = 0
- (3) [eq1]0b.cw = 0
  - [eq]05.cw = 0 Constraint 3 dropped chi2( 2) = 16.20 Prob > chi2 = 0.0003

rights reserved

**Regression of Squared residuals against explanatory variables** 

. predict sl, residual

. gen sls =  $sl^2$ 

. reg sls inc

| Source       | SS                    | df                   | MS            | Number of obs                                                                      | =                | 298                               |
|--------------|-----------------------|----------------------|---------------|------------------------------------------------------------------------------------|------------------|-----------------------------------|
|              |                       |                      |               | F(1, 296)                                                                          | =                | 1.75                              |
| Model        | 713.020841            | 1                    | 713.020841    | Prob > F                                                                           | =                | 0.1867                            |
| Residual     | 120508.438            | 296                  | 407.123102    | R-squared                                                                          | =                | 0.0059                            |
|              |                       |                      |               | - Adj R-squared                                                                    | =                | 0.0025                            |
| Total        | 121221.459            | 297                  | 408.153061    | Root MSE                                                                           | =                | 20.177                            |
|              | I                     |                      |               |                                                                                    |                  |                                   |
|              |                       |                      |               |                                                                                    |                  |                                   |
| sls          | Coof                  |                      |               |                                                                                    |                  |                                   |
|              | COEI.                 | Sta. Err.            | t             | P> t  [95% Co                                                                      | onf.             | Interval]                         |
|              | COEL.                 | Sta. Eff.            | 2110          | P> t  [95% Co                                                                      | onf.             | Interval]                         |
| inc          | -5.64e-06             | 4.26e-06             | -1.32         | 0.18700001                                                                         | onf.<br>         | 1nterval]<br>2.75e-06             |
| inc<br>_cons | -5.64e-06<br>11.25138 | 4.26e-06<br>2.132947 | -1.32<br>5.28 | 0.18700001<br>0.000 7.05371                                                        | onf.<br>14<br>15 | 15.44904                          |
| inc<br>_cons | -5.64e-06<br>11.25138 | 4.26e-06<br>2.132947 | -1.32<br>5.28 | P> t          195% Cd           0.187        00001           0.000         7.05371 | onf.<br>14<br>15 | 15.44904                          |
| inc<br>_cons | -5.64e-06<br>11.25138 | 4.26e-06<br>2.132947 | -1.32<br>5.28 | P> t          195% Cd           0.187        00001           0.000         7.05371 | onf.<br>14<br>15 | Interval]<br>2.75e-06<br>15.44904 |

# Summary data of variables in truncated regression for WTP of disinfection to piped water

11 U

| . summarize wtp | inwtp inc i | .10                 | 3         | a     |         | 130%              |
|-----------------|-------------|---------------------|-----------|-------|---------|-------------------|
| Variable        | Obs         | Mean                | Std. Dev. | Min   | Max     | 335               |
| wtp             | 318         | 1506.918            | 1267.433  | N o X | 6000    | 14                |
| lnwtp           | 318         | 6.371495            | 2.405266  | 0 8   | .699681 | 6                 |
| inc             | 318         | 418660.4            | 275695.2  | 20000 | 2500000 | ~ //              |
| 10              |             | Nº2                 |           | 66336 | 1       | ÷//               |
| 2               | 318         | .3930818            | .4892045  | UNIV  | ERP     |                   |
| 3               | 318         | .1981132            | .3992061  | 0     | 1       |                   |
|                 | ຄີບຄື       | ສີກຣົ່າ             | มหาวิเ    | ทยาล  | ລັຍເชີ  | ียงใหม            |
|                 | Сор         | yright <sup>@</sup> | by C      | hiang | Mai l   | <b>University</b> |

All rights reserved

#### Truncated Regression result for WTP of effective solid waste disposal

```
. truncreg lnwtp ib(last).lo inc, ll(0)
(note: 37 obs. truncated)
Fitting full model:
Iteration 0: log likelihood = -289.80879
Iteration 1:
            \log likelihood = -289.79443
Iteration 2: log likelihood = -289.79442
Truncated regression
Limit: lower =
                    0
                                        Number of obs
                                                       =
                                                              281
       upper =
                  +inf
                                        Wald chi2(3)
                                                       =
                                                             10.19
Log likelihood = -289.79442
                                        Prob > chi2
                                                            0.0171
                                                       =
                                              [95% Conf. Interval]
     lnwtp
                Coef. Std. Err.
                                 z
                                        P>|z|
        lo
                       .1159409 -2.37 0.018 -.5020089
.1133211 -2.45 0.014 -.4997659
        1
             -.2747688
                                                          -.0475287
                       .1133211 _ -2.45
        2
             -.2776606
                                                          -.0555553
                       1.50e-07
                                 2.13
                                                          6.12e-07
       inc
              3.19e-07
                                        0.033
                                                2.55e-08
                                 69.49
                                        0.000
                                                7.095376
                                                          7.507262
              7.301319
                       .1050751
      _cons
     /sigma
              .6786555
                       .0286274
                                 23.71
                                        0.000
                                                .6225469
                                                           .7347641
Wald Test
. test 1.10 2.10 3.10 inc
 (1) [eq1]1.lo = 0
 (2) [eq1]2.10 = 0
 ( 3) [eq1]3b.lo = 0
 (4) [eq1]inc = 0
       Constraint 3 dropped
           chi2( 3) =
                         10.19
         Prob > chi2 =
                          0.0171
. test 1.10=2.10=3.10 = inc
 (1) [eq1]1.lo - [eq1]2.lo = 0
 (2) [eq1]1.lo - [eq1]3b.lo = 0
                                   by Chiang Mai University
 ( 3) [eq1]1.lo - [eq1]inc = 0
       Constraint 2 dropped
                                                reserved
                                    hts
                         r
              AII
           chi2( 2) = 6.95
         Prob > chi2 = 0.0310
```

#### **Regression of Squared residuals against explanatory variables**

. predict sl, residual

. . gen sls = sl^2

#### . reg sls i.lo

| Source              | SS                           | df                               | MS                  | Number of obs                                 | s =                 | 318                               |
|---------------------|------------------------------|----------------------------------|---------------------|-----------------------------------------------|---------------------|-----------------------------------|
|                     |                              |                                  |                     | F(2, 315)                                     | =                   | 0.94                              |
| Model               | 525.980521                   | 2                                | 262.99026           | Prob > F                                      | =                   | 0.3903                            |
| Residual            | 87783.0823                   | 315                              | 278.676452          | R-squared                                     | =                   | 0.0060                            |
|                     |                              |                                  |                     | Adj R-squared                                 | d =                 | -0.0004                           |
| Total               | 88309.0629                   | 317                              | 278.577485          | Root MSE                                      | =                   | 16.694                            |
|                     |                              |                                  |                     |                                               |                     |                                   |
|                     |                              |                                  |                     |                                               |                     |                                   |
| sls                 | Coef.                        | Std. Err.                        | 3180                | ?> t  [95% (                                  | Conf.               | Interval]                         |
| sls                 | Coef.                        | Std. Err.                        | ntle                | ?> t  [95% (                                  | Conf.               | Interval]                         |
| sls                 | Coef.                        | Std. Err.                        | 91818               | 2> t  [95% (                                  | Conf.               | Interval]                         |
|                     | Coef.                        | Std. Err.<br>2.09119             | -0.16 0             | P> t  [95% (                                  | Conf.<br>316        | Interval]<br>3.785616             |
|                     | Coef.<br>3288504<br>3.044287 | Std. Err.<br>2.09119<br>2.562636 | -0.16 (0<br>1.19 (0 | P> t  [95% (<br>0.875 -4.443:<br>0.236 -1.997 | Conf.<br>316<br>759 | Interval]<br>3.785616<br>8.086332 |
| sls<br>10<br>2<br>3 | Coef.<br>3288504<br>3.044287 | Std. Err.<br>2.09119<br>2.562636 | -0.16<br>1.19       | 2> t  [95% (<br>0.875 -4.443)<br>0.236 -1.997 | Conf.<br>316<br>759 | Interval]<br>3.785616<br>8.086332 |

#### **Mobile Phone**

Summary of variables in truncated regression for Mobile Phone Use . summarize mph inc i.lo

| Max        | Min   | Std. Dev. | Mean     | obs | Variable |
|------------|-------|-----------|----------|-----|----------|
| 2000000    | 20000 | .2796113  | .5341477 | 402 | mph      |
| 300000     | 20000 | 292331.2  | 409307.1 | 402 | 1.       |
| $\sqrt{1}$ | 0     | .4855194  | .3781095 | 402 | 2        |
| > // 1     | Ó     | .4222168  | .2313433 | 402 | 3        |

#### **Regression result for mobile phone use**

. truncreg mph ib(last).lo inc, 11(0) ul(1)
(note: 81 obs. truncated)

Fitting full model:
Iteration 0: log likelihood = 88.03123
Iteration 1: log likelihood = 88.379305
Iteration 2: log likelihood = 88.379319
Iteration 3: log likelihood = 88.379319
Truncated regression
Limit: lower = 0
upper = 1
Log likelihood = 88.379319
Number of obs = 321
wald chi2(3) = 13.27
Prob > chi2 = 0.0041

| mph          | Coef.                | Std. Err.            | z             | P> z           | [95% Conf.            | Interval]            |
|--------------|----------------------|----------------------|---------------|----------------|-----------------------|----------------------|
| 10<br>1<br>2 | .0818359<br>.0502246 | .0304941<br>.0306482 | 2.68<br>1.64  | 0.007<br>0.101 | .0220686<br>0098448   | .1416031<br>.1102939 |
| inc<br>_cons | 8.05e-08<br>.401413  | 4.24e-08<br>.0286611 | 1.90<br>14.01 | 0.058<br>0.000 | -2.62e-09<br>.3452382 | 1.64e-07<br>.4575877 |
| /sigma       | .193629              | .009131              | 21.21         | 0.000          | .1757325              | .2115254             |

. estat ic

| Model | Obs | 11(null) | 11(model) | df | AIC       | BIC       |
|-------|-----|----------|-----------|----|-----------|-----------|
| •     | 321 | •        | 88.37932  | 5  | -166.7586 | -147.9014 |

#### Wald Test

. test 1.lo 2.lo 3.lo inc ( 1) [eall1.lo = 0

| (2)<br>(3)<br>(4) | [eq1]2.10 = 0<br>[eq1]2.10 = 0<br>[eq1]3b.10 = 0<br>[eq1]inc = 0<br>Constraint 3 drop | oped                                    |        |
|-------------------|---------------------------------------------------------------------------------------|-----------------------------------------|--------|
|                   | chi2( 3) =<br>Prob > chi2 =                                                           | 13.27<br>0.0041                         | กมยนดิ |
| . test            | 1.lo = 2.lo = 3.l                                                                     | lo = inc                                | 20     |
| (1)<br>(2)<br>(3) | [eq1]1.lo - [eq1]<br>[eq1]1.lo - [eq1]<br>[eq1]1.lo - [eq1]<br>Constraint 2 drop      | 2.10 = 0<br>3b.10 = 0<br>inc = 0<br>ped |        |
|                   | chi2( 2) =<br>Prob > chi2 =                                                           | 7.21<br>0.0272                          |        |
|                   | 178                                                                                   | 5                                       |        |

Calculation for R squared of Predicted and Observed outcome variables

| . correlate p<br>(obs=402)  | mph              | The last            | 14      | U      | A     |        |
|-----------------------------|------------------|---------------------|---------|--------|-------|--------|
|                             | р                | mph                 |         | POS    | \$\]/ |        |
| p<br>mph                    | 1.0000<br>0.2917 | 1.0000              | I UNI   | VER    |       |        |
| . display r(r <br>.08508748 | ho)^2            | เธิ์มหา             | วิทย    | าลัยเ  | ชียง  | วใหม่  |
| .00500740                   | Copyrig          | ght <sup>©</sup> by | / Chian | ig Mai | Univ  | ersity |
|                             | AII              | righ                | i t s   | res    | e r   | ved    |

# **CURRICULUM VITAE**

| Author's | name |  |  |
|----------|------|--|--|
|----------|------|--|--|

Mrs. Ei Mon Win

Date/Year of Birth 24 August 1988

**Place of Birth** 

Yangon, Myanmar

Education

Master Degree of Economics, Chiang Mai University, Chiang Mai, Thailand.

Bachelor Degree in Pharmacy, University of Pharmacy, Yangon

#### Experience

- Research Assistance and interpreter in "Case study of Aquaculture and land grabbing", by Michigan State University and US aid (May-June 2017)
- Social specialist in "Unlocking the Economic Potential of Residential Buildings in Yangon's Heritage Zone" by Pyoe Pin Program, DFID and Yangon Heritage Trust. (July-Aug 2015)
- Quantitative Data Analyst in "Social Impact Assessment on Energy sector of Myanmar" by EMRef and World Bank (2015)
- Research Team Supervisor and Quantitative Data Analyst in "SWOT analysis of a political party (indescribable) for the coming 2015 election" by a political party (2014)
- Team Supervisor in external evaluation team "Monitoring and Evaluation on Livelihood Projects in Non-Delta regions" of Mercy Corps (2014)
- Assistant Researcher in "Social Impact Assessment on Decentralizing fund for stipends and small grants in Basic Education Schools" by EMRef, World Bank and Ministry of Education (Myanmar) (2014)

 Research team supervisor in Round 3 and 4, Research Assistant in Round 1 and 2 of "Qualitative Social and Economic Monitoring (QSEM) by Livelihood and Food Security (Multi-Donor Trust Fund) and World Bank (2012-2014)

