### CONTENTS

|                                                                                 | Page |
|---------------------------------------------------------------------------------|------|
| Acknowledgements                                                                | c    |
| Abstract in Thai                                                                | d    |
| Abstract in English                                                             | g    |
| List of Tables                                                                  | m    |
| List of Figures                                                                 | n    |
| Statement of Originality in Thai                                                | t    |
| Statement of Originality in English                                             | u    |
| 8. 28 3                                                                         |      |
| Chapter 1. Introduction                                                         | 1    |
| 1.1 Overview                                                                    | 1    |
| 1.2 Background of prefabrication system on seismic region in Thailand           | 6    |
| 1.3 Objectives of the study                                                     | 14   |
| 1.4 Scope and limitation of the study                                           | 14   |
| 1.5 Organization of the dissertation                                            | 15   |
| MALERST                                                                         |      |
| Chapter 2. Theoretical Background and Literature Review                         | 16   |
| 2.1 Basic concepts                                                              | 16   |
| 2.2 General                                                                     | 16   |
| 2.3 Precast connection under cyclic loading                                     | 19   |
| 2.4 Relocating plastic hinge in concrete beam and strong column-weak beam frame | 29   |
| 2.5 Finite element model                                                        | 38   |
| Chapter 3. Study Program                                                        | 41   |
| PART A: Experimental Study                                                      |      |
| 3.1 Introduction                                                                | 41   |
| 3.2 Test Setup and Test Procedure                                               | 43   |

# **CONTENTS (CONTINUED)**

|           |         |                                                            | Page |
|-----------|---------|------------------------------------------------------------|------|
| 3.3       | Materi  | al Properties                                              | 47   |
|           | 3.3.1   | Concrete                                                   | 47   |
|           | 3.3.2   | Steel reinforcement bars and Steel plate                   | 48   |
| 3.4       | Test sp | pecimen Details                                            | 48   |
| 3.5       | Precas  | t concrete connection installing process                   | 51   |
| 3.6       | Conne   | ction Details                                              | 52   |
|           | 3.6.1   | Monolithic specimen (M1, control specimen)                 | 56   |
|           | 3.6.2   | Current precast connection (P1)                            | 57   |
|           | 3.6.3   | Modified precast connection (P2)                           | 57   |
|           | 3.6.4   | Modified precast connection (P3)                           | 58   |
|           | 3.6.5   | Modified precast connection (P4)                           | 59   |
|           | 3.6.6   | Modified precast connection (P5)                           | 59   |
|           | 3.6.7   | Modified precast connection (P6)                           | 60   |
| PA        | RT B: N | Numerical Study                                            |      |
| 3.7       | Analyt  | tical and Parametric Study                                 | 61   |
|           | 3.7.1   | Fiber-based finite element modeling                        | 61   |
|           | 3.7.2   | Constitutive laws                                          | 64   |
|           | 3.7.3   | Calibration Models                                         | 69   |
|           | 3.7.4   | Parametric Study                                           | 69   |
|           | ΔΙ      | l rights reserved                                          |      |
| Chapter 4 | .Experi | mental Results                                             | 71   |
| 4.1       | Crack   | development                                                | 71   |
|           | 4.1.1   | Monolithic Specimen (M1)                                   | 74   |
|           | 4.1.2   | Current precast connection (Traditional connection detail, | 76   |
|           |         | P1)                                                        |      |
|           | 4.1.3   | Modified precast connection (P2)                           | 78   |
|           | 4.1.4   | Modified precast connection (P3)                           | 80   |

# **CONTENTS (CONTINUED)**

|                                                                          | Page  |
|--------------------------------------------------------------------------|-------|
| 4.1.5 Modified precast connection (P4)                                   | 82    |
| 4.1.6 Modified precast connection (P5)                                   | 84    |
| 4.1.7 Modified precast connection (P6)                                   | 87    |
| 0181910                                                                  |       |
| Chapter 5. Evaluation of Experimental Results                            | 90    |
| 5.1 Mode of failure                                                      | 90    |
| 5.2 Hysteresis behavior                                                  | 94    |
| 5.3 Strength capacity                                                    | 97    |
| 5.4 Displacement ductility                                               | 100   |
| 5.5 Stiffness degradation                                                | 101   |
| 5.6 Energy dissipation                                                   | 103   |
| 5.7 Strain distribution                                                  | 104   |
| 5.8 Comparison material quantities and strength capacities of the precas | t 111 |
| connections                                                              |       |
| C.A. OSI'                                                                |       |
| Chapter 6. Analytical Study                                              | 113   |
| 6.1 Numerical simulation result, verification and discussions            | 113   |
| 6.2 Parametric study on P-delta effect                                   | 117   |
| 6.2.1 Ultimate strength with variable constant column load               | 117   |
| 6.2.2 Numerical ductility                                                | 126   |
| 6.2.3 Stability index                                                    | 127   |
|                                                                          |       |
| Chapter 7. Conclusions, discussions and recommendation                   | 130   |
| 7.1 Conclusion                                                           | 130   |
| 7.2 Discussion and recommendation                                        | 132   |
|                                                                          |       |
| REFERENCES                                                               | 134   |

#### **CONTENTS (CONTINUED)**

#### APPENDIX

Page 144



#### LIST OF TABLES

|                                                                                | Page |
|--------------------------------------------------------------------------------|------|
| Table 3.1 Properties of the steel reinforcements in test specimens             | 48   |
| Table 3.2 Joint detail of the test specimens                                   | 51   |
| Table 3.3 Development of joint details of the test specimens                   | 55   |
| Table 3.4 Specified values for parameter defining the Menegotto-Pinto steel    | 65   |
| bars model                                                                     |      |
| Table 3.5 Specified values of parameter for bar-slip rotational springs (Beam) | 67   |
| Table 3.6 Specified values of parameter for shear springs (Beam)               | 67   |
| Table 3.7 Test specimens and finite element model in the study                 | 69   |
| Table 3.8 Values of axial force at the top column for parametric study         | 70   |
| Table 5.1 Ultimate strength and story drift level at peak of story shear       | 98   |
| Table 5.2 Displacement ductility factor                                        | 100  |
| Table 5.3 Comparison material quantities of the precast connections            | 111  |
| Table 5.4 Summary of comparison material quantity and strength capacity of     | 112  |
| the precast connections                                                        |      |
| Table 6.1 Comparison of experimental and FEM results                           | 113  |
| Table 6.2 Strength and story drift level at peak of story shear                | 125  |
| Table 6.3 Comparison of numerical displacement ductility factor                | 127  |
| Table 6.4 Comparison of elastic stability index and modified stability index   | 129  |
| Copyright <sup>©</sup> by Chiang Mai University                                |      |
| All rights reserved                                                            |      |

#### LIST OF FIGURES

|                                                                              | Page |
|------------------------------------------------------------------------------|------|
| Figure 1.1 Thai minimum daily wage rate                                      | 2    |
| Figure 1.2 Precast concrete building                                         | 4    |
| Figure 1.3 Precast concrete element                                          | 5    |
| Figure 1.4 Damage from the first soft story of concrete building             | 6    |
| Figure 1.5 Column failure of the residential building during Chiang Rai      | 7    |
| earthquake                                                                   |      |
| Figure 1.6 Prefabricated construction in the Northern Thai region            | 9    |
| Figure 1.7 Sliding plate beam-to-column hidden connection                    | 9    |
| Figure 1.8 Jointing between precast concrete elements by welded splices      | 10   |
| Figure 1.9 Jointing between precast concrete elements by welded steel plates | 10   |
| Figure 1.10 Damage to precast concrete building caused by major earthquakes  | 13   |
| Figure 2.1 Precast concrete seismic systems                                  | 17   |
| Figure 2.2 Example the precast connections on seismic region in Thailand     | 19   |
| Figure 2.3 Welded connection at column face                                  | 20   |
| Figure 2.4 Test specimens of Seckin and Fu                                   | 21   |
| Figure 2.5 Study program of Uğur and Tuğrul                                  | 22   |
| Figure 2.6 Study program of Kormaz and Tankut                                | 24   |
| Figure 2.7 Detail of developed hybrid precast concrete beam system           | 24   |
| Figure 2.8 Precast concrete frame with modified assembling configuration     | 25   |
| Figure 2.9 Typical connection detail                                         | 25   |
| Figure 2.10. Test precast specimens of Onur et al.                           | 26   |
| Figure 2.11 Precast specimen with corbel and stiffener using steel cleats    | 27   |
| Figure 2.12 Test precast specimen                                            | 29   |
| Figure 2.13 Design of special moment frames                                  | 30   |
| Figure 2.14 Techniques of plastic hinge relocation                           | 32   |
| Figure 2.15 Concept of moving beam plastic hinging zone                      | 33   |
| Figure 2.16 Relocating plastic hing by using Headed Bars                     | 33   |

|                                                                               | Page |
|-------------------------------------------------------------------------------|------|
| Figure 2.17 Conceptual illustration of the slotted beam                       | 34   |
| Figure 2.18 Single slotted-beam (SSB)                                         | 34   |
| Figure 2.19 Double slotted-beam (DSB)                                         | 35   |
| Figure 2.20 Typical geometry with relocated plastic hinge                     | 35   |
| Figure 2.21 Example of using the composite layers for relocating of inelastic | 36   |
| beam hinge away from the column faces                                         |      |
| Figure 2.22 Construction the plastic hinge in a precast beam                  | 36   |
| Figure 2.23 Plastic hinge relocation of PC beam-column connection by using    | 37   |
| U-shell beam                                                                  |      |
| Figure 2.24 Fiber element: Distribution of control sections and section       | 39   |
| subdivision into fibers                                                       |      |
| Figure 2.25 Discretization of a typical RC section                            | 40   |
| Figure 3.1 Frame under lateral loads                                          | 42   |
| Figure 3.2 Test specimen dimension                                            | 43   |
| Figure 3.3 Experimental setup                                                 | 46   |
| Figure 3.4 Loading history                                                    | 46   |
| Figure 3.5 Configuration of measuring story drift ratio                       | 47   |
| Figure 3.6 Stress-strain relationship of steel reinforcement                  | 48   |
| Figure 3.7 Test specimens                                                     | 49   |
| Figure 3.8 Detailing of test specimens                                        | 50   |
| Figure 3.9 Precast assemblage process                                         | 52   |
| Figure 3.10 Column-to-column connection and beam-to-beam connection           | 53   |
| Figure 3.11 Beam section at the joint region                                  | 54   |
| Figure 3.12 Joint detail of M1 specimen                                       | 56   |
| Figure 3.13 Joint detail of P1 specimen                                       | 57   |
| Figure 3.14 Joint detail of P2 specimen                                       | 58   |
| Figure 3.15 Joint detail of P3 specimen                                       | 58   |

|                                                                            | Page |
|----------------------------------------------------------------------------|------|
| Figure 3.16 Joint detail of P4 specimen                                    | 59   |
| Figure 3.17 Joint detail of P5 specimen                                    | 60   |
| Figure 3.18 Joint detail of P6 specimen                                    | 60   |
| Figure 3.19 Fiber finite element model                                     | 62   |
| Figure 3.20 Comparison between concrete beam section and fiber FE section  | 63   |
| at the column face                                                         |      |
| Figure 3.21 Stress-Strain relationship of concrete under cyclic loading    | 64   |
| Figure 3.22 Stress-Strain relationship of Menegotto-Pinto model            | 65   |
| Figure 3.23 Component of the beam-column joint model                       | 66   |
| Figure 3.24 The modified one-dimensional constitutive hysteresis Takeda    | 67   |
| model                                                                      |      |
| Figure 3.25 Idealization of lap-splices                                    | 68   |
| Figure 3.26 The one-dimensional constitutive hysteresis for anchorage-slip | 68   |
| and lap-splice springs                                                     |      |
| Figure 4.1 Crack patterns of all specimens                                 | 74   |
| Figure 4.2 Damage level of specimen M1 at 4.00 percent story drift         | 75   |
| Figure 4.3 Story shear force vs. story drift ratio of specimen M1          | 76   |
| Figure 4.4 Damage level of specimen P1 at 3.50 percent story drift         | 77   |
| Figure 4.5 Story shear force vs. story drift ratio of specimen P1          | 78   |
| Figure 4.6 Damage level of specimen P2 at 3.50 percent story drift         | 79   |
| Figure 4.7 Story shear force vs. story drift ratio of specimen P2          | 79   |
| Figure 4.8 Crack distribution of specimen P3 at 2.00 percent story drift   | 81   |
| Figure 4.9 Damage level of specimen P3 at 2.50 percent story drift         | 81   |
| Figure 4.10 Story shear force vs. story drift ratio of specimen P3         | 82   |
| Figure 4.11 Crack distribution of specimen P4 at 2.00 percent story drift  | 83   |
| Figure 4.12 Damage level of specimen P4 at 2.50 percent story drift        | 83   |
| Figure 4.13 Story shear force vs. story drift ratio of specimen P4         | 84   |

|                                                                               | Page |
|-------------------------------------------------------------------------------|------|
| Figure 4.14 Crack distribution of specimen P5 at 1.75 percent story drift     | 85   |
| Figure 4.15 Damage level of specimen P5 at 3.50 percent story drift           | 86   |
| Figure 4.16 Story shear force vs. story drift ratio of specimen P5            | 86   |
| Figure 4.17 Crack distribution of specimen P6 at 3.50 percent story drift     | 88   |
| Figure 4.18 Damage level of specimen P6 at 4.50 percent story drift           | 88   |
| Figure 4.19 Story shear force vs. story drift ratio of specimen P6            | 89   |
| Figure 5.1 Crack distribution of monolithic specimen M1 at the end of testing | 90   |
| Figure 5.2 Crack distribution of precast specimen P1 at the end of testing    | 91   |
| Figure 5.3 Crack distribution of precast specimen P2 at the end of testing    | 91   |
| Figure 5.4 Crack distribution of precast specimen P3 at the end of testing    | 92   |
| Figure 5.5 Crack distribution of precast specimen P4 at the end of testing    | 92   |
| Figure 5.6 Crack distribution of precast specimen P5 at the end of testing    | 93   |
| Figure 5.7 Crack distribution of precast specimen P6 at the end of testing    | 94   |
| Figure 5.8 Story shear force vs. story drift ratio of test specimens          | 96   |
| Figure 5.9 Comparison of backbone curves                                      | 98   |
| Figure 5.10 Backbone curves of test specimens                                 | 99   |
| Figure 5.11 Definition for yield and ultimate displacements                   | 100  |
| Figure 5.12 Secant stiffness and equivalent damping ratio                     | 102  |
| Figure 5.13 Stiffness degradation                                             | 102  |
| Figure 5.14 Equivalent damping ratio                                          | 103  |
| Figure 5.15 Strain profile of top reinforcement                               | 108  |
| Figure 5.16 Strain profile of bottom reinforcement                            | 110  |
| Figure 6.1 Comparison of hysteresis behavior between M1-FEM and M1-EXP        | 114  |
| Figure 6.2 Comparison of hysteresis behavior between P1-FEM and P1-EXP        | 114  |
| Figure 6.3 Comparison of hysteresis behavior between P2-FEM and P2-EXP        | 115  |
| Figure 6.4 Comparison of hysteresis behavior between P3-FEM and P3-EXP        | 115  |
| Figure 6.5 Comparison of hysteresis behavior between P4-FEM and P4-EXP        | 116  |

|                                                                        | Page |
|------------------------------------------------------------------------|------|
| Figure 6.6 Comparison of hysteresis behavior between P5-FEM and P5-EXP | 116  |
| Figure 6.7 Comparison of hysteresis behavior between P6-FEM and P6-EXP | 117  |
| Figure 6.8 Numerical back bone curve of M1-FEM series                  | 118  |
| Figure 6.9 Numerical back bone curve of P1-FEM series                  | 118  |
| Figure 6.10 Numerical back bone curve of P2-FEM series                 | 119  |
| Figure 6.11 Numerical back bone curve of P3-FEM series                 | 119  |
| Figure 6.12 Numerical back bone curve of P4-FEM series                 | 120  |
| Figure 6.13 Numerical back bone curve of P5-FEM series                 | 120  |
| Figure 6.14 Numerical back bone curve of P6-FEM series                 | 121  |
| Figure 6.15 Normalized backbone curve of M1-FEM series                 | 121  |
| Figure 6.16 Normalized backbone curve of P1-FEM series                 | 122  |
| Figure 6.17 Normalized backbone curve of P2-FEM series                 | 122  |
| Figure 6.18 Normalized backbone curve of P3-FEM series                 | 123  |
| Figure 6.19 Normalized backbone curve of P4-FEM series                 | 123  |
| Figure 6.20 Normalized backbone curve of P5-FEM series                 | 124  |
| Figure 6.21 Normalized backbone curve of P6-FEM series                 | 124  |

**ลิขสิทธิ์มหาวิทยาลัยเชียงใหม** Copyright<sup>©</sup> by Chiang Mai University All rights reserved

# ข้อความแห่งการริเริ่ม

- 1 วิทยานิพนธ์นี้ได้นำเสนอการศึกษาประสิทธิภาพต้านทานแผ่นดินไหวของโครงสร้างกาน-เสา กอนกรีตสำเร็จรูป สำหรับโครงเฟรมต้านทานแรงดัด ในการศึกษาได้ทำการปรับปรุงรูปแบบ รายละเอียดจุดต่อกาน-เสา ภายใน จากรูปแบบที่มีใช้อยู่ในปัจจุบันให้มีประสิทธิภาพต้านทาน แผ่นดินไหวเพิ่มขึ้น
- 2 โดยทั่วไปโครงสร้างคอนกรีต คาน-เสา สำเร็จรูปสำหรับอาคารต้านทานแผ่นดินไหว ส่วนที่ สำคัญที่สุดของระบบโครงสร้างประเภทนี้คือ จุดต่อระหว่างคาน-เสา ซึ่งจำเป็นต้องมีคุณสมบัติ ในการถ่ายแรงที่ดี มีเสถียรภาพในด้านกำลังและการเสียรูป ดังนั้นในระหว่างเหตุการณ์ แผ่นดินไหวจุดต่อจะต้องมีความแข็งแรงและมั่นคงเพียงพอ เพื่อป้องกันการพังทลายของ อาการระหว่างเหตุการณ์แผ่นดินไหว
- 3 การวิบัติของจุดต่อคาน-เสา โครงสร้างคอนกรีตสำเร็จรูปส่วนใหญ่เกิดจากการเสียรูปแบบไร้ เชิงเส้นเกิดขึ้นบริเวณหน้าเสา-คานหรือภายในจุดต่อ ซึ่งจะทำให้เกิดการวิบัติแบบเปราะได้ หากวิศวกรสามารถเคลื่อนย้ายจุดหมุนแบบพลาสติกให้ออกห่างจากบริเวณหน้าเสา-คาน จะทำ ให้โครงสร้างมีความเหนียวเพิ่มขึ้น ในการศึกษานี้ใช้วิธีการเพิ่มกำลังต้านทานแรงคัดของหน้า ตัดคานบริเวณหน้าเสาเพื่อย้ายจุดหมุนแบบพลาสติกให้ห่างจากหน้าเสา โดยการพัฒนารูปแบบ ของจุดต่อคาน-เสา ที่ใช้เหล็กสอดหน้าตัดรูปตัวที ซึ่งมีผลทำให้ ค่ากำลัง ความเหนียว และการ สลายพลังงาน ดีขึ้นเมื่อเปรียบเทียบกับจุดต่อรูปแบบที่ใช้ในปัจจุบัน

All rights reserved

#### **STATEMENTS OF ORIGINALITY**

- 1. This thesis proposes the study of a seismic performance of a precast concrete beamcolumn connection for a precast moment resisting frame. The study has developed and modified the current detail toward the better seismic performance.
- 2. In general, the precast connection is the one of the most important components of the precast concrete resisting frame of an earthquake resistant building. It must be capable of shear transferred mechanism and stability of strength and deformation. To prevent the severe damage of the concrete building during an earthquake ground motion, the precast connection must be enough seismic performance.
- 3. Most failure modes of the precast structural frame are an inelastic deformation appeared at the column face or a beam-column joint care, leading to the dramatic collapse of the precast building during the earthquake ground motion. If a structural engineer is able to relocate the inelastic deformation away from the joint region, a deformation ductility of the precast concrete structure is better. To move the plastic beam hinge far from the joint region, the nominal flexural strength of the precast beam section of the joint region is increased by installing the T-section steel inserts into the precast beam elements. The test result evidently exhibits the better seismic performance (strength capacity, ductility and energy dissipation), compared to the current precast connection.