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CHAPTER 2 

Principles and Theories of the Study 

In this section, we give the detail of cluster analysis, a description of conventional 

clustering methods of interest, i.e. hard C-means, fuzzy C-means, fuzzy C-medians, 

possibilistic C-means, fuzzy possibilistic C-means, possibilistic fuzzy C-means, 

unsupervised possibilistic C-means and unsupervised possibilistic fuzzy C-means. 

Moreover, string grammar, string grammar clustering, fuzzy clustering validation 

techniques and measuring of overlapping data are briefly describing. 

2.1    Cluster Analysis 

The one of important tool in pattern recognition field is clustering analysis [37]. A 

clustering is an unsupervised technique used to group data objects in the set based on 

similarity (or dissimilarity). The algorithm assigns all data objects in dataset to cluster 

that are more similar. There are various types of clustering algorithm such as partitioning 

algorithms, hierarchy algorithms, model-based algorithms, etc. In this thesis we only use 

partitioning algorithms for all clustering methods. Among various techniques that have 

been proposed in literatures for clustering task, we focus only on prototype-based 

approaches in this thesis. The prototype-based methods will describe the data set to group 

by using the prototypes or cluster center of each group. Each prototype will describe the 

distribution of data in group based on a concept of similarity to the prototype. There are 

several prototype-based clustering algorithms has been proposed, i.e., hard C-means, 

fuzzy C-means, fuzzy C-medians, fuzzy possibilistic C-means, fuzzy possibilistic C-

means, possibilistic fuzzy C-means, unsupervised    possibilistic C-means   and 

unsupervised     possibilistic fuzzy C-means, etc. 
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2.2    Hard Clustering Algorithm 

2.2.1 Hard C-Means 

Hard C-means or k-means clustering (HCM) [38] is the one of the clustering 

tool of unsupervised pattern recognition algorithm. To assign each given data in the given 

set to the group that minimizes the distance between each given data and each other’s in 

the same group. The algorithm of Hard C-means clustering aims at minimizing an 

objective function given by:   
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where, 2
1ik k id x c= −

  is the distance between kx and ic , C is the number of cluster centers  

and N is the number of data points in ith cluster. 

However, partitioning of the data of hard clustering such that each data point 

belongs to exactly one of the partitions, the accuracy and efficiency of hard clustering 

have been very poor for some applications with overlapping data. 

2.3    Fuzzy Clustering Algorithm 

Fuzzy sets theory was first proposed by L. A. Zadeh [6]. Let a conventional crisp 

subset A of a universal set of objects U be regularly determined by the samples of the 

universe that are members of A.  UA: U → {0, 1} for all Ux∈ where 
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When we have the given set { },..., nkx x   , fuzzy clustering can identify the group 

of these samples vector with the membership degree of each data in each c cluster. It is 

showed by the matrix U where ( ) iik ku u x=
  for i = 1,…,c,  and k = 1, …, n . The iku  is 

utilized for showing the membership degree of kx  in class i. The properties of membership 

degree for fuzzy clustering can be described as following equation [39]:  
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The benefit of fuzzy membership can describe the detail of each data by using the 

degree of membership. It has more advantage than crisp clustering. The crisp clustering 

can just classify by using binary value (zero or one) and especially advantageous if data 

patterns are overlapping data [39]. 

2.3.1 Fuzzy C-Means 

Fuzzy C-means (FCM) is a method of clustering which allows one of object 

to belong partially to several clusters which is improved by [9] in 1981. The method is 

widely used in pattern recognition for a long time. This algorithm is iterative technique 

that membership value is assigned to each of object. The object that places far away from 

the cluster center will have a low membership value to that cluster and another object that 

places close to the cluster center will have a high membership value to that cluster.  The 

FCM is based on minimization of the following objective function which FCM differs 

from the HCM objective function by the addition of the membership values and the 

fuzzifier (m):  
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where  ( )1,m ∞∈ , uik is the membership value of kx in the cluster i, 2
2ik k id x c= −

  is the 

distance between kx and ic . 

Fuzzy clustering achieves through an iterative process of the objective 

function shown in (2.4), with the update of membership uik and the cluster center ci are: 
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This iteration will stop when { }(t 1) (t)max | |ik ik iku u ε+ − <  , where ε is a 

termination criterion. This algorithm will converge to a local minimum of objective 

function. 

2.3.2 Possibilistic C-Means 

Fuzzy C-means clustering [9] is sensitive to noises or outliers [2] because of 

the probabilistic constraint. Krishnapuram and Keller proposed the possibilistic C-means 

(PCM) [10] algorithm by abandoning the probabilistic constraint of FCM to solve the 

noise sensitivity of FCM. In [10] suggest to use terminal outputs of Fuzzy c-means as a 

good way to initialize possibilistic C-means. They also suggest choosing the  iη


 by 

computing: 

              1

1

( )
N

m
ikik

k
i N

m
ik

k

u d
K

u
η =

=

=
∑

∑


; K>0 (Typically K is chosen to be 1.)  (2.7) 

The objective function of possibilistic C-means algorithm can be described 

by the following equation: 
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with the constraint: 1,m >  and 0ikdη >  where C and N are the total number of clusters 

and total number of input vectors, respectively, and 2
2ik k id x c= −

  .  Hence, we can use 

equation (2.9) for updating the membership degree of kx in each cluster. 
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and the center ic  is calculated by: 
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       2.3.3     Fuzzy C-Medians 

 The fuzzy C-Medians [11, 12] is one of the popular clustering algorithms. 

Let X = { }1jx j N=


  be a set of N data.   Let   V = ( )1, , Cc c 
  represent a vector of C 

prototypes. The objective function of fuzzy C-Medians is as follows: 

 
1 1

( , )
N C

m
ik ik

k i
J u d

= =
=∑∑U X   (2.11) 

with the constraint: 
1

1
C
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u
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=∑  for k = 1 to N, where C and N are the total number of 

clusters and total number of input vectors, respectively. The membership degree of each 

data in each cluster for this algorithm is in the range of [0,1] and

1
1

p

ik k i kj ij
j

d x c x c
=

= − = −∑  .   In equation (2.10), m∈ [1,∞) is called the fuzzifier. The 

membership update equation of kx  in each cluster i is: 
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The center ic  is calculated differ from fuzzy C-median by finding a fuzzy 

median in cluster i with memberships m
iju  using 
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fuzzy il ik kl il

k
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=
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where uik is the membership of vector kx  in cluster i. The root (mil) of equation 2.13 is a 

fuzzy median in lth dimension of cluster i.  
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2.3.4 Fuzzy Possibilistic C-Means 

The Fuzzy Possibilistic C-Means (FPCM) [13] is one of the powerful 

clustering problems. It solves the noise problem of FCM, and also solves the coincident 

clusters problem of PCM [10]. Let X = { | 1...jx j N= } be a set of N feature vectors in p-

dimensional feature space. Let B = ( 1,..., cc c  ) represent a C-tuple of prototypes each of 

which characterizes one of the C clusters. The objective function is as follows: 

 2
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with the constraint: 
1 1
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> > = =∑ ∑  , for k = 1 to N, where C and N are the 

total number of clusters and total number of input vectors, respectively, and 2
2ik k id x c= −

 

. Here, tik∈[0,1] is the typicality value of data object kx  in each cluster. In equation (2.14), 

mis called the fuzzifier and η  is suitable positive numbers. The membership update 

equation of kx  in each cluster i is: 
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In each iteration we can use this following equation for updating the typicality of each 

data in each cluster i. 
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The center c  is calculated by: 
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2.3.5  Possibilistic Fuzzy C-Means Algorithm 

The possibilistic fuzzy C-means (PFCM) [14] is the algorithm which solves 

various problems of FCM, PCM and FPCM. The PFCM can solves the noise problem of 

FCM, solve the coincident clusters problem of PCM and eliminates the row sum 

constraints on the typical values of FPCM but retain the column constraint on the 

membership values. The objective function of PFCM is as follows: 

  2
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with the constraint: 
1

1, 1, 0, 0, 0, 1C
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m a b uη γ
=

> > > > > =∑ for k = 1 to N, and 

0 , 1ik ku t≤ ≤  where X = { | 1,..., }x j N=
  be a set of N feature vectors in p-dimensional 

feature space. V = 1( ,..., )Cc c 
 represent a C-tuple of prototypes each of which 

characterizes one of the C clusters.  C and N are the total number of clusters and total 

number of input vectors, respectively, and 2
2ik k id x c= −

  . In equation (2.18), m∈ is called 

the fuzzifier and η is a suitable positive number, a and b define the relative importance of 

fuzzy membership and typical values in the objective function. The membership update 

equation of kx  in each cluster i for1 ;1i C k N≤ ≤ ≤ ≤  is: 
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In each iteration we can use this following equation for updating the typicality of each 

data in each cluster i. 

for 1 ;1i C k N≤ ≤ ≤ ≤ is: 
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The center ic  is calculated by: 
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2.3.6 Unsupervised Possibilistic Clustering Algorithm 

The unsupervised possibilistic clustering Algorithm (UPCM) [15] is another 

posibilistic clustering algorithm which is based on the FCM objective function, the 

partition coefficient (PC) and partition entropy (PE) validity indexes. The objective 

function of UPCM is 

 2
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Where ,mβ and c are all positive. The membership update equation of kx  in 

each cluster i is: 
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The parameter  β  is a normalization term that measure the degree of 

separation of the dataset, β  is define as the sample co-variance is: 
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The center ic  is calculated using 
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2.3.7 Unsupervised Possibilistic Fuzzy Clustering Algorithm 

The unsupervised possibilistic fuzzy C-means (UPFCM) [16] combine 

possibilistic fuzzy C-Means and UPCM to solve the problem of generating coincident 

clusters of UPCM. UPFCM combines the characteristics of both fuzzy and possibilistic 

C-means from properties of PFCM and the partition coefficient (PC) and partition entropy 

(PE) validity indexes from properties of UPCM. Hence, UPFCM should be able to deal 

more effectively with noise, overlapping and outliers. 

Now, we will briefly describe the unsupervised possibilistic-fuzzy C-means 

(UPFCM) [24] Suppose X = { | 1,..., }x j N=
  be a set of N feature vectors in p-dimensional 

feature space. V = 1( ,..., )Cc c 
 represents a C-tuple of prototypes each of which 

characterizes one of the C clusters, U is a membership matrix [uik]C×N, T is a typicality 

matrix [tik]C×N, and 
2ik k id x c= −

  . Then, the objective function of UPFCM is 
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with the constraint: 
1
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> > > > =∑ for k = 1 to N, and 0 , 1ik ku t≤ ≤  

In equation (2.26), m is called the fuzzifier and η is a suitable positive number. Parameters 

a and b define the relative importance of fuzzy membership and typical values in the 

objective function. The membership update equation of kx  in each cluster i for

1 ;1i C k N≤ ≤ ≤ ≤  is: 
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The typicality update equation of kx  in each cluster i for 1 ;1i C k N≤ ≤ ≤ ≤ is: 

 
2

exp ik
ik

b Cdt η
β

 
= −  

 
. (2.28) 

The center ic  is calculated by: 
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2.4    String Grammar  

An alphabet V is a finite set of symbols, such as the binary set {0, 1} or the set {A, 

a, B, b, . . ., Z, z} of uppercase and lowercase letters. A sentence x over alphabet V is a 

string of finite length formed with symbols from V. (The words sentence and string are 

used synonymously.) The length of x, denoted by |x|, is the number of symbols used in its 

formation [2]. A sentence (string) over V is either a single symbol from V or a sequences 

of symbols formed by concatenation of 0 or more symbol from V [2]. A language is a set 

of sentences over an alphabet; that is, a language over alphabet V is a finite or countably 

infinite subset of V* (set of all sentences over V). [2] 

2.4.1 Formal Definitions of Grammar 

Formal definition of grammar was originally introduced by Noam Chomsky 

[2]. A grammar Gr is defined as a four-tuples: 

 Gr = (N, T, P, S)  (2.30) 

The equation (2.30) consists of the following element:  

 N  finite set of nonterminal symbols which is disjoint set with the strings from 

grammar 

T finite set of terminal symbols, which is disjoint set with the strings from finite set 

of nonterminal symbols N ∪ T = V, N ∩T = 𝜆𝜆 

ST    start symbol,  ST ∈ N 

P finite set of productions         

W*      is the set of all finite length  

W(alphabet) is a non-empty set of symbols or finite set 

𝜆𝜆  is empty string. 
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the null string, W+= W*- { 𝜆𝜆 }. 

 

We have used the traditional notation of syntactic pattern recognition for the 

terminals (VN) and non-terminals (VT) in a grammar G, which are sometimes called the 

vocabularies of G. The set V=VN ∪ VT, with VN ∩ VT =empty set called the alphabet or 

total vocabulary of G.  

2.4.2  String Distance Function 

In mathematics and computer science, a string distance function is a metric 

that measures distance between two given strings sequence for approximate string 

matching or comparison and for fuzzy string searching.  

The most widely well-known string metric is a the Levenshtein Distance (also 

known as Edit Distance) [2]. The Levenshtein distance between the two given strings 

sequence is equal to the minimum number of symbol which requires to change each string 

sequence into others with edits operation, i.e., insertion, deletion, or substitution.  

The Levenshtein distance is fulfillment of the triangle inequality, whereas the 

most other string distance measurements this property does not hold. Moreover, this 

distance can be computed in the quadratic time with respect to the length of the two strings 

under consideration. 

The algorithm of Levenshtein distance [2] between two strings x, y: 
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 (2.31) 

Where i is an index of symbol of string x and j is a character of string y 

Here we show the example of Levenshtein distance calculation, the 

Levenshtein distance between two given string “fast” and “basely” is 4. The steps to 
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change “fast” into “basely” are: (1) replace “f” with “b”, (2) replace “t” with “e”, (3) 

insert "l" after “e” and (4) insert "y" at the end. 

2.4.3 String Grammar Clustering 

The string grammar clustering algorithm [2, 19] so far is the hard clustering 

(sgHCM). The Levenshtein distance is used to measure distance between strings. One 

crucial part of the syntactic pattern is the distance metric. One of the distance metrics, 

that is more preferable because of its calculation flexibility between strings with different 

length, is the Levenshtein distance The sgHCM use the 1-nearest prototype (1-np) and 1-

nearest multiple prototypes (1-nmp) rules, this technique need prototypes. Fu [2] calls the 

string Sk, selected from the Ni strings { Sk; k = 1 …Ni} in the i-th class whose indices 

satisfy the cluster center of the Ni strings Sk as (2.32).  
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  (2.32) 

 

We can describe the process of the sgHCM algorithm as the following psedocode: 
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2.5    Fuzzy Clustering Validation Techniques 

The aim of clustering algorithm is partition a data set into groups such that the 

objects within same group are more similar to each other than objects in different group. 

The cluster validity index can evaluate the goodness of the result of the partitions and 

enables to determine optimal number of cluster when it is not known in advance in the 

data set. We calculated cluster validity indices to show the partition goodness [40] 

However, we only compute the cluster validity indices on the membership because our 

string grammar fuzzy clustering algorithms use the membership values as the indicator of 

cluster assignment. We utilize three cluster validity indices, i.e., the partition coefficient 

(PC) [41], the partition entropy (PE) [42], and Xie and Beni (XB) [43]. These following 

indices are usually suitable for measuring fuzzy clustering which is described below: 
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2.5.1 Partition coefficient 

The partition coefficient (PC) is the one of validity indices involving only the 

membership values and it was introduced in [41] as: 

 
1 1

1( )
C N

m
PC ik

i k
V u

N = =

= ∑∑U . (2.33) 

The PC index is the basic fuzzy cluster validity that indicates the average of 

membership degree of fuzzy subsets in U. The PC index value is in the range of 1 ,1
c


 
. 

When  PCV =1/c the system is entirely fuzzy, since every element belongs to all clusters 

with the same degree of membership. When  PCV =1 the system is hard and membership 

values are either 1 or 0. The larger value of PCV  it is, the better accuracy it is. 

2.5.2 Partition entropy 

The partition entropy (PE) is also the one of validity indices involving only 

the membership, same as PC, The PE was defined as [42] 

 2
1 1

1( ) log
C N

PE ik ik
i k

V u u
N = =

= − ∑∑U  (2.34) 

 The PE index is a scalar measure of the amount of fuzziness in a given U.  

The index is computed for values of C greater than 1 and its value is in the range of 

[ 20, log c . When PEV =0 the partition is rigid.When 2logPEV c=  the fuzziness is 

maximum. Partition Entropy is directly proportional to the number of partitions. It is more 

appropriated to validate the best partition among several runs of an algorithm. In this case,  

the lower value of PEV , the better on tends to be. 
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2.5.3 Xie and Beni 

This validity function is the one of validity indices involving the membership 

values and the data set, which is proposed by Xie and Beni (XB) [43] and modified by 

Pal and Bezdek [40]. This index is a measure for evaluating both the compactness and 

separateness of fuzzy clusters. The XB was defined as 
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( , )
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C N
m
ik k i

i k
u Lev s sc
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Nd

= ==
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U  (2.35) 

where Lev(sk,sci) is the Levenshtein distance between string sk and cluster center string 

sci of cluster i and 
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= ≠

= . (2.36) 

This validity index focus on total variation within clusters (compactness) and 

separation between cluster, the numerator of equation 2.35 indicates the compactness of 

the fuzzy partition, while the denominator indicates the strength of the separation between 

clusters. The smaller XB value is, the more compact and better separated clusters is. The 

XB index value is in the range of 1 1
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( , )
,

C N

ik k i
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u d s sc
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= =

 
 
 ∞
 
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∑∑
.  

2.6     Measuring of Overlapping data 

The objective of the clustering technique is to partition a data set into groups such 

that both within group similarity and between group dissimilarity are maximized.  

However, Most of the real world datasets are overlapping data.  

In our work, the R-value [44] is utilized to measuring overlapping data. The idea of 

R-value is to find the K nearest neighbor string and then count the number of string that 

belonging to the other classes. If the summation of the count number (R) is larger than 0, 

that means the dataset is overlapping data. 
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 Suppose C1, C2,…, Cn are different classes of dataset, U is the universal set of whole 

object on dataset, S(Ci) is set of object that belong to class Ci, pim is mth object of class Ci. 

The R-value of a dataset S is defined as 

 
1 1

1( ) ( ( , (C ) )
iCn

im i
i i

R f kNN p Sλ
= =

= −∑∑ U
U

 (2.37)                                         

where ( , (C )im ikNN p S−U is the set of objects in set of K nearest neighbor object for an 

object pim that not belong to class Ci and ( ( , (C ) )im ikNN p Sλ −U =1 if 

( , (C )im ikNN p S−U >0, else ( ( , (C ) )im ikNN p Sλ −U =0. 

 The R-value can evaluate the degree of overlap. The higher R-value indicates that 

the dataset contains large overlapping area among its class. If R-value is equal to zero, 

the dataset of each class can be well separated. If R-value is equal to one, the dataset is 

full overlapping dataset. 

2.7    The modified median string 

Martinez, C.D., et al. [23] improved the calculate of prototype of string 

classification using approximate median string. The approximate median string applies 

the edition operations, i.e., insertion, deletion and substitution over each symbol of the 

string, in a set of strings S of cluster i can be calculated as  

 ( )
1

arg min , for 1
i

i

N

i j k
j S k

sc Lev s s i C
∈ =

= ≤ ≤∑   (2.38) 

where Ni is the number of strings in cluster i.    

We can use sci as a cluster center i. However, [23] improve finding median 

string by edition operations (insertion, deletion, and substitution) over each symbol of the 

string. Let ∑∗ be the free monoid over the alphabet set ∑ and a set of strings S ⊆ ∑∗.The 

selected string (sci) will be the one that gives the minimum value, will be  

 ( )
* 1

arg min , for 1
N

i j k
j k

sc Lev s s i C
∈Σ =

= ≤ ≤∑ . (2.39) 
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The algorithm of the modified median string is as follows: 

  

 


