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CHAPTER 3 

Research Designs and Methods 

This chapter describes the research designs and the proposed methods about string 

grammar fuzzy clustering methods.  There are five sub-sections. Section 3.1.1 describes 

the string grammar fuzzy C-medians clustering (sgFCMed). Section 3.1.2 explains the 

string grammar fuzzy possibilistic C-Medians (sgFPCMed) clustering. The string 

grammar possibilistic fuzzy C-medians (sgPFCMed) is described in section 3.1.3. Section 

3.1.4 describes the string grammar unsupervised possibilistic C-medians (sgUPCMed) 

and string grammar unsupervised possibilistic fuzzy C-medians (sgUPFCMed) is briefly 

review in Section 3.1.5. 

3.1    String Grammar Fuzzy Clustering 

Let S = {s1, s2 ,…, sN} be a set of N strings. Each string (sk) is a sequence of symbols 

(primitives). For example, sk = (x1x2…xl), a string with length l, where each xi is a member 

of a set of defined symbols or primitives. Let V = (sc1, sc2, …, scc) represents a C-tuple of 

string prototypes each of which characterizes one of the C clusters. Then dij is computed 

from the Levenshtein distance between string sj and string prototypes sci (Lev(sci, sj))         

(a smallest number of transformations needed to derive one string from the other) between 

input string j and cluster prototype i.  

In this thesis, we proposed five string grammar fuzzy clustering methods, i.e., string 

grammar fuzzy C-medians clustering (sgFCMed), string grammar fuzzy possibilistic C-

Medians (sgFPCMed), string grammar possibilistic fuzzy C-medians (sgPFCMed), string 

grammar unsupervised possibilistic C-medians (sgUPCMed) and string grammar 

unsupervised possibilistic fuzzy C-medians (sgUPFCMed) for eliminating the drawback 

of string grammar hard clustering method that is described in Chapter 1. 
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3.1.1 String Grammar Fuzzy C-medians  

In the first algorithm, we modify fuzzy C-medians (FCMed) [11, 12] to cope 

with the syntactic data set which called the string grammar fuzzy C-Medians (sgFCMed) 

by using the Levenshtein distance instead of the Euclidean distance in the objective 

function and the sgFCMed aims at minimizing an objective function given by: 
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Theorem 1 (sgFCMed): If ( , ) 0k iLev s sc >  for all i and k, when m, k>1, 

and S contains C<N distinct string data, then Jm is minimized only if the update equation 

of uik is 
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where uik is the membership value of string sk belonging to cluster i , isc  is the string 

prototype of cluster i and m is the fuzzifier.  

Proof We proof equation 3.2 with the Lagrange multiplier theorem. Equation 

3.2 is obtained by solving the reduced problem ( )
1

min ( ) ,
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C
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V fixed for the k-th column of U. Then, the function k
mJ  is minimized over Mfcn. The 

Lagrangian of Equation 3.1 with constraints is as follows: 

 , ( ) ( )( , ) k
k mJ gL η λλ −= U, V UU   (3.3) 

where λ is the Lagrange multiplier and
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Hence, we have 



 

31 

 ( )
1

1( , ) ,
1

C
m

k ik k i ik
i

C
L u Lev s sc u

i
λλ

=

 
 − 
 
 

−= ∑
=

∑U   (3.4) 

The Lagrangian’s gradient is then set to zero, we obtain 
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Then ujk is substituted into equation 3.5, and we have 
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Hence the update equation of uik is 
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Also, if there exists i such that Lev(sci,sk) = 0, then it is naturally that the 

membership value of string k in those clusters will be non-zeros distributive, whereas 

those with Lev(sci,sk) >0 will be 0 subjected to 
1

1
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ik
i

u
=

=∑ .  

Although the sgFCMed utilizes the Levenshtein distance not the Euclidean 

distance as in FCMed [11, 12], the effects of m on the sgFCMed are similar to those on 

FCMed. If m approaches to infinity or 1, the membership value of string k in cluster i will 

be 
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To compute each string prototype, we cannot follow the fuzzy median using 

equation 3.12 as described in [23] because it is difficult to compute this fuzzy median to 

string in the sgFCMed. Normally, the root of equation 3.12 is fuzzy median of numeric 

vectors [11, 12]. 

    
1

( ) sgn( ) for 1,...,
N

m
fuzzy il ik kl il

k
med u x med l p

=

Ψ = − =∑   (3.12) 

However, in [23] proposed a median string in a set of strings S of cluster i can 

be calculated as  
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where Ni is the number of strings in cluster i.   Hence, we can modify equation 3.13 to 

incorporate the idea of fuzzy median by assuming that each string can be a prototype for 

a particular cluster. We then find the string that gives the minimum value of summation 

of Levenshtein distances between that string and other strings in the set with membership 

value of strings in that cluster. Therefore, the equation to find a fuzzy median string of 

cluster i is as follows: 
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We can use sci as a cluster center i. However, in [28], the modified median 

string has proved that it offers a better classification rate than the regular median string. 

We then modified the method in [23] to calculate our fuzzy median string. Let ∑∗ be the 

free monoid over the alphabet set ∑ and a set of strings S ⊆ ∑∗.  This process is an 

approximation of fuzzy median finding by edition operations (insertion, deletion, and 

substitution) over each symbol of the string. The selected string (sci) will be the one that 

gives the minimum value, will be  
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= ≤ ≤∑ . (3.15) 

The algorithm of the modified fuzzy median string for sgFCMed is similar to 

the modified median string in Chapter 2, but we use equations 3.16 to 3.18 instead of 

equations 2.40 to 2.42 
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The following is the summarization of the sgFCMed algorithm 

Store N unlabeled finite strings S = {sk; k =1,..., N} 

Initialize string prototypes for all C classes by using equation (3.12) for single prototype 
clustering and randomly choose string prototypes as the initial cluster centers for multi-
prototypes clustering. 

Set m 

Do { 

  Compute Levenshtein distance between input string j and cluster prototype i 
(Lev(sj,sci))  

  Update membership value using equation (3.2)    

  Update center string of each cluster i (sci) using equation (3.14) and (3.15) 

} Until (Maximum number of iterations or Levenshtein distance between cluster center 
of previous iteration and current iteration less than stopping criteria) 

 

The time complexity of the modified fuzzy median for sgFCMed is 

approximately O(l3·c·|∑|) where l is the maximum length of the strings in S and c is 

number of cluster center. 

Therefore, the computational complexity of the whole algorithm is 

O((l2·N2)+(l3·c·|∑)|)). 

3.1.2 String Grammar Fuzzy Possibilistic C-medians  

Previously, we describe sgFCMed, the sgFCMed is modified from fuzzy C-

medians in which a fuzzy median approach is applied for finding fuzzy median string as 

the center of string data and then we improved a method to compute fuzzy median string 



 

34 

with the edition operations (insertion, deletion, and substitution) over each symbol of the 

string. However, the results of classification are not good for some applications with noise 

and overlapping data.  

In order to improve performance of the string grammar clustering algorithm, 

we propose a string grammar fuzzy-possibilistic C-medians (sgFPCMed). In particular, 

an extension of fuzzy median is presented and applied to the FPCM [13] for string. This 

algorithm combines the properties of both string grammar fuzzy C-median and 

possibilistic theory. Membership and typicality are both important to improve the 

clustering result. The typicality will consider the clustering problem with respect to all N 

data, but not respect to all C cluster. It is an important term for reducing the effects of 

outliers.  The sgFPCMed utilizes the Levenshtein distance [2] as a dissimilarity measure 

and the fuzzy median [11, 12] is utilized to calculate a cluster prototype almost similar to 

sgFCMed. Then the objective function of sgFPCMed depending on both membership and 

typicality can be shown as:    
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Theorem 2 (sgFPCMed) Suppose ( , ) 0k iLev s sc >  for all i and k, when m>1, 

and S contains C<N distinct string data, then ( , , ) P
fcn tcnM M∈ × ×ℜU V T may 

minimize Jm,η only if the update equation of uik is 
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and the update equation of tik is 
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Proof The equations 3.20 and 3.21 are extension of the equation 2.14 and 

2.15. These two equations follow immediately with the Lagrange multiplier theorem 

obtained by solving the reduced problem ( ) ( ),
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T and V fixed for the k-th column of U. The proof of the equation 3.19 is similar to that 

in Theorem 1. 

Similarly, The equation 3.21 can be proof as the first equation by solving the 

reduced problem ( ) ( ),
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constraints is as follows: 
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Again, the Lagrangian’s gradient is set to zero, we obtain 

  
1

( , ) 1 0
N

i
ik

k

L tλ
λ =

∂
= − =

∂ ∑T
, this gives 

1
1

N

ik
i

t
=

=∑ ,  (3.24) 



 

36 

and    ( ) ( )1( , ) , 0i
ij j i

ij

L t Lev s sc
t

ηλ η λ
−∂

= + =
∂
T .  (3.25) 

Hence ( )

11 11 1
,ij

j i

t
Lev s sc

ηηλ
η

−−     = −      
.  (3.26) 

We then substitute tij in equation 3.21, we get 
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Hence, the update equation of tik will be 
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Again, if there is some object (k) such that Lev(sci,sk) = 0, then the typicality 

value of string k in those clusters will be distributively non-zeros and those with 

Lev(sci,sk) > 0 subjected to 
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t
=

=∑ .   

The effects of m and η on the sgFPCMed are similar to those on FPCM [13]. 

If m approaches to infinity or 1, the membership value of string k in cluster i will be 

similar to equations 3.10 and 3.11. Also, if η approaches to infinity or 1, the typicality 

value of string k in cluster i will be 
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To compute each string prototype, because of the method in equation 3.14 

involve only the membership values. Hence, we modified fuzzy median string method in 

equation 3.14 by incorporating a typicality value to find fuzzy median. Then the modified 

fuzzy median will be 
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Similarly, we then modify the equation 3.15 by incorporating a typicality 

value to the modified fuzzy median over the alphabet set ∑ as follows: 
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The algorithm of the modified fuzzy median string for sgFPCMed is also 

similar to the modified median string in Chapter 2, but we use equations 3.33 to 3.35 

instead of equations 2.40 to 2.42 
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Hence, the summarized sgFPCMed algorithm is as follows: 

Store N unlabeled finite strings S = {sk; k =1,..., N} 

Initialize string prototypes for all C classes by using equation (3.12) for single prototype 
clustering and randomly choose string prototypes as the initial cluster centers for multi-
prototypes clustering. 

Set m,η 

Do { 

  Compute Levenshtein distance between input string j and cluster prototype i 
(Lev(sj,sci))  

  Update membership value using equation (3.20)    

  Update typicality value using equation (3.21)       

  Update center string of each cluster i (sci) using equations (3.31) and (3.32)  

} Until (Maximum number of iterations or Levenshtein distance between cluster center 
of previous iteration and current iteration less than stopping criteria) 
 

The time complexity of the modified fuzzy median is approximately 

O(l3·c·|∑|) for each global iteration, where l is the maximum length of the strings in S and 

c is number of cluster center. Therefore, the computational complexity of the whole 

algorithm is O((l2·N2)+(l3·c·|∑)|)). 

 3.1.3 String Grammar Possibilistic Fuzzy C-medians 

 The method of PFCM [14] is commonly used for clustering of numeric 

feature vector. However, it can be applied to string clustering and we call this algorithm 

as string grammar possibilistic fuzzy C-medians (sgPFCMed). This lead to the following 

optimization problem of sgPFCMed: 
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subject to the constraint: 
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Theorem 3 (sgPFCMed) If ( , ) 0k iLev s sc >  for all i and k, when m, η, k>1, 

and S contains C<N distinct string data, then ( , , ) P∈ × ×ℜfcn tcnU V T M M  may minimize 

Jm,η only if the update equation of uik is 
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and then the update equation of tik is 
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Proof Since equations 3.37 and 3.38 are the extension of equations 2.18 and 

2.19. They follow immediately with the Lagrange multiplier theorem. Equation 3.33 is 

obtained by solving the reduced problem ( ) ( ),
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with T and V fixed for the k-th column of U. The proof of the equation 3.37 is similar to 

that in Theorem 1.Similarly, U and V are fixed for the i-th row T, equation 3.38 is proved 
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Hence, the update equation of tik will be 
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  

The effects of m and η on the sgPFCMed are similar to those on PFCM. If m 

approaches to infinity or 1, the properties of membership value of string k in cluster i will 

be similar to equations 3.10 and 3.11. Also, if η approaches to infinity or 1, the typicality 

value of string k in cluster i will be 
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respectively.  

To compute each string prototype, we modified fuzzy median string method 

in equation 3.31 by adding parameters a and b to find fuzzy median. Then the modified 

fuzzy median for sgPFCMed will be 
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Similarly, we then modify the equation 3.32 by incorporating a typicality 

value of sgPFCMed to the modified fuzzy median over the alphabet set ∑ as follows: 

  ( ) ( )
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j k
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∈Σ =

= + ≤ ≤∑ . (3.44) 

 The algorithm of the modified fuzzy median string for sgFCMed is similar to 

the modified median string in Chapter 2, but we use equations 3.45 to 3.47 instead of 

equations 2.40 to 2.42 
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Hence, the summarized sgPFCMed algorithm is as follows: 

Store N unlabeled finite strings S = {sk; k =1,..., N} 

Initialize string prototypes for all C classes by using equation (3.12) for single prototype 

clustering and randomly choose string prototypes as the initial cluster centers for multi-

prototypes clustering. 

Set m,η,γ 

Do { 

  Compute Levenshtein distance between input string j and cluster prototype i 

(Lev(sj,sci))  

  Update membership value using equation (3.37)    

  Update typicality value using equation (3.38)       

  Update center string of each cluster i (sci) using equation (3.43) and (3.44) 

} Until (Maximum number of iterations or Levenshtein distance between cluster center 

of previous iteration and current iteration less than stopping criteria) 



 

42 

 

The time complexity of the modified fuzzy median is approximately 

O(l3·c·|∑|) for each global iteration, where l is the maximum length of the strings in S and 

c is number of cluster center. Again, the computational complexity of the whole algorithm 

is O((l2·N2)+(l3·c·|∑)|)). 

3.1.4   String Grammar Unsupervised Possibilistic C-medians  

The unsupervised possibilistic C-means (UPCM) [15] is another posibilistic 

clustering algorithm which is based on the FCM objective function, the partition 

coefficient (PC) and partition entropy (PE) validity indexs. In order to classify string 

objects. On the basis of UPCM algorithm, we are going to introduce a new possibilistic 

clustering techniques for string which is adapted from UPCM. This technique is called 

string grammar unsupervised possibilistic C-medians (sgUPCMed). Then the objective 

function of sgUPCMed is 
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subject to the constraint: 1m > for k = 1 to N where m is weighting exponents ; 0 1iku≤ ≤  

where iku  is the fuzzy membership values of sk in class i. 

Theorem 4 (sgUPCMed): If ( , ) 0k iLev s sc >  for all i and k, when m, η, k>1, 

and S contains C<N distinct string data, then Jm,η is minimized only if the update equation 

of uik is 
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where β is a positive parameter, n is number of all strings, Yang and Wu defined β as the 

sample co-variance [15], the calculation of β value is based on sample co-variance [15] 

which differs from the β of UPCM by using the Levenshtein distance instead of Euclidean 

distance. Our β can be calculated as following: 
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Proof we use the Lagrange multiplier theorem for proof the equation 3.43. It 

is obtained by solving the reduced problem  
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the k-th column of U. The derivative of Li(U,λ) with respect to uik and setting it to zero 

leads to: 
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Hence, the update equation of uik will be (3.49).   

The algorithm of the modified fuzzy median string for sgUPCMed is similar 

to sgFCMed. To compute each string prototype, we use modified fuzzy median string 

method same as in equations 3.14 and 3.15 of sgFCMed. 

Hence, the summarized sgUPCMed algorithm is as follows: 
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Store N unlabeled finite strings S = {sk; k =1,..., N} 

Initialize string prototypes for all C classes by using equation (3.12) for single prototype 
clustering and randomly choose string prototypes as the initial cluster centers for multi-
prototypes clustering. 

Set m  

Compute β using equation (3.50) 

Do { 

  Compute Levenshtein distance between input string j and cluster prototype i 
(Lev(sj,sci))  

  Update membership value using equation (3.49)    

  Update center string of each cluster i (sci) using equation (3.14) and (3.15) 

} Until (Maximum number of iterations or Levenshtein distance between cluster center 
of previous iteration and current iteration less than stopping criteria) 

The overall computational time of the sgUPCMed algorithm is O((l2·N2)+ 

(l2·N2)+(l3·c·|∑|)) for each global iteration. 

3.1.5 String Grammar Unsupervised Possibilistic Fuzzy C-Medians  

Now, we are ready to modified UPFCM [16] to cope with the syntactic data 

set which called the string grammar unsupervised possibilistic-fuzzy C-Medians 

(sgUPFCMed). This leads to the following optimization problem of sgUPFCMed: 

 ( ),
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subject to the constraint: 1, 1m η> > for k = 1 to N where m and η is weighting exponents 

; 0 , 1ik iku t≤ ≤ and 
1

1C
iki

u
=

=∑  where iku  is the fuzzy membership values of sk in class i 

and ikt  is the possibilistic values of sk in class i; the constraint 0, 0a b> >  define the 

relative importance of fuzzy membership and possibilistic values in the objective 

function. 
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Theorem 5 (sgUPFCMed): If ( , ) 0k iLev s sc >  for all i and k, when m, η, k>1, 

and S contains C<N distinct string data, then Jm,η is minimized only if the update equation 

of uik is 
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and then the update equation of tik is 
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where β is a positive parameter that can be calculated using equation 3.50. 

Proof We use the Lagrange multiplier theorem. Equation 3.53 and 3.54 is 

obtained by solving the reduced problem ( ) ( ),
1
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with T and V fixed for the k-th column of U. The proof of the equation 3.53 is similar to 

that in theorem 3 of sgPFCMed. 

 Similarly, U and V are fixed for the i-th row T, equation 3.54 is proved by solving 

the problem 
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The derivative of Li(T,λ) with respect to tik and setting it to zero leads to: 
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Hence, the update equation of tik will be 

 ( ),
exp i k

ik

b cLev sc s
t

η
β

 
= −  
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. (3.56)  

 

The algorithm of the modified fuzzy median string for sgUPFCMed is similar 

to sgPFCMed. To compute each string prototype, we use modified fuzzy median string 

method same as in equations 3.43 and 3.44 of sgPFCMed. 

Hence, the summarized sgUPFCMed algorithm is as follows: 

Store N unlabeled finite strings S = {sk; k =1,..., N} 

Initialize string prototypes for all C classes by using equation (3.12) for single prototype 
clustering and randomly choose string prototypes as the initial cluster centers for multi-
prototypes clustering. 
Set m, η, a, b  
Compute β using equation (3.50) 

 

Do { 
  Compute Levenshtein distance between input string j and cluster prototype i 
(Lev(sj,sci))  
  Update membership value using equation (3.53)    
  Update typicality value using equation (3.54)       
  Update center string of each cluster i (sci) using equation (3.43) and (3.44) 
} Until (Maximum number of iterations or Levenshtein distance between cluster center 
of previous iteration and current iteration less than stopping criteria) 
 
 

The overall computational time of the sgUPFCMed algorithm is O((l2·N2)+ 

(l2·N2)+(l3·c·|∑|)) for each global iteration. 
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3.2    Illustration of String Grammar Fuzzy Clustering 

 We illustrate our five string grammar fuzzy clustering algorithms with 2-classes 

sample of Thai printed numeric data set with 10 samples in each class and three outliers 

shown in Figure 3.1. The parameters setting is shown in Table 3.1 

Cluster 1           

Cluster 2           

Outlier  

(or noisy 

data) 

     

     

Figure 3.1 Examples of 2-class Thai printed numeric data set. 

Table 3.1 Parameter setting of our algorithms for Thai printed numeric data set. 

parameter sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 

m 2 2 2 2 2 

η - 2 2 - 2 

γ - - 2 - - 

a - - 1 - 1 

b - - 1 - 1 

stopping criteria  0.1 0.1 0.1 0.1 0.1 

maximum 

number of 

iterations 

50 50 50 50 50 

To create a string from each image, we first cropped each image to only cover 

the object and then resize it to 50 pixels in height while the width is scaled according to 

the original aspect ratio. The boundary or the contour of the image was extracted using 
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the Moore-neighbor tracing algorithm [50]. After that, the boundary image was encoded 

using the 8-directional chain code [51]. Finally, the differential chain code [51] was used 

as the sequence of the image string.  

In all experiments, we initial prototype of each class using its median string.   

After, our algorithms are converged, the final membership values and typicality values of 

each string are shown in Table 3.2. It shows that sgFCMed, sgFPCMed, sgPFCMed, 

sgUPCMed and sgUPFCMed results in the same max-membership hard partition. The 

relative ordering of string (in terms of membership values) also remains the same. This is 

because the cluster centers from all algorithms are almost located at the same location. 

  



 

 
 

  Table 3.2 The final membership from our algorithms for Thai printed numeric data set. 

  sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 
  Membership values Membership values Possibility values Membership values Possibility values Possibility values Membership values Possibility values 

No. image u1k u2k u1k u2k t1k t2k u1k u2k t1k t2k t1k t2k u1k u2k t1k t2k 

1 
 

0.9912 0.0088 0.9912 0.0088 0.6038 0.0044 0.9912 0.0088 0.9534 0.1124 0.9778 0.00062 0.9971 0.0029 0.9985 0.00069 

2 
 

0.8436 0.1564 0.8436 0.1564 0.1536 0.0043 0.8436 0.1564 0.8560 0.4534 0.8798 0.00029 0.7856 0.2144 0.8976 0.00027 

3 
 

0.8454 0.1546 0.8454 0.1546 0.0345 0.0046 0.8454 0.1546 0.8124 0.4779 0.8433 0.00028 0.7436 0.2564 0.8543 0.00026 

4 
 

0.7238 0.2762 0.7238 0.2762 0.0234 0.0044 0.7238 0.2762 0.8798 0.3673 0.8894 0.00027 0.7842 0.2158 0.8945 0.00025 

5 
 

0.7953 0.2047 0.7953 0.2047 0.0114 0.0042 0.7953 0.2047 0.8244 0.4689 0.8139 0.00033 0.7578 0.2422 0.8543 0.00031 

6 
 

0.6135 0.3865 0.6135 0.3865 0.0105 0.0032 0.6135 0.3865 0.7053 0.4252 0.7934 0.00022 0.6154 0.3846 0.8145 0.00019 

7 
 

0.7452 0.2548 0.7452 0.2548 0.0342 0.0036 0.7452 0.2548 0.7683 0.3052 0.8148 0.00025 0.7424 0.2576 0.8204 0.00023 

8 
 

0.7344 0.2656 0.7344 0.2656 0.045 0.0034 0.7344 0.2656 0.7974 0.3125 0.8425 0.00029 0.7364 0.2636 0.8498 0.00025 

9 
 

0.7043 0.2957 0.7043 0.2957 0.0332 0.0038 0.7043 0.2957 0.7453 0.3476 0.8198 0.00026 0.7078 0.2922 0.8236 0.00022 

10 
 

0.6899 0.3101 0.6899 0.3101 0.0241 0.0041 0.6899 0.3101 0.7367 0.4074 0.7969 0.00021 0.6949 0.3051 0.8035 0.00018 

11  0.1547 0.8453 0.1547 0.8453 0.0031 0.2125 0.1547 0.8453 0.1670 0.7983 0.00061 0.8432 0.2146 0.7854 0.00060 0.8532 

12  0.2654 0.7346 0.2654 0.7346 0.0029 0.0118 0.2654 0.7346 0.1879 0.7233 0.00060 0.7854 0.2864 0.7136 0.00050 0.7956 

13 
 

0.2166 0.7834 0.2166 0.7834 0.0034 0.0125 0.2166 0.7834 0.1806 0.7809 0.00064 0.8235 0.2567 0.7433 0.00058 0.8644 

14  0.0136 0.9864 0.0136 0.9864 0.0032 0.6328 0.0136 0.9864 0.0112 0.9487 0.00061 0.9643 0.0037 0.9963 0.00056 0.9896 

X15  0.2745 0.7255 0.2745 0.7255 0.0029 0.0143 0.2745 0.7255 0.1699 0.8751 0.00068 0.9056 0.2532 0.7468 0.00063 0.9145 

16 
 

0.3246 0.6754 0.3246 0.6754 0.0018 0.0115 0.3246 0.6754 0.4678 0.7235 0.00060 0.7864 0.3236 0.6764 0.00058 0.7889 

17 
 

0.3759 0.6241 0.3759 0.6241 0.0009 0.0131 0.3759 0.6241 0.4984 0.6973 0.00053 0.7043 0.3742 0.6258 0.00040 0.7088 
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Table 3.2 The final membership from our algorithms for Thai printed numeric data set. (continue) 

  sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 
  Membership values Membership values Possibility values Membership values Possibility values Possibility values Membership values Possibility values 

No. image u1k u2k u1k u2k t1k t2k u1k u2k t1k t2k t1k t2k u1k u2k t1k t2k 

18 
 

0.3179 0.6821 0.3179 0.6821 0.0011 0.0113 0.3179 0.6821 0.4235 0.7124 0.00061 0.7345 0.3183 0.6817 0.00058 0.7532 

19 
 

0.3779 0.6221 0.3779 0.6221 0.0007 0.0126 0.3779 0.6221 0.4976 0.7011 0.00063 0.7285 0.3781 0.6219 0.00060 0.7467 

20 
 

0.3858 0.6142 0.3858 0.6142 0.0011 0.0167 0.3858 0.6142 0.5832 0.6996 0.00059 0.7087 0.3864 0.6136 0.00055 0.7356 

21 
 

0.5703 0.4297 0.5703 0.4297 0.0007 0.0036 0.5703 0.4297 0.0892 0.0756 0.00014 0.00012 0.5805 0.4195 0.00009 0.00012 

22 
 

0.5325 0.4675 0.5325 0.4675 0.0009 0.0026 0.5325 0.4675 0.0766 0.0795 0.00016 0.00022 0.5084 0.4916 0.00006 0.00020 

23 
 

0.5988 0.4012 0.5988 0.4012 0.0012 0.0010 0.5988 0.4012 0.0812 0.0734 0.00013 0.00011 0.5991 0.4009 0.00010 0.00009 

24 
 

0.5443 0.4557 0.5443 0.4557 0.0010 0.0015 0.5443 0.4557 0.0763 0.0780 0.00012 0.00013 0.5444 0.4556 0.00009 0.00011 

25 
 

0.4563 0.5437 0.4563 0.5437 0.0011 0.0021 0.4563 0.5437 0.0697 0.0765 0.00012 0.00011 0.4523 0.5477 0.00010 0.00011 

26 
 

0.5352 0.4648 0.5320 0.4680 0.0003 0.0001 0.5320 0.4680 0.0045 0.0032 0.00009 0.00007 0.5310 0.4690 0.00006 0.00004 
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When we consider the possibity value or typical values of sgFPCMed, 

sgPFCMed, sgUPCMed and sgUPFCMed. The possibility values of samples for all four 

algorithms in cluster 1 (t1k)1≤k≤5 are far larger than possibility values of samples in cluster 

2 (t2k)1≤k≤5. The sample numbers 1 to 10 are more possibility to cluster 1 than cluster 2. 

While those in cluster 1 (t1k)6≤k≤10 are smaller than (t2k)6≤k≤10 notably. Again, sample 

numbers 11 to 20 are more possibility to cluster 2 than cluster 1. When we consider noisy 

data with outlier, the membership values of the sgFCMed cannot detect outliers 21, 22, 

23, 24, 25 and 26. Whereas the possibility values (or typical value) from sgFPCMed, 

sgPFCMed, sgUPCMed and sgUPFCMed   provides a more informative description of 

the data than sgFCMed, since it provides roughly the same membership information but 

also shows, via the possibilities, for example, that number 21, 22, 23, 24, 25 and 26 are 

small possibility than others for either cluster. This indicates that six samples are not in 

the 2 clusters mentioned above.  Moreover, the possibility value also gives more detail 

about outlier, that number 26 is far from prototype than numbers 21, 22, 23, 24 and 25, 

but not in the sgFCMed. Since sgFCMed model consider only membership value. Hence 

the sgFCMed has difficulty in handling outlier. The sgFPCMed, sgPFCMed, sgUPCMed 

and sgUPFCMed can solve the problem of sgFCMed, these algorithms consider the 

clustering analysis from the viewpoint of possibility theory. The possibility or typicality 

values will be low for outliers. Although sgFPCMed is created for solving noisy data, it 

seems to be worse than sgPFCMed in large dataset because of the constraint 1ikt =∑ . 

We need to have this constraint in sgPFCMed because the columns and rows of the 

typicality matrix are independent of each other, If the initialization of each row is not 

sufficiently distinct, coincident clusters may result. The sgPFCMed can improve the 

result of clustering in domain of string by relaxing the row of sum constraint of 

sgFPCMed (sum of the typicalities over all data points to a particular cluster is 1).  For 

improving the classification accuracy result, sgUPCMed and sgUPFCMed algorithms use 

the exponential functions to describe the degree of belonging based on the validity 

indexes PC and PE. The possibility value is very small and tends to be zero for the 

samples that far away from each other such as sample number 26. Hence, both algorithms 

can detect the outliers of dataset as well. 


