CHAPTER 4

Results and Discussion

This chapter describes the experimental results of the five proposed methods, i.e.,
sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed and sgUPFCMed on four standard real-
world data sets, i.e., MPEG-7 data set, Copenhagen chromosomes data set, MNIST
database of handwritten digits, and USPS database of handwritten digits in section 4.1.
The evaluation the quality of partitions using three cluster validity indices, i.e., PE, PC,
and XB are also described for each data set and the measuring degree of overlapping data

is described.

4.1 Results and discussion on Standard Data Sets

We ran our algorithms on four real data sets, i.e., MPEG-7 data set, Copenhagen
chromosomes data set, MNIST database of handwritten digits, and USPS database of
handwritten digits. For all of experiments, we divided each experiment into two part, i.e.,
single prototype and multi-prototypes clustering. In the training process of all
experiments, we used ten-fold cross validation. A test string was assigned to the class of
the nearest prototype in the testing process for single-prototype and the nearest multi-
prototypes was used to assigned any test string to the class. Then, we evaluated the quality
of partitions using three cluster validity indices, i.e., PE, PC, and XB. In the single
prototype experiments, the median string of each class is used as the initial cluster
prototype and we randomly select the initial cluster prototypes for multi-prototypes, the

parameters setting for all experiment is shown in Table 4.1.

In our work, the R-value is utilized to measuring overlapping of our datasets, i.e.,
MPEG-7 data set, Copenhagen chromosomes data set, MNIST database of handwritten

digits, and USPS database of handwritten digits. The step of R-value calculation is to find
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the K nearest neighbor string and then counts the number of string that belonging to the

other classes. If the summation of the counted number (R) is larger than 0, that means the

dataset is overlapping data. The R-value can evaluate the degree of overlap. The higher

R-value indicates that the dataset contains large overlapping area among its class. In our

experiments, we apply R-value based on the Levenshtein distance. The K value is set

equal to 7 for all experiments. The R-value of 4 real world data sets are shown in Table

4.2

Table 4.1 Parameter setting of our algorithms for all experiments.

parameter sgFCMed | sgFPCMed | sgPFCMed | sgUPCMed | sgUPFCMed
m 2 2 2 2 2
n - 2 2 - 2
y : : 2 : -
a - - 1 - 1
b - - 1 - 4
stopping criteria 0.1 0.1 0.1 0.1 0.1
maximum
number of 100 100 100 100 100
iterations
Table 4.2. The R-value of 4 real world data sets.
Dataset Number of | Number of | R-value
samples classes
MPEG-7 1,400 70 0.4814
Copenhagen chromosomes 2,200 22 0.2227
MNIST database of handwritten digits 60,000 10 0.1390
USPS database of handwritten digits 7,291 10 0.1920
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4.1.1 MPEG-7 Core Experiment CE-Shape-1 Part-B Data Set

The MPEG-7 data set [45-49] is a well-known shape matching evaluation
database. The core experiment was divided into three parts, i.e., part A: robustness to
scaling and rotation, part B: performance of the similarity-based retrieval, and part C:
robustness to changes caused by non-rigid motion. In our work, we focus only on part B
of MPEG-7 Core Experiment CE-Shape-1 that consist of 70 different classes of shape,
each class has 20 different shapes with high intra-class variability. The whole data set,
Therefore, consists of 1400 binary images. Some examples of images in this data set are
shown in Figure 4.1 (seven shapes from the same class are shown in each row).

To create a string from each image, there are 4 steps as follows:

1. We first cropped each image to only cover the object and then resized
it to 35 pixels in height while the width was scaled according to the original aspect ratio.

2. We extracted the boundary or the contour of the image using the
Moore-neighbor tracing algorithm [50].

3. The boundary image was encoded using the 8-directional chain code
[51].

4. Finally, the differential chain code [51] was used as the sequence of
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the image string.

Figure 4.1 Examples from MPEG-7 shape data sets.
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The process of generating a string from an image is shown in Figure 4.2. The
chain code of the boundary in Figure 4.2 is 11117777555544443333 and the differential
chain code of this image is 60006000600070007000.

Binary image

Figure 4.2 The string generation of MPEG- shape data sets.

Boundary image

&-direction chain code

The classification accuracy rates of the ten-folds cross validation for single-
prototype of the sgHCM, sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed and
sgUPFCMed are shown in Table 4.3. We can see that the best validation result from the
sgUPFCMed m=2, n=4 is 90.71% correct classification, while that of the sgHCM,
sgFCMed, sgFPCMed, sgPFCMed and sgUPCMed are 72.86%, 85.00%, 86.43%,
90.00%, and 90.00%, respectively.

Table 4.3 Single-prototype classification error rate on validation sets of MPEG-7 data
set from sgHCM, sgFCMed, sgFPCMed, sgPFCMed. sgUPCMed and sgUPFCMed.

training data set

Mmoo (best validation set result)
sgHCM | sgFCMed | sgFPCMed | sgPFCMed | sgUPCMed | sgUPFCMed
15|15 18.57 16.43 13.57
1.5]2.0 15.00 12.85 10.00
23.33 12.33

1.5 (3.0 15.00 13.57 12.14
1.5]4.0 15.00 15.00 12.85
20120 714 15.00 12.14 10.71
2013.0 15.00 13.57 10.00 10.00 10.71
20140 13.57 12.14 9.29
3.0 2.0 15.71 15.00 10.00
3.0 3.0 18.33 16.43 13.57 12.14 10.71
3.0 4.0 15.00 12.86 10.71
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Table 4.4 Multi-prototypes classification error rate on validation sets of MPEG-7 data
set from sgHCM, sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed and sgUPFCMed.

” training data set
(best validation set result)
prototype
of each | sgHCM | sgFCMed | sgFPCMed | sgPFCMed | sgUPCMed | sgUPFCMed
class

2 25.00 15.00 13.57 9.29 8.57 7.86
3 24.29 15.00 12.86 8.57 7.86 8.57
4 24.29 14.29 12.86 7.86 7.14 7.14
5 18.86 11.57 8.14 5.86 5.43 3.71
6 17.86 10.71 7.86 4.29 5.00 2.14
7 18.57 10.71 8.57 5.71 5.71 2.86
8 20.00 11.43 8.57 6.43 6.43 2.86
9 21.43 12.86 10.00 6.43 7.14 3.57
10 22.14 13.57 11.43 6.43 7.14 4.29

In Table 4.4, we ran multi-prototypes string grammar fuzzy clustering
algorithms (2-10 prototype of each class) with the best parameter from single-prototype,
we can see that the best validation result on validation sets of the ten-folds cross validation
from the 6 prototypes of sgUPFCMed is 97.86% correct classification, whereas that from
the sgHCM, sgFCMed, sgFPCMed, sgPFCMed and sgUPCMed are 82.14%, 89.29%,
92.14%, 95.71% and 95%, respectively.

Fuzzy partitioning is carried out through an iterative optimization of the
objective function of each algorithm with the update of membership and the cluster
centers. Our algorithms are repeat until the algorithm has converged (that is the difference
of cluster center between two iterations is no more than the given sensitivity stopping
criteria or the maximum number of iteration is reached). Figure 4.3 show the sample of
the termination error value of each iteration until our algorithms have converged (we only

show the termination error of 5-prototypes clustering for MPEG?7 dataset).
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Figure 4.3 Termination measure of MPEG7 dataset.
The performance evaluation of our five algorithms using three cluster validity

indices are shown in Table 4.5. The PC of 6-prototypes of sgUPFCMed is maximum and
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the PE and XB is minimum. As we expected, the 6-prototypes of sgUPFCMed provides

an overall better performance in term of compact and separated clusters.

The direct and indirect comparison of the result from the MPEG-7 data set is
shown in Table 4.6. We can see that our result is better than all methods in [45-49], that

implement on shape or syntactic data set.

When we measured the degree of overlapping data of the dataset, the R-value
is equal to 0.4814. Hence, this dataset is indicated that the dataset contains large area of

overlapping.

In this dataset, the result of classification of five string grammar fuzzy
clustering algorithms, i.e., sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed and
sgUPFCMed with modified fuzzy median string perform better than sgHCM for all of
experiments. However, the result of sgFCMed is not good enough because the dataset
contains large overlapping area among its class and contains several outlier data. The
sgFCMed cannot handle outlier points in the dataset because of the constraint restriction
that the sum of membership value of a data due to the object in all the clusters must be
equal to one and the sgFCMed assigns membership for each object which are related to
the distance of each object to the cluster centers. The sgFPCMed can solve these problems
because this algorithm does not only consider the clustering problem from the viewpoint
of membership theory but also considers both the clustering problem from the viewpoint
of membership and possibility theories. Although sgFPCMed is created for solving noisy
data, the result of sgFPCMed seems to be worse than sgPFCMed because of the constraint

Ztik =1 (if the number of data is large, the typicality values of sgFPCMed tend to be

very small). The sgPFCMed can improve the result of clustering in domain of string by
relaxing the constraint of sgFPCMed (sum of all typicality values of all data to cluster
center must be equal to one). This method has the good point of obtaining better
classification accuracy than sgFCMed and sgFPCMed clustering methods for this dataset.
For improving the classification accuracy result, we proposed sgUPCMed and
sgUPFCMed that both objective functions based on the validity indexes PC and PE from

UPCM so that the exponential membership functions are used to describe the degree of

58



belonging. Hence, we can detect the outlier of the dataset as well since the membership

value tend to be zero where the string is too far from its prototype.

However, using only single-prototype to represent each cluster, which may
not adequately model the clusters of arbitrary shape and size and hence limit the clustering
performance on overlapping data. Hence, the multiple prototypes method is utilized in
string grammar clustering algorithm to improve the performance of classification. The
most important thing for multi-prototypes clustering is determining the number of
prototypes of each class. The number of prototypes depends on the distribution, the intra-
class variability and inter-class variability of each dataset. We should preserve
discrimination between classes for improving the classification accuracy rate. we suggest
choosing the number of prototypes of each class which large enough that noise in the data
1s minimized and small enough so the samples of the other classes are not included. From
Table 4.4, when we ran our experiments with different number of prototype, the

sgUPFCMed with 6 prototypes is the best of accuracy rate.

While we found sgUPCMed sometimes generated coincident. For example,
when we ran sgUPCMed with 6-prototypes of each class, after the algorithm converged,

it produced some prototypes with the same location because the algorithm can generate

the same memberships values from relaxing constraint Zuik =1 because the columns and

rows of the possibilistic values are independent of each other. Hence, sometimes the
accuracy rate of sgUPCMed is not good enough. The sgUPFCMed can solve this problem
because the objective function of sgUPFCMed based on the validity indexes PC and PE
so that the exponential membership functions are used to describe the membership degree
and take advantages of possibility value from PFCMed. Hence, we can detect the outlier

of dataset as well and can solve coincident cluster of sgUPCMed.
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Table 4.5 Cluster validity indices of sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed and sgUPFCMed on MPEG-7 data set.

sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed
(m=2) (m=2, n=4) (m=2, n=4) (m=2) (m=2, n=4)
#prototype
PC PE XB PC PE XB PC PE XB PC PE XB PC PE XB
of each class
1 0.0311 | 4.7980 | 25.3344 | 0.2678 | 1.1342 | 12.3108 | 0.3665 | 1.0087 | 11.4964 | 0.3683 | 1.0085 | 11.4375 | 0.3772 | 1.0080 | 10.7634
2 0.0935 | 4.7571 | 25.1408 | 0.2945 | 1.1295 | 12.1684 | 0.3669 | 1.0085 | 11.3947 | 0.3692 | 1.0079 | 11.3278 | 0.3899 | 1.0066 | 10.7533
3 0.1454 | 4.7351 | 25.1198 | 0.3108 | 1.1271 | 12.1497 | 0.3692 | 1.0081 | 11.3601 | 0.3764 | 1.0071 | 11.3216 | 0.3923 | 1.0064 | 10.7516
4 0.2087 | 4.5761 | 25.0918 | 0.3197 | 1.1206 | 12.0741 | 0.3745 | 1.0078 | 11.1647 | 0.3792 | 1.0066 | 11.2393 | 0.4188 | 1.0061 | 10.7390
5 0.2673 | 4.5525 | 25.0764 | 0.3217 | 1.1131 | 11.8730 | 0.3877 | 1.0073 | 11.1548 | 0.3899 | 1.0066 | 11.2313 | 0.4256 | 1.0060 | 10.7389
6 0.3691 | 3.7294 | 19.4325 | 0.3852 | 1.0702 | 11.3779 | 0.4214 | 1.0034 | 10.1876 | 0.4200 | 1.0042 | 10.4025 | 0.5909 | 1.0022 | 9.9234
7 0.3496 | 3.9123 | 20.749 | 0.3723 | 1.0927 | 11.6756 | 0.4078 | 1.0038 | 10.2985 | 0.4078 | 1.0045 | 10.7796 | 0.5388 | 1.0026 | 9.9485
8 0.3501 | 4.0892 | 21.968 | 0.3779 | 1.0934 | 11.7706 | 0.4190 | 1.0040 | 10.2753 | 0.4198 | 1.0044 | 10.5703 | 0.4982 | 1.0031 | 9.7699
9 0.3400 | 4.2898 | 24.679 | 0.3698 | 1.1035 | 11.8122 | 0.4001 | 1.0043 | 10.3424 | 0.4044 | 1.0046 | 11.0492 | 0.4387 | 1.0035 | 10.5665
10 0.2967 | 4.4825 | 25.0593 | 0.3498 | 1.1126 | 11.8143 | 0.3898 | 1.0065 | 11.1374 | 0.4014 | 1.0054 | 11.0722 | 0.4322 | 1.0059 | 10.7237




Table 4.6 Comparison of MPEG-7 data set.

Mo e | S

sgHCM [12] with 6 prototypes Direct 17.86
sgFCMed with 6 prototypes - 10.71
sgFPCMed with 6 prototypes - 7.86
sgPFCMed with 6 prototypes - 4.29
sgUPCMed with 6 prototypes - 5.00
sgUPFCMed with 6 prototypes - 2.14
e e rom et | Dies | s
FCM+ Levenshtein distance [29] Direct 34.56
Curve edit distance [45] Indirect 21.83
Shape contexts [46] Indirect 23.49
Profile + Naive Bayes [47] Indirect 23.0
Profile + linear SVM [47] Indirect 27

Ithez;}t;i rce(;n[t:él]r descriptor + Shape similarity Indirect 15.67
s oo | et | 27

For the indirect comparison, we compared our result with those from the
curve edit distance [45] shape contexts [46], Naive Bayes [47], linear SVM [48], shape
contour descriptor [49], and locally constrained diffusion process (LCDP) with inner
distance shape context (IDSC) [49]. We can see that our methods provided better
classification accuracy than all other methods in literatures, but not better than the method
in [48]. The accuracy of the best of our method is worse than IDSC. It might be due to
the synthetic points which are added to increase some information in IDSC, but our
algorithm was implemented on original data set without adding any synthetic points in

the dataset.

We can see that our methods provided better classification accuracy than
string grammar hard clustering methods for this dataset. Our methods are more
appropriate for applications where the structure of a pattern is important than numeric

methods such as shape matching. However, some misclassifications have occurred in this
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data set. It might be a result of there are some shapes in different class that are very similar
as shown in Figure 4.4 or might be because this dataset is high intra-class variability as

shown in Figure 4.5.
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Figure 4.4 Sample of some shape in different class that are very similar.
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\Figure 4.5 Sample of class device6 with high intra-class variability

4.1.2 Copenhagen Chromosomes Data Set

The Copenhagen chromosomes data set [52-54] was collected by Prof. Simon

M. Lucas and is available for download at http://algoval.essex.ac.uk/data/sequence/.
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There are 4400 strings in total from 22 non-sex chromosome type each with 200 strings.
The chromosome density profiles were extracted from images of cells in the metaphases
stage of cell division. The histogram of each image was encoded into a string. An example
is shown in Figure 4.6. There are 44 files, each have 100 lines of the form / 7569 165 1
7839/ A=A==a==A=a==Aa=A==

a==C=====b=A=a=—=B==a=B=—==c=—===B=—=a=—=(C==d=—=A==a===A==b==a ,
when 75609 is an identifier and 165 € [1,180] is the metaphase the sample coming from.
The number 1, 78, and 39 are the chromosome type, the overall string length, and the
length of p-arm, respectively. The set of alphabet in this case is
2={=,ab,c,d,e f,A,B,C,D,E.F}. It should be noted that we downloaded the encoded data

set, not the chromosome images.

‘/f Idealize profile
oe;

Original image
3
2
1
0

12345678 910111213141516171819202122232425262728

B e

Six level string represent: 66566363365655565546445555546

Figure 4.6 An example from Copenhagen Chromosome dataset.

The data set was divided into training and blind test data sets with 2,200
strings in each data set. The classification rates of the validation set and blind test data set
of the sgFCMed, sgFPCMed, sgPFCMed and sgUPFCMed are shown in Table 4.7 to
Table 4.10.

The classification accuracy rates of the ten-folds cross validation for single
prototype of the sgHCM, sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed and
sgUPFCMed are shown in Table 4.6. We can see that the best validation result from the

63



sgUPFCMed m=1.5, n=2 is 90.45% correct classification, while that of the sgHCM,
sgFCMed, sgFPCMed, sgPFCMed and sgUPCMed are 85.46%, 86.36%, 88.64%, 90%,
and 90%, respectively. The best sgUPFCMed on test set also provides 89.66% with m=2,
n=2 for the best correct classification on the blind test data set. The sgHCM, sgFCMed,
sgFPCMed, sgPFCMed and sgUPCMed yield 85.46%, 84.91%, 86.37%, 87.36%, 87.41,
respectively on the blind test data set. Again, the sgUPFCMed outperforms the sgHCM,
sgFCMed, sgFPCMed, sgPFCMed and sgUPCMed.

Table 4.7 Single-prototype classification error rate (%) on validation sets for
Copenhagen chromosomes data set.

training data set
men (best validation set result)
sgHCM | sgFCMed | sgFPCMed | sgPFCMed | sgUPCMed | sgUPFCMed

1515 11.82 10.45 10.00
1.5120 13.64 11.36 10.00 10.00 9.55
1.5]3.0 11.68 10.91 10.00
1.5]4.0 12.72 12.27 10.45
20120 14,54 11.36 11.36 11.36
2.0]3.0 14.54 11.82 10.91 10.91 10.00
2.014.0 11.82 11.36 1091
3.0]2.0 12.27 12.72 1091
3.0(3.0 14.09 11.36 10.91 12.14 10.45
3.0 4.0 11.82 11.82 11.45

In order to compare the performance of these multi-prototypes string
grammar clustering, i.e., sgHCM, sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed and
sgUPFCMed for Copenhagen Chromosome dataset. We implement these algorithms with
c=2,4,6,8, 10, 12, 14, 16, 18, 20, 22, 24 and 26 prototypes with the best parameter
from single-prototype of each class so that the clustering results could completely
consider all situations for this Copenhagen Chromosome dataset as shown in Table 4.9

and Table 4.10.
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Table 4.8 Single-prototype classification error rate (%) on blind test dataset for
Copenhagen chromosomes data set.

m | 7 blind test dataset
sgHCM | sgFCMed | sgFPCMed | sgPFCMed | sgUPCMed | sgUPFCMed

15|15 15.95 15.14 11.56
19| 2d 13.72 13.05 12.91 12.54
13| 3l 1600 13.63 12.86 11.32
L3 |l 15.91 15.09 11.36
2'3 ig w00 | A 13.63 12.64 10.34
D & 13.77 13.55 12.59 11.87
e 13.77 13.05 11.21
e 13.91 15.59 11.54
] 16.05 13.86 13.50 13.50 11.59
] ad 13.81 13.45 11.56

Table 4.9 Multi-prototypes classification error rate (%) on validation sets for
Copenhagen chromosomes data set.

# prototype training data set
of each class (best validation set result)
sgHCM | sgFCMed | sgFPCMed | sgPFCMed | sgUPCMed | sgUPFCMed
(m=1.5) (m=1.5,p=2) | (m=1.51=2) (m=1.5) (m=1.5, 1=2)

2 13.46 9.69 9.28 8.34 8.07 7.97
4 13.41 9.65 9.18 8.11 8.05 7.87
6 11.67 9.56 8.66 7.62 7P 7.52
8 11.64 9.40 8.60 7.58 7.52 7.01
10 11.56 9.31 8.55 7.27 7.49 6.54
12 11.24 9.09 8.29 6.81 7.49 6.25
14 10.60 8.51 8.11 6.68 7.43 5.83
16 10.20 8.38 8.08 6.56 7.24 5.78
18 10.15 7.99 8.00 6.52 7.10 5.46
20 9.98 7.92 7.90 6.47 6.63 4.78
22 10.08 7.99 7.94 6.57 6.74 5.05
24 10.14 8.14 8.05 6.63 6.89 5.18
26 10.19 8.42 8.15 6.84 7.03 5.89
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Table 4.10 Multi-prototypes classification error rate (%) on blind test dataset for
Copenhagen chromosomes data set.

blind test data set
# prog.)t}l'pe of sgFCMed | sgFPCMed | sgPFCMed | sgUPCMed | sgUPFCMed
S seHem (m=2) (m=2,1=2) | (m=2,7=2) (m=2) (m=2, n=2)
2 14.88 | 14.79 11.32 10.22 10.32 8.07
4 14.82 13.37 10.70 9.18 9.27 7.92
6 14.61 13.15 9.04 8.94 9.26 7.91
8 14.48 | 13.07 8.61 8.51 9.20 7.90
10 1435 | 12.18 8.31 7.54 8.99 7.82
12 14.32 | 12.06 8.29 7.29 7.95 7.44
14 14.12 11.94 7.93 7.14 7.717 7.36
16 13.72 11.86 7.86 7.10 7.31 6.64
18 11.68 | 11.17 7.60 6.95 6.97 6.59
20 10.84 | 10.49 7.27 6.61 6.58 6.34
22 10.99 10.84 7.89 6.82 6.74 6.52
24 11.13 11.08 8.12 7.02 6.93 6.63
26 11.43 11.29 8.28 7.44 7.01 6.87

We can see that 20 prototypes of sgUPFCMed gives 95.22% correct

classification rate on the validation set with m=1.5, #=2. Whereas the sgHCM, sgFCMed,
sgFPCMed, sgPFCMed and sgUPCMed provide 90.02%, 92.08%, 92.10, 93.53%, and

93.37% correct classification, respectively, on the best validation set. The best

sgUPFCMed on test set also provides 93.66% with m=2, #=2 for the best correct
classification on the blind test data set. The sgHCM, sgFCMed, sgFPCMed, sgPFCMed
and sgUPCMed yield 89.16%, 89.51%, 92.73, 93.39%, and 93.42% %, respectively on

the blind test data set.

Figure 4.7 show the sample of the termination error value of each iteration

until our algorithms have converged (we only show the termination error of 4-prototypes

clustering for Copenhagen Chromosome dataset).
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Figure 4.7 Termination measure of Copenhagen Chromosome dataset.
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The sgUPFCMed outperforms the sgHCM, sgFCMed, sgFPCMed,
sgPFCMed and sgUPCMed. An overall comparison between the performances on the
partition of clusters is shown in Table 4.12. As one can observe, sgUPFCMed partition
has higher partition coefficient and the PE and the XB index are lower which indicates a
good clustering. As expected, sgUPFCMed model outperforms sgHCM, sgFCMed,
sgFPCMed, sgPFCMed and sgUPCMed models.

For indirect comparison, we compared our results with the 12-NN normalized
distance [2] ECGI algorithm [55], and Multilayer Perceptron [55]. The direct and indirect
comparison is shown in Table 4.11. We can see that our results are better than all other

algorithms.

When we measured the degree of overlapping data of the dataset, the R-value was

equal to 0.2227. This indicated that the dataset did not contain large area of overlapping.

Similar to the MPEG-7 data set, the result of classification of our five string
grammar fuzzy clustering algorithms on Copenhagen chromosomes data set are better
than sgHCM for all of experiments. The sgUPFCMed provide the best classification rate
than sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed with same reasons of the previous
dataset (the MPEG-7 data set). Again, using only single-prototype to represent each
cluster, which may not provide good result because of the limiting of the clustering
performance on overlapping data. The multi-prototypes method was also utilized in this
dataset to improve the performance of classification. When we also ran multi-prototypes,
the results show that sgUPFCMed with 20 prototypes is the best of classification results.
The number of prototypes of this dataset is large might be because the intra-class

variability of this dataset is low and inter-class variability of this dataset is high.

For the indirect comparison, we compared our result with those from the 12-NN
normalized distance [2] ECGI algorithm [55], and Multilayer Perceptron [55]. We can
see that the best of our method with 20 prototypes provides better classification accuracy
than other methods in literatures. Again, our methods provide better classification
accuracy than string grammar hard clustering methods and other methods in works of

literature for this dataset.
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Table 4.11 Comparison of Copenhagen chromosomes data set

Method Comparison | Classification error rate
method (%)
Training set Test set

sgHCM [12] with 20 prototypes Direct 9.98 10.84
sgFCMed with 20 prototypes - 7.27 9.86
sgFPCMed with 20 prototypes - 7.10 9.21
sgPFCMed with 20 prototypes - 5.82 7.24
sgUPCMed with 20 prototypes = 6.63 6.58
sgUPFCMed with 20 prototypes 3 4.78 6.34
Levenshtein distance + FCM (Length of Direct 19.55 20.98
substring=4, tolerance=70% ) [28]
FCM+ Levenshtein distance [29] Direct 26.82 29.34
12-NN normalized distance [2] Indirect 4.9 -
ECGTI algorithm [55] Indirect 7.5 -
Multilayer Perceptron [55] Indirect 9.1 -
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Table 4.12 Cluster validity indices of sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed and sgUPFCMed on Copenhagen
chromosomes data set.

sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed
(m=1.5) (m=1.5, 1=2) (m=1.5, ©=2) (m=1.5) (m=1.5, =2)
e PC PE XB PC PE XB PC PE XB PC PE XB PC PE XB
of each class
1 0.127 2.997 | 189143 | 0.197 1.434 18.675 | 0.2440 | 1.398 18.322 | 0.2593 | 1.4133 | 17.9926 | 0.294 1.321 18.210
2 0.1321 | 2.9867 | 18.8616 | 0.1244 | 1.4219 | 18.6564 | 0.2463 | 1.3874 | 18.6564 | 0.2606 | 1.4112 | 17.9707 | 0.2552 | 1.3176 | 18.2069
4 0.1337 | 2.9026 | 18.5756 | 0.1261 | 1.4193 | 18.5118 | 0.2473 | 1.3842 | 18.5118 | 0.2632 | 1.4112 | 17.6623 | 0.2784 | 1.3152 | 18.1889
6 0.1340 | 2.8782 | 18.5563 | 0.1268 | 1.4011 | 18.3725 | 0.2522 | 1.3706 | 18.3725 | 0.2895 | 1.3787 | 17.6177 | 0.2826 | 1.3141 | 18.0975
8 0.1369 | 2.8067 | 18.5269 | 0.1305 | 1.3966 | 18.2891 | 0.2610 | 1.3688 | 18.2891 | 0.2938 | 1.3691 | 17.5643 | 0.2841 | 1.3065 | 17.9758
10 0.1381 | 2.7586 | 18.4625 | 0.1319 | 1.3915 | 18.2761 | 0.2617 | 1.3495 | 18.2761 | 0.3017 | 1.3682 | 17.4469 | 0.2866 | 1.2943 | 17.9106
12 0.1389 | 2.7040 | 18.4488 | 0.1347 | 1.3910 | 18.1591 | 0.2714 | 1.3438 | 18.1591 | 0.3059 | 1.3638 | 17.3252 | 0.2907 | 1.2921 | 17.8921
14 0.1392 | 2.6704 | 18.4290 | 0.1375 | 1.3786 | 17.9761 | 0.2747 | 1.3338 | 17.9761 | 0.3082 | 1.3483 | 17.3222 | 0.2941 | 1.2906 | 17.8678
16 0.1411 | 2.4921 | 18.3640 | 0.1384 | 1.3785 | 17.9587 | 0.2771 | 1.3282 | 17.9587 | 0.3190 | 1.3373 | 17.3099 | 0.3104 | 1.2901 | 17.3688
18 0.1423 | 2.3497 | 18.1483 | 0.1402 | 1.3783 | 17.8798 | 0.3089 | 1.3266 | 17.8798 | 0.3259 | 1.3365 | 17.2936 | 0.3144 | 1.2840 | 17.3201
20 0.1431 | 1.984 | 17.6844 | 0.3520 | 1.372 | 17.4800 | 0.3380 | 1.2800 | 17.410 | 0.3311 | 1.3037 | 17.2047 | 0.3870 | 1.2750 | 16.973
22 0.1425 | 2.254 | 18.3450 | 0.1478 | 1.3945 | 17.8798 | 0.3078 | 1.3543 | 17.6756 | 0.3254 | 1.3334 | 17.2765 | 0.3167 | 1.2876 | 17.334
24 0.1415 | 2.262 | 18.3678 | 0.1412 | 1.432 | 17.9776 | 0.2986 | 1.3964 | 17.6954 | 0.3135 | 1.3376 | 17.2965 | 0.3075 | 1.2965 | 17.678
26 0.1411 | 2.269 | 18.3987 | 0.1265 | 1.4865 | 17.9954 | 0.2646 | 1.4076 | 17.7054 | 0.3076 | 1.3468 | 17.3754 | 0.2896 | 1.3154 | 17.975




4.1.3 MNIST Database of Handwritten Digits

The MNIST database of handwriting digit data set is available from
http://algoval.essex.ac.uk/data/sequence/ as described in [56-59] was collected by Prof.
Simon M. Lucas. It contains training set of 60,000 examples, and a test set of 10,000
examples. Digits in data set ranging from 0 to 9. Table 4.13 shows the number of each

digit in training and test sets. Examples are shown in Figure 4.8.
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07|23 516/7/9Y]

0|/|2|314516]7/8|7|

O|1[23M 161789
O01/[2DH 516717 8]

Figure 4.8 Examples of images in the MNIST data set.

Table 4.13 Number of samples in each digit in training and test sets of MNIST database
of handwritten digits

0 1 2 3 4 5 6 7 8 9

Training | 5023 | 6742 | 5958 | 6131 | 5842 | 5421 | 5918 | 6265 | 5851 | 5949
Blind test | 980 | 1135|1032 | 1010 | 982 | 892 | 958 | 1028 | 974 | 1009

Again, we acquired the string data set from the website, not the original
images. The classification results on the validation set and the blind test set from the
sgHCM, sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed and sgUPFCMed are shown in
Tables 4.14 and 4.15. We can see that the best correct classification rate on the validation
set for single prototype is 98.07% from sgUPFCMed with m=1.5, #=1.5 from and the best
correct classification rate on the blind test dataset for single-prototype is 98.46% from

sgUPFCMed with m=1.5, #=1.5.
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Table 4.14 Single-prototype classification error rate (%) on validation sets for the

MNIST data set.

training data set

e (best validation set result)
sgHCM | sgFCMed | sgFPCMed | sgPFCMed | sgUPCMed | sgUPFCMed
15|15 1.97 1.97 1.93
1.5]2.0 1.97 1.97 1.95
1.97 1.97
1.5]3.0 1.98 1.98 1.98
1.5]4.0 2.00 1.98 1.98
2.0 (2.0 1.98 1.98 1.98
2.98

2.0 (3.0 2.57 2.00 2.00 1.98 1.98
2.014.0 2.00 1.98 1.97
3.0]2.0 2.05 2.03 2.00
3.0]3.0 2.78 2.07 2.03 2.00 1.98
3.0 4.0 2.03 2.00 1.98

Table 4.15 Single-prototype classification error rate (%) on blind test dataset for
MNIST database of handwritten digits

training data set

m-\n (best validation set result)
sgHCM | sgFCMed | sgFPCMed | sgPFCMed | sgUPCMed | sgUPFCMed
15|15 1.58 1.56 1.54
1.5]2.0 TS 1.54 1.54
1.58 1.56
1.5]3.0 1.58 1.58 1.55
1.514.0 1.59 1.59 1.56
2.0 (2.0 1.59 1.57 1.56
2.77 1.63

2.0 (3.0 ' 1.59 1.57 1.58 1.56
2.014.0 1.60 1.62 1.58
3.0]2.0 1.64 1.63 1.60
3.0|3.0 1.68 1.65 1.63 1.62 1.62
3.0 4.0 1.62 1.62 1.58
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Table 4.16 Multi-prototypes classification error rate (%) on validation sets for MNIST
database of handwritten digits

# training data set
prototype (best validation set result)
of each sgHCM | $gFCMed | sgFPCMed | sgPFCMed | sgUPCMed | sgUPFCMed
class (m=1.5) (m=1.54=1.5) | (m=1.5,5=1.5 (m=1.5) (m=1.5, n=1.5)
5 2.65 1.55 1.56 1.48 1.50 1.34
10 2.64 1.52 1.56 1.24 1.22 1.12
15 2.62 1.48 1.41 1.12 1.16 1.08
20 2.62 1.48 1.41 1.12 1.16 1.08
25 2.60 1.48 1.25 1.06 1.06 1.07
30 2.59 1.43 1.21 1.02 1.06 1.05
35 2.49 1.43 1.18 0.98 1.04 1.05
40 2.02 1.42 1.16 0.98 1.02 0.92
45 1.98 1.38 1.14 0.95 1.02 0.90
50 1.93 1.38 1.12 0.95 0.98 0.88

Table 4.17 Multi-prototypes classification error rate (%) on blind test dataset for
MNIST database of handwritten digits

# blind test data set
prototype FCMed | sgFPCMed | sgPFCMed | sgUPCMed | sgUPFCMed
R <cHCM Sg(m:1_5§t eyl Wiy, <Ay o (m:1.5)e s(%n:LS, ;7:1.65)
class
5 2.45 1.59 1.56 1.48 1.43 1.34
10 2.37 1.56 1.53 1.46 1.29 1.28
15 2.37 1.53 1.48 1.42 1.23 1.12
20 2.37 1.52 1.46 1.37 1.22 1.08
25 2.35 1.49 1.43 1.37 1.14 1.03
30 2.34 1.45 1.41 1.34 1.13 0.95
35 206 1.42 1.38 1.21 1.10 0.92
40 2.14 1.38 1.38 LN 1.10 0.87
45 2.10 1.35 1.35 A2 1.09 0.85
50 2.09 1.32 1.32 0.98 1.08 0.82

We tested the performance of the following multi-prototypes string grammar
clustering, i.e., sgHCM, sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed and
sgUPFCMed. We implement these algorithms with ¢ =5, 10, 15, 20, 25, 30, 35, 40, 45
and 50 prototypes of each class as shown in Tables 4.16 and 4.17. The results show that
50 prototypes of sgUPFCMed gives 99.12% correct classification rate on the validation
set with m=1.5, #=1.5, Whereas the sgHCM, sgFCMed, sgFPCMed, sgPFCMed and
sgUPCMed provide 98.07%, 98.62%, 98.88%, 99.05%, and 99.02% correct
classification, respectively, on the best validation set. The best sgUPFCMed on test set
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also provides 99.18% with m=1.5, n=1.5 for the best correct classification on the blind
test data set. The sgHCM, sgFCMed, sgFPCMed, sgPFCMed and sgUPCMed yield
97.91%, 98.68%, 98.68%, 99.02%, and 98.92%, respectively on the blind test data set.

A comparison of the cluster validity of the algorithms is reported in Table
4.17. All three indices show that the sgUPFCMed provide more compact and separated
clusters than the sgHCM, sgFCMed, sgFPCMed, sgPFCMed, and sgUPCMed. Again,
we compare our result directly with that are similar algorithms including those in [28]
and [29]. Since there have been several algorithms tested on this data set. However, all of
them work only with numeric vectors not syntactic data set. We indirectly compare our

sgUPFCMed result with some of the algorithms [56—59] as shown in Table 4.19.

We computed the degree of overlapping of the dataset, the R-value was
0.1390. Hence, this dataset is indicated that the dataset contains very small area of

overlapping.

Similar to the MPEG-7 and Copenhagen chromosomes data set, the result of
classification of our five string grammar fuzzy clustering algorithms on MNIST data set
data set are better than sgHCM for all of experiments with vary parameter m and 7. Again,
the sgUPFCMed provides the best classification rate than sgFCMed, sgFPCMed,
sgPFCMed, sgUPCMed with same reasons of the all previous dataset. Even though this
dataset contains very small area of overlapping data, using the multi-prototypes method
can also improve the performance of classification on this dataset. The sgUPFCMed with
50 prototypes provide the best of classification results. Because of this dataset contains

very small area of overlapping, the large number of prototype give the best accuracy rate.

Figure 4.9 show the sample of the termination error value of each iteration
until our algorithms have converged (we only show the termination error of 5-prototypes

clustering for MNIST dataset).
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Figure 4.9 Termination measure of MNIST dataset.
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Table 4.18 Cluster validity indices of sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed and sgUPFCMed on MNIST
database of handwritten digits.

9L

sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed
#prototype (m=1.5) (m=1.5, n=1.5) (m=1.5, n=1.5) (m=1.5) (m=1.5, n=1.5)
of each class
PC PE XB PC PE XB PC PE XB PC PE XB PC PE XB

1 0.7966 | 0.9087 | 5.0126 | 0.8498 | 0.5010 | 4.4325 | 0.8618 | 0.4976 | 4.4989 | 0.8620 | 0.4974 | 4.4987 | 0.8623 | 0.497 | 4.4984
5 0.8009 | 0.9004 | 5.0123 | 0.8506 | 0.5004 | 4.3967 | 0.8622 | 0.4962 | 4.4966 | 0.8638 | 0.4956 | 4.4942 | 0.8628 | 0.4954 | 4.4976
10 0.8024 | 0.9004 | 5.0119 | 0.8530 | 0.5001 | 4.3905 | 0.8629 | 0.4918 | 4.4944 | 0.8633 | 0.4915 | 4.4940 | 0.8634 | 0.4911 | 4.4939
15 0.8143 | 0.8999 | 5.0119 | 0.8545 | 0.4998 | 4.3786 | 0.8634 | 0.4898 | 4.4938 | 0.8643 | 0.4900 | 4.4931 | 0.8643 | 0.4814 | 4.4921
20 0.8124 | 0.8997 | 5.0117 | 0.8567 | 0.4953 | 4.3690 | 0.8645 | 0.4872 | 4.4923 | 0.8647 | 0.4868 | 4.4921 | 0.8651 | 0.4865 | 4.4917
25 0.8208 | 0.8965 | 5.0134 | 0.8612 | 0.4924 | 4.3578 | 0.8712 | 0.4867 | 4.4367 | 0.8712 | 0.4844 | 4.4567 | 0.8689 | 0.4835 | 4.4323
30 0.8214 | 0.8954 | 5.0143 | 0.8635 | 0.4823 | 4.3456 | 0.8724 | 0.4831 | 4.4102 | 0.8728 | 0.4828 | 4.4098 | 0.8731 | 0.4827 | 4.4094
35 0.8345 | 0.8959 | 5.0118 | 0.8633 | 0.4768 | 4.2856 | 0.8742 | 0.4804 | 4.4197 | 0.8789 | 0.4793 | 4.4075 | 0.8789 | 0.4814 | 4.4045
40 0.8465 | 0.8967 | 5.0112 | 0.8678 | 0.4923 | 4.2394 | 0.8798 | 0.4792 | 4.4023 | 0.8802 | 0.4788 | 4.4021 | 0.8804 | 0.4787 | 4.4018
45 0.8532 | 0.8654 | 5.0096 | 0.8712 | 0.4865 | 4.2134 | 0.8804 | 0.4623 | 4.4002 | 0.8813 | 0.4678 | 4.2154 | 0.8823 | 0.4622 | 4.3998
50 0.8923 | 0.8345 | 5.0043 | 0.8767 | 0.4734 | 4.1856 | 0.8834 | 0.4589 | 4.3982 | 0.8838 | 0.4587 | 4.3981 | 0.8842 | 0.4586 | 4.3978




Table 4.19 Comparison of the MNIST data set.

C ) Classification error rate
Method omparison %)
Training set Test set
sgHCM [12] with 50 prototypes Direct 1.93 2.09
sgFCMed with 50 prototypes - 1.38 1.32
sgFPCMed with 50 prototypes - 1.12 1.32
sgPFCMed with 50 prototypes - 0.95 0.98
sgUPCMed with 50 prototypes - 0.98 1.08
sgUPFCMed with 50 prototypes - 0.88 0.82
Levenshtein distance + FCM
(Length of substring=4, Direct 12.78 15.12
tolerance=70% ) [32]
FCM+ Levenshtein distance [33] Direct 13.80 15.99
K-NN with non-linear deformation .
(P2DHMDM)[55] Indirect - 0.52
fsrgjiuct of stumps on Haar features Indirect i 0.87
Convolutional neural network with .
pixel-based feature [57] {ndiregt ) 0.74
[SS\;I]\/I RBF with gradient-based feature 1ot C 0.57
[SS\;I]\/I linear with gradient-based feature i Miredt i 134
SVM polynomial with gradient-based .
e 5] Indirect - 0.47
Extended tangent distance [58] Indirect - 1.00

For the indirect comparison, we compare our result with those from the K-
NN with non-linear deformation (P2DHMDM) [56], Product of stumps on Haar features
[57], Convolutional neural network with pixel-based feature [58], SVM RBF with
gradient-based feature [58], SVM linear with gradient-based feature [58], SVM
polynomial with gradient-based feature [58], Extended tangent distance [59]. The results
show that the best of our method with 50 prototypes provides better classification
accuracy than some methods from the numeric-based algorithms such as the P2DHMDM
[56], Product of stumps on Haar features [57], SVM linear with gradient-based feature
[58], and Extended tangent distance [59]. However, our sgUPFCMed not as good as the
methods of Convolutional neural network with pixel-based feature [58], SVM-RBF with
gradient-based feature [58], SVM polynomial with gradient-based feature [58]. This
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might be because we implement our algorithm on original data without any pre-
processing. Again, our methods provide better classification accuracy than string
grammar hard clustering methods and decision theoretic methods in works of literatures
for this dataset. However, some misclassifications have occurred in this data set. It might

be a result of there are some noisy samples in the dataset as shown in Figure 4.10.

9 2 37D

class 9 class 4 class8 class 1 class 7 class 0

class 9 class 5 class 8 class 1 class 9 class 0

Figure 4.10 Examples of noisy data in MNIST dataset

4.1.4 USPS Database of Handwritten Digits

The USPS handwritten digit data set is a well-known US Postal Service
handwritten digit recognition data set. Examples of the data set collected by Prof. Simon
M. Lucas and downloaded from http://algoval.essex.ac.uk/data/sequence/ [56-59] are
shown in Figure 4.11. Again, the encoded strings were downloaded from the website.

There are 9,298 strings for digit numbers 0 to 9. In this case, the data set was
divided into 7,291 training strings and 2,007 blind test strings. The numbers of samples

of all digit classes in both data sets are shown in Table 4.20.

Table 4.20 Number of samples in each digit in training and blind test sets of USPS
database of handwritten digits.

0 1 2 3 4 5 6 7 8 9
Training | 1194 | 1005 | 731 | 658 | 652 | 556 | 664 | 645 | 542 | 644
Blind Test | 359 | 264 | 198 | 166 | 200 | 160 | 170 | 147 | 166 | 177
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Table 4.21 Single-prototype classification error rate (%) on validation sets for the USPS

data set.
training data set
men (best validation set result)
sgHCM | sgFCMed | sgFPCMed | sgPFCMed | sgUPCMed | sgUPFCMed

1.5]1.5 4.84 4.63 4.12
1.5]2.0 4.74 4.74 4.24
1.5]3.0 6.14 4.84 4.74 4.84 4.24
1.5]4.0 4.94 4.80 4.25
20120 4.84 4.84 4.66
20[30] 0 | 612 4.84 474 4.74 4.53
201]4.0 4.84 4.84 4.35
3.0]2.0 4.93 4.94 4.53
3.0]3.0 5.77 5.08 4.94 4.74 4.66
3.04.0 4.74 4.63 3.95
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Figure 4.11 Examples of images in the USPS data set.
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The classification results on the validation set and the blind test set from the

sgFCMed, sgFPCMed, sgPFCMed and sgUPFCMed are shown in Tables 4.21 to 4.24.

We can see that the single-prototype sgUPFCMed gives 96.05% correct
classification rate on the validation set with m=3, n=4. Whereas the sgHCM, sgFCMed,
sgFPCMed, sgPFCMed and sgUPFCMed provide 91.91%, 94.23%, 95.26%, 95.37%,
95.26% correct classification, respectively, on the best validation set. The best
sgUPFCMed yields 94.79% correct classification on the blind test data set with m=3, n=4.
The sgHCM, sgFCMed, sgFPCMed, sgPFCMed and sgUPFCMed yield 87.90%,
92.63%, 93.97%, 94.02% and 94.02% respectively on the blind test data set. Again, the
sgUPFCMed outperformed the sgHCM, sgFCMed, sgFPCMed, sgPFCMed and
sgUPFCMed.
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Table 4.22 Single-prototype classification error rate (%) on blind test dataset for USPS

data set.
m | n training data set
(best validation set result)
sgHCM | sgFCMed | sgFPCMed | sgPFCMed | sgUPCMed | sgUPFCMed

1.5|1.5 6.58 6.53 6.34
1.5]2.0 6.58 6.58 6.42
1.5]3.0 6.73 6.43 6.38 6.64 6.42
1.514.0 6.67 6.57 6.38
2.0 2.0 6.18 6.13 6.12
20|30 210 | 638 6.13 6.18 6.18 6.09
2.0 4.0 6.13 6.08 5.83
3.0]2.0 6.07 6.07 5.92
3.0]3.0 AN 6.07 6.03 5.98 5.87
3.0 4.0 6.03 5.93 5.21

We can see that the single-prototype sgUPFCMed gives 96.05% correct
classification rate on the validation set with m=3, n=4. Whereas the sgHCM, sgFCMed,
sgFPCMed, sgPFCMed and sgUPFCMed provide 91.91%, 94.23%, 95.26%, 95.37%,
95.26% correct classification, respectively, on the best validation set. The best
sgUPFCMed yields 94.79% correct classification on the blind test data set with m=3, n=4.
The sgHCM, sgFCMed, sgFPCMed, sgPFCMed and sgUPFCMed yield 87.90%,
92.63%, 93.97%, 94.02% and 94.02% respectively on the blind test data set. Again, the
sgUPFCMed is better than the sgHCM, sgFCMed, sgFPCMed, sgPFCMed and
sgUPFCMed.

Table 4.23 Multi-prototypes classification error rate (%) on validation sets for USPS.

# training data set
prototype (best validation set result)
of each sgHCM sgFCMed | sgFPCMed | sgPFCMed | sgUPCMed | sgUPFCMed
class (m=3) | m=3, n=4) | (m=3, n=4) (m=3) (m=3, n=4)

5 7.45 543 4.56 4.45 4.42 3.95
10 6.92 4.65 4.38 4.29 4.32 3.91
15 6.89 4.63 4.36 4.25 4.32 3.89
20 6.89 4.54 4.35 4.21 431 3.88
25 6.83 4.53 4.33 4.12 4.12 3.56
30 6.78 4.53 4.23 3.98 4.08 3.45
35 6.53 4.46 4.09 3.76 3.89 3.23
40 6.49 4.43 3.98 3.56 3.76 3.07
45 6.52 4.49 4.07 3.64 3.89 3.32
50 6.67 4.53 4.39 3.70 3.98 3.43

80



Table 4.24 Multi-prototypes classification error rate (%) on blind test dataset for USPS

data set.
# blind test data set
prototype
e sgHCM ngC_Med ng_PCN{ed sgI:FCN{ed ngPE?Med ng_PFCli/Ied
class (m=3) (m=3, n=4) | (m=3, n=4) (m=3) (m=3, n=4)

5 12.00 6.24 5.93 5.76 5.34 5.21
10 11.25 5.91 5.25 4.89 4.88 4.11
15 11.25 5.91 5.25 4.89 4.88 4.11
20 11.11 5.78 5.13 4.78 4.78 3.99
25 11.10 5.72 5.09 4.65 4.68 3.93
30 11.09 5.67 5.03 4.54 4.87 3.89
35 10.76 5.58 4.56 4.34 4.56 3.76
40 10.34 5.43 4.28 3.95 4.08 3.06
45 10.98 5.67 4.76 4.56 4.67 3.78
50 11.23 5.89 5.14 4.87 4.98 4.03

To compare the performance of these multi-prototypes string grammar
clustering, i.e. sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed and sgUPFCMed. We
implement these algorithms with ¢ = 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 prototypes
of each class as shown in Tables 4.23 and 4.24. We can see that 40 prototypes of
sgUPFCMed gives 96.93% correct classification rate on the validation set with m=3, =4,
Whereas the sgFCMed, sgFPCMed, sgPFCMed and sgUPFCMed provide 93.76%,
95.75%, 96.02%, 96.44%, and 96.24% correct classification, respectively, on the best
validation set. The best sgUPFCMed on test set also provides 96.94% with m=3, #=4 for
the best correct classification on the blind test data set. The sgHCM, sgFCMed,
sgFPCMed, sgPFCMed and sgUPCMed yield 89.66%, 94.57%, 95.72%, 96.05%, and
95.92%, respectively on the blind test data set. All three indices show that the
sgUPFCMed with 5 prototypes gives better clusters than sgHCM, sgFCMed, sgFPCMed,
sgPFCMed and sgUPCMed as shown in Table 4.26.

Figure 4.12 show the sample of the termination error value of each iteration
until our algorithms have converged (we only show the termination error of 5-prototypes

clustering for USPS dataset).
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Figure 4.12 Termination measure of USPS dataset.

Again, the direct comparison is implemented for the same algorithms
including those from in [32] and [33]. For the same reason as in MNIST data set, we
indirectly compare our result with those algorithms from [56-59]. Table 4.25 shows the

direct and indirect comparison.
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When we measure the degree of overlapping data of the dataset, the R-value

is equal to 0.1920. Again, this dataset is indicated that the dataset contains very small area

of overlapping.
Table 4.25 Indirect comparison of the USPS data set.
Classification error
BT C(;\r/lllept;r(iflon Trainriitg o Test
set set
sgHCM with 40 prototypes Direct 6.24 10.34
sgFCMed with 40 prototypes - 4.25 543
sgFPCMed with 40 prototypes - 3.98 4.28
sgPFCMed with 40 prototypes - 3.56 3.95
sgUPCMed with 40 prototypes - 3.76 4.08
sgUPFCMed with 40 prototypes - 3.07 3.06
%Ifggg;?ffl l;?bl:;[fil:lcgiz,lsctl(\)/{erance=70% ) [32] irect i | 14.67
FCM+ Levenshtein distance [33] Direct 24.56 26.78
K-NN with non-linear deformation et f 1.9
(P2DHMDM) [55]
Product of stumps on Haar features [56] Indirect - 3.84
geZttll:/r(;h[l;i;)]nal neural network with pixel-based Indirect i 3.08
SVM RBF with gradient-based feature [57] Indirect - 2.79
SVM linear with gradient-based feature [57] Indirect - 3.34
[SS\;I]V[ polynomial with gradient-based feature Indifect i 279
Extended tangent [58] Indirect - 2.2

Similar to the MPEG-7, Copenhagen chromosomes and MNIST data set, our

five string grammar fuzzy clustering algorithms on MNIST data set perform better result

of classification than sgHCM for all of experiments with vary-parameter m and 7. Again,

the sgUPFCMed provides the best classification rate as compared to sgFCMed,

sgFPCMed, sgPFCMed, sgUPCMed with the reasons as described previously. Again,

using only single-prototype to represent each cluster, which may not provide good result

because of the limiting of the clustering performance on overlapping data, the multi-
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prototypes method is also utilized in this dataset to improve the performance of
classification. The sgUPFCMed with 40 prototypes provide the best of classification
results. For this data set, 50 prototypes cannot compete with 40 prototypes might be

because the objects of the other classes are might be included.

For the indirect comparison, we compare our result with those from the K-NN with
non-linear deformation (P2DHMDM) [56], Product of stumps on Haar features [57],
Convolutional neural network with pixel-based feature [58], SVM RBF with gradient-
based feature [58], SVM linear with gradient-based feature [58], SVM polynomial with
gradient-based feature [58], and Extended tangent distance [59]. We can see that the best
of our method with 40 prototypes provides better classification accuracy than some
methods from the numeric-based algorithms, i.e., the Product of stumps on Haar features
[57], Convolutional neural network with pixel-based feature [58], and SVM linear with
gradient-based feature [58]. However, does not provide as good classification as some
numeric-based algorithms, i.e., P2DHMDM [56], SVM RBF with gradient-based feature
[58], SVM polynomial with gradient-based feature [58] and Extended tangent distance
[59]. This might be because we implement our algorithm on original data without any
pre-processing. However, since our algorithm has the computations on the string, it is
easier to transform each prototype digit string back into digit. This cannot happen with
those numeric-based algorithms. Again, our methods provide better classification
accuracy than string grammar hard clustering methods and decision theoretic methods in
literatures for this dataset. However, some misclassifications have occurred in this data
set. It might be a result of there are some noisy samples in the dataset as shown in Figure

4.13.
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Table 4.26 Cluster validity indices of sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed and sgUPFCMed on USPS data set.

¢8

sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed
(m=3) (m=3, 1=4) (m=3, 1=4) (m=3) (m=3, 1=4)
#prototype
PC PE XB PC PE XB PC PE XB PC PE XB PC PE XB
of each class

1 0.7966 | 0.9087 | 5.0126 | 0.8567 | 0.5010 | 4.4325 | 0.8618 | 0.4976 | 4.4102 | 0.8620 | 0.4973 | 4.4100 | 0.8626 | 0.4972 | 4.4098
5 0.7976 | 0.9054 | 5.0123 | 0.8583 | 0.4997 | 4.4256 | 0.8709 | 0.4956 | 4.4075 | 0.8687 | 0.4956 | 4.4087 | 0.8721 | 0.4937 | 4.4078
10 0.7983 | 0.9021 | 5.0121 | 0.8604 | 0.4997 | 4.3854 | 0.8743 | 0.4914 | 4.3999 | (8745 | 0.4913 | 4.3998 | 0.8747 | 0.4911 | 4.3997
15 0.7985 | 0.9015 | 5.0117 | 0.8678 | 0.4986 | 4.3735 | 0.8757 | 0.4899 | 4.3995 | 12209 | 04812 | 43991 | 0.8795 | 04803 | 43989
20 0.7998 | 0.8997 | 5.0116 | 0.8687 | 0.4953 | 4.3690 | 0.8798 | 0.4831 | 4.3989 | 18801 | 0.4827 | 4.3985 | 0.8803 | 0.4824 | 4.3983
25 0.8034 | 0.8967 | 5.0114 | 0.8683 | 0.4896 | 4.3499 | 0.8798 | 0.4803 | 4.3954 | 13805 | 0.4809 | 4.3970 | 0.8798 | 0.4716 | 4.3958
30 0.8214 | 0.8954 | 5.0110 | 0.8697 | 0.4823 | 4.3456 | 0.8801 | 0.4792 | 4.3923 | 288 | 04788 | 43921 | 0.8727 | 0.4786 | 4.3920
35 0.8532 | 0.8453 | 5.0104 | 0.8701 | 0.4799 | 4.2684 | 0.8825 | 0.4673 | 4.3897 | (18830 | 0.4675 | 4.3914 | 0.8801 | 0.4622 | 4.3899
40 0.8923 | 0.8345 | 5.0043 | 0.8767 | 0.4734 | 4.1856 | 0.8834 | 0.4589 | 4.3882 | 18836 | 0.4588 | 4.3878 | 0.8839 | 0.4584 | 4.3876
45 0.8643 | 0.8532 | 5.0134 | 0.8684 | 0.4893 | 4.2378 | 0.8711 | 0.4652 | 4.3785 | 18699 | 0.4789 | 4.3688 | 0.8693 | 0.4798 | 4.3975
50 0.8465 | 0.8967 | 5.0112 | 0.8635 | 0.4923 | 4.2394 | 0.8645 | 0.4872 | 4.3723 | (18648 | 0.4869 | 4372 | 0.8649 | 0.4867 | 4.3996
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Figure 4.13 Examples of noisy data in USPS dataset

4.2 Conclusion

From the experiments, the result of classification of five string grammar fuzzy
clustering algorithms, i.e., sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed and
sgUPFCMed with improved fuzzy median string perform better than sgHCM for all
experiments. The result of classification from sgFCMed based on the Levenshtein
distance may not good for some applications with overlapping data and noisy data with
outlier. Hence, we develop the sgFPCMed to solve these problems. Although sgFPCMed
is created for solving noisy data, it seems to be worse than sgPFCMed in large dataset.
The sgPFCMed can improve the result of clustering in domain of string by relaxing the
constraint of sgFPCMed. For improving the classification accuracy result, we proposed
sgUPCMed that objective function based on the validity indexes PC and PE from UPCM
so that the exponential membership functions are used to describe the degree of
belonging. Hence, we can detect the outlier of dataset as well since the membership value
tends to be zero where the string is too far from its prototype. However, we found
sgUPCMed sometimes generates coincident cluster when we run multi-prototypes
clustering. For example, when we run sgUPCMed with p-prototypes of each class, after
the algorithm converges, it might produce some prototypes with the same location

because the algorithm can generate the same memberships values from relaxing

constraint Zuik =1. Because the columns and rows of the possibilistic values are

independent of each other. To solve this problem, we proposed sgUPFCMed that

objective function based on the validity indexes PC and PE so that the exponential
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membership functions are used to describe the degree of belonging and take advantages
of possibility value from PFCMed. Hence, we can detect the outlier of dataset as well and
can solve coincident cluster of sgUPCMed. However, using only single-prototype to
represent each cluster, which may not adequately model the clusters of arbitrary shape
and size and hence limit the clustering performance on overlapping data. Hence, the
multiple prototypes of each class technique is utilized in clustering algorithm to improve
the performance of classification. For multi-prototypes clustering, choosing the number
of prototypes of each class is important. The number of prototypes depends on the
distribution, the intra-class variability and inter-class variability of each dataset. We
should preserve discrimination between classes for improving the classification accuracy
rate. We suggest choosing the number of prototypes of each class large enough that noise
in the data is minimized and small enough so the samples of the other classes are not

included.

For all of experiments, we utilized the R-value to measure the overlapping degree
of each data set. The R-value is related to the classification accuracy. For example, i.e.,
the R-value of MPEG-7 dataset is higher than MNIST dataset, then the MPEG-7 dataset
is considered to have a larger area of overlapping than MNIST dataset, and MNIST
dataset yields higher classification accuracy than MPEG-7 dataset. The classification
accuracy of four string grammar clustering and value of R for four data sets are shown in
figure 4.14. We can see that the graph pattern of R-value is the opposite of the graph
pattern of classification accuracies. This mean that R- value is strongly related with the

accuracy of our algorithms.
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Figure 4.14 Comparison between classification accuracies of four string grammar
clustering and R-value.

We can conclude advantages and disadvantages of each algorithm below:

1) The sgFCMed can better classify overlapping data than the sgHCM. However,
the restriction that the sum of membership values of a data point in all the clusters must
be equal to one tends to give high membership values for the outlier points and due to
this the algorithm has difficulty in handling outlier points. Hence, sgFCMed may not be

good for some applications with large overlapping data and noisy data with outlier.

2) The sgFPCMed is a hybridization of possibilistic theory and sgFCMed and it can
enables clustering of noisy data samples i.e. datasets with presence of outliers or noisy

points. However, the row sum constraints that may be problematic for large data sets

because of the constraint Ztik =1.

3) The sgPFCMed provides an improvement to sgFPCMed by eliminating the row
sum constraints of sgFPCMed. From the experiments, the sgPFCMed are less sensitive
to outliers than sgFCMed and sgFPCMed. However, the accuracy depends on several

parameters such as m, #, a, b and y.
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4) The sgUPFCMed has the objective functions based on the validity indexes PC
and PE so that the exponential membership functions are used to describe the degree of
belonging. Hence, we can detect the outlier of the dataset as well since the membership
value tend to be zero where the string is too far from its prototype. However, sgUPCMed
sometimes generates coincident when we run multi-prototypes clustering. It might

produce some prototypes with the same location because the algorithm can generate the

same memberships values from relaxing constraint Z”ik =1. Hence, sometimes the
accuracy rate of sgUPCMed is not good enough.

5) The sgUPFCMed can solve the problems described previously because the
objective function of sgUPFCMed based on the validity indexes PC and PE so that the
exponential membership functions are used to describe the degree of belonging and take
advantages of possibility value from PFCMed. Hence, we can detect the outlier of dataset
as well and can solve coincident cluster of sgUPCMed. However, the accuracy depends

on several parameters such as m, 7, a, and b.

We can see that our methods provide better classification accuracy than string
grammar hard clustering methods and some other methods in literatures. Our methods are
more appropriate for applications where the structure of a pattern is important than

numeric methods. Unfortunately, there are some problems are detected on our algorithms.

1) One problem with our string grammar fuzzy clustering methods is that the
median cluster center only suits for symmetric distribution data set, it may not be suitable

for largely skewed distribution.

2) Another problem of our system is the problem of Levenshtein distance. The
Levenshtein distance takes all transform operations in the same way without taking into
account the character that is used in the transform operation. For example, we have three
strings ‘aba’, ‘abba’, and ‘abc’ as shown in Figure 4.15. The strings ‘abba’ is in the same
cluster as strings ‘aba’ but string ‘abc’ is in the other cluster. However, the distance of
string ‘aba’ and string ‘abba’ is equal to 1 and the distance of string ‘aba’ and string ‘abc’
is also equal to 1. They have same values of distance because they use the same

transformation operation. This drawback might affect to the result of classification.
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Figure 4.15 Example of three strings ‘aba’, ‘abba’, and ‘abc’.

3) Moreover, we may be need to resize image before creating string sequence
because our algorithms may not be invariant to scale. For example, a string representation
is shown in Figure 4.16, these are equilateral triangles structures of various sizes. String

representation of these triangles are not same.

abe aabbcc aaabbbece

Figure 4.16 String representations of equilateral triangles.

Hence, the above issues should carefully be considered and taken into account for

improving the algorithms in the future.
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