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CHAPTER 4 

Results and Discussion 

This chapter describes the experimental results of the five proposed methods, i.e., 

sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed and sgUPFCMed on four standard real-

world data sets, i.e., MPEG-7 data set, Copenhagen chromosomes data set, MNIST 

database of handwritten digits, and USPS database of handwritten digits in section 4.1.  

The evaluation the quality of partitions using three cluster validity indices, i.e., PE, PC, 

and XB are also described for each data set and the measuring degree of overlapping data 

is described. 

4.1    Results and discussion on Standard Data Sets 

We ran our algorithms on four real data sets, i.e., MPEG-7 data set, Copenhagen 

chromosomes data set, MNIST database of handwritten digits, and USPS database of 

handwritten digits. For all of experiments, we divided each experiment into two part, i.e., 

single prototype and multi-prototypes clustering. In the training process of all 

experiments, we used ten-fold cross validation. A test string was assigned to the class of 

the nearest prototype in the testing process for single-prototype and the nearest multi-

prototypes was used to assigned any test string to the class. Then, we evaluated the quality 

of partitions using three cluster validity indices, i.e., PE, PC, and XB. In the single 

prototype experiments, the median string of each class is used as the initial cluster 

prototype and we randomly select the initial cluster prototypes for multi-prototypes, the 

parameters setting for all experiment is shown in Table 4.1.  

In our work, the R-value is utilized to measuring overlapping of our datasets, i.e., 

MPEG-7 data set, Copenhagen chromosomes data set, MNIST database of handwritten 

digits, and USPS database of handwritten digits. The step of R-value calculation is to find  
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the K nearest neighbor string and then counts the number of string that belonging to the 

other classes. If the summation of the counted number (R) is larger than 0, that means the 

dataset is overlapping data. The R-value can evaluate the degree of overlap. The higher 

R-value indicates that the dataset contains large overlapping area among its class. In our 

experiments, we apply R-value based on the Levenshtein distance. The K value is set 

equal to 7 for all experiments. The R-value of 4 real world data sets are shown in Table 

4.2 

Table 4.1 Parameter setting of our algorithms for all experiments. 

parameter sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 

m 2 2 2 2 2 

η - 2 2 - 2 

γ - - 2 - - 

a - - 1 - 1 

b - - 1 - 4 

stopping criteria 0.1 0. 1 0.1 0.1 0.1 

maximum 

number of 

iterations 

100 100 100 100 100 

 

Table 4.2. The R-value of 4 real world data sets. 

Dataset Number of 

samples 

Number of 

classes 

R-value 

MPEG-7 1,400 70 0.4814 

Copenhagen chromosomes 2,200 22 0.2227 

MNIST database of handwritten digits 60,000 10 0.1390 

USPS database of handwritten digits 7,291 10 0.1920 
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4.1.1 MPEG-7 Core Experiment CE-Shape-1 Part-B Data Set 

The MPEG-7 data set [45-49] is a well-known shape matching evaluation 

database. The core experiment was divided into three parts, i.e., part A: robustness to 

scaling and rotation, part B: performance of the similarity-based retrieval, and part C: 

robustness to changes caused by non-rigid motion. In our work, we focus only on part B 

of MPEG-7 Core Experiment CE-Shape-1 that consist of 70 different classes of shape, 

each class has 20 different shapes with high intra-class variability. The whole data set, 

Therefore, consists of 1400 binary images. Some examples of images in this data set are 

shown in Figure 4.1 (seven shapes from the same class are shown in each row). 

To create a string from each image, there are 4 steps as follows: 

1.  We first cropped each image to only cover the object and then resized 

it to 35 pixels in height while the width was scaled according to the original aspect ratio. 

2. We extracted the boundary or the contour of the image using the 

Moore-neighbor tracing algorithm [50]. 

 3.  The boundary image was encoded using the 8-directional chain code 

[51]. 

4.  Finally, the differential chain code [51] was used as the sequence of 

the image string.  

 
Figure 4.1 Examples from MPEG-7 shape data sets. 
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The process of generating a string from an image is shown in Figure 4.2. The 

chain code of the boundary in Figure 4.2 is 11117777555544443333 and the differential 

chain code of this image is 60006000600070007000. 

  

 

Binary image Boundary image 8-direction chain code 

Figure 4.2 The string generation of MPEG- shape data sets. 

 
The classification accuracy rates of the ten-folds cross validation for single- 

prototype of the sgHCM, sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed and 

sgUPFCMed are shown in Table 4.3. We can see that the best validation result from the 

sgUPFCMed m=2, η=4 is 90.71% correct classification, while that of the sgHCM, 

sgFCMed, sgFPCMed, sgPFCMed and sgUPCMed are 72.86%, 85.00%, 86.43%, 

90.00%, and 90.00%, respectively. 

Table 4.3 Single-prototype classification error rate on validation sets of MPEG-7 data 
set from sgHCM, sgFCMed, sgFPCMed, sgPFCMed. sgUPCMed and sgUPFCMed. 

m 
 

η 
 

training data set 
(best validation set result) 

sgHCM sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 
1.5 1.5 

27.14 

23.33 

18.57 16.43 

12.33 

13.57 
1.5 2.0 15.00 12.85 10.00 
1.5 3.0 15.00 13.57 12.14 
1.5 4.0 15.00 15.00 12.85 
2.0 2.0 

15.00 
15.00 12.14 

10.00 
10.71 

2.0 3.0 13.57 10.00 10.71 
2.0 4.0 13.57 12.14 9.29 
3.0 2.0 

18.33 
15.71 15.00 

12.14 
10.00 

3.0 3.0 16.43 13.57 10.71 
3.0 4.0 15.00 12.86 10.71 
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Table 4.4 Multi-prototypes classification error rate on validation sets of MPEG-7 data 
set from sgHCM, sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed and sgUPFCMed.  

# 
prototype 
of each 
class  

training data set 
(best validation set result) 

sgHCM sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 

2 25.00 15.00 13.57 9.29 8.57 7.86 
3 24.29 15.00 12.86 8.57 7.86 8.57 
4 24.29 14.29 12.86 7.86 7.14 7.14 
5 18.86 11.57 8.14 5.86 5.43 3.71 
6 17.86 10.71 7.86 4.29 5.00 2.14 
7 18.57 10.71 8.57 5.71 5.71 2.86 
8 20.00 11.43 8.57 6.43 6.43 2.86 
9 21.43 12.86 10.00 6.43 7.14 3.57 
10 22.14 13.57 11.43 6.43 7.14 4.29 

In Table 4.4, we ran multi-prototypes string grammar fuzzy clustering 

algorithms (2-10 prototype of each class) with the best parameter from single-prototype, 

we can see that the best validation result on validation sets of the ten-folds cross validation 

from the 6 prototypes of sgUPFCMed is 97.86% correct classification, whereas that from 

the sgHCM, sgFCMed, sgFPCMed, sgPFCMed and sgUPCMed are 82.14%, 89.29%, 

92.14%, 95.71% and 95%, respectively. 

Fuzzy partitioning is carried out through an iterative optimization of the 

objective function of each algorithm with the update of membership and the cluster 

centers. Our algorithms are repeat until the algorithm has converged (that is the difference 

of cluster center between two iterations is no more than the given sensitivity stopping 

criteria or the maximum number of iteration is reached). Figure 4.3 show the sample of 

the termination error value of each iteration until our algorithms have converged (we only 

show the termination error of 5-prototypes clustering for MPEG7 dataset). 
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(a)Termination measure of sgFCMed (b)Termination measure of sgFPCMed 
 

 

 

(c)Termination measure of sgPFCMed (d)Termination measure of sgUPCMed 

 

(e)Termination measure of sgUPFCMed 

Figure 4.3 Termination measure of MPEG7 dataset. 

The performance evaluation of our five algorithms using three cluster validity 

indices are shown in Table 4.5. The PC of 6-prototypes of sgUPFCMed is maximum and 
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the PE and XB is minimum. As we expected, the 6-prototypes of sgUPFCMed provides 

an overall better performance in term of compact and separated clusters.  

The direct and indirect comparison of the result from the MPEG-7 data set is 

shown in Table 4.6. We can see that our result is better than all methods in [45-49], that 

implement on shape or syntactic data set. 

When we measured the degree of overlapping data of the dataset, the R-value 

is equal to 0.4814. Hence, this dataset is indicated that the dataset contains large area of 

overlapping.  

In this dataset, the result of classification of five string grammar fuzzy 

clustering algorithms, i.e., sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed and 

sgUPFCMed with modified fuzzy median string perform better than sgHCM for all of 

experiments. However, the result of sgFCMed is not good enough because the dataset 

contains large overlapping area among its class and contains several outlier data. The 

sgFCMed cannot handle outlier points in the dataset because of the constraint restriction 

that the sum of membership value of a data due to the object in all the clusters must be 

equal to one and the sgFCMed assigns membership for each object which are related to 

the distance of each object to the cluster centers. The sgFPCMed can solve these problems 

because this algorithm does not only consider the clustering problem from the viewpoint 

of membership theory but also considers both the clustering problem from the viewpoint 

of membership and possibility theories.  Although sgFPCMed is created for solving noisy 

data, the result of sgFPCMed seems to be worse than sgPFCMed because of the constraint 

1ikt =∑   (if the number of data is large, the typicality values of sgFPCMed tend to be 

very small). The sgPFCMed can improve the result of clustering in domain of string by 

relaxing the constraint of sgFPCMed (sum of all typicality values of all data to cluster 

center must be equal to one).  This method has the good point of obtaining better 

classification accuracy than sgFCMed and sgFPCMed clustering methods for this dataset. 

For improving the classification accuracy result, we proposed sgUPCMed and 

sgUPFCMed that both objective functions based on the validity indexes PC and PE from 

UPCM so that the exponential membership functions are used to describe the degree of 



 

59 

belonging. Hence, we can detect the outlier of the dataset as well since the membership 

value tend to be zero where the string is too far from its prototype. 

However, using only single-prototype to represent each cluster, which may 

not adequately model the clusters of arbitrary shape and size and hence limit the clustering 

performance on overlapping data. Hence, the multiple prototypes method is utilized in 

string grammar clustering algorithm to improve the performance of classification. The 

most important thing for multi-prototypes clustering is determining the number of 

prototypes of each class. The number of prototypes depends on the distribution, the intra-

class variability and inter-class variability of each dataset. We should preserve 

discrimination between classes for improving the classification accuracy rate. we suggest 

choosing the number of prototypes of each class which large enough that noise in the data 

is minimized and small enough so the samples of the other classes are not included. From 

Table 4.4, when we ran our experiments with different number of prototype, the 

sgUPFCMed with 6 prototypes is the best of accuracy rate.  

While we found sgUPCMed sometimes generated coincident. For example, 

when we ran sgUPCMed with 6-prototypes of each class, after the algorithm converged, 

it produced some prototypes with the same location because the algorithm can generate 

the same memberships values from relaxing constraint 1iku =∑  because the columns and 

rows of the possibilistic values are independent of each other. Hence, sometimes the 

accuracy rate of sgUPCMed is not good enough. The sgUPFCMed can solve this problem 

because the objective function of sgUPFCMed based on the validity indexes PC and PE 

so that the exponential membership functions are used to describe the membership degree 

and take advantages of possibility value from PFCMed. Hence, we can detect the outlier 

of dataset as well and can solve coincident cluster of sgUPCMed. 



 

 

 

Table 4.5 Cluster validity indices of sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed and sgUPFCMed on MPEG-7 data set. 
 

 
sgFCMed 

 (m=2) 

sgFPCMed  

(m=2, η=4) 

sgPFCMed 

 (m=2, η=4) 

sgUPCMed  

(m=2) 

sgUPFCMed 

 (m=2, η=4) 

#prototype 

of each class 
PC PE XB PC PE XB PC PE XB PC PE XB PC PE XB 

1 0.0311 4.7980 25.3344 0.2678 1.1342 12.3108 0.3665 1.0087 11.4964 0.3683 1.0085 11.4375 0.3772 1.0080 10.7634 

2 0.0935 4.7571 25.1408 0.2945 1.1295 12.1684 0.3669 1.0085 11.3947 0.3692 1.0079 11.3278 0.3899 1.0066 10.7533 

3 0.1454 4.7351 25.1198 0.3108 1.1271 12.1497 0.3692 1.0081 11.3601 0.3764 1.0071 11.3216 0.3923 1.0064 10.7516 

4 0.2087 4.5761 25.0918 0.3197 1.1206 12.0741 0.3745 1.0078 11.1647 0.3792 1.0066 11.2393 0.4188 1.0061 10.7390 

5 0.2673 4.5525 25.0764 0.3217 1.1131 11.8730 0.3877 1.0073 11.1548 0.3899 1.0066 11.2313 0.4256 1.0060 10.7389 

6 0.3691 3.7294 19.4325 0.3852 1.0702 11.3779 0.4214 1.0034 10.1876 0.4200 1.0042 10.4025 0.5909 1.0022 9.9234 

7 0.3496 3.9123 20.749 0.3723 1.0927 11.6756 0.4078 1.0038 10.2985 0.4078 1.0045 10.7796 0.5388 1.0026 9.9485 

8 0.3501 4.0892 21.968 0.3779 1.0934 11.7706 0.4190 1.0040 10.2753 0.4198 1.0044 10.5703 0.4982 1.0031 9.7699 

9 0.3400 4.2898 24.679 0.3698 1.1035 11.8122 0.4001 1.0043 10.3424 0.4044 1.0046 11.0492 0.4387 1.0035 10.5665 

10 0.2967 4.4825 25.0593 0.3498 1.1126 11.8143 0.3898 1.0065 11.1374 0.4014 1.0054 11.0722 0.4322 1.0059 10.7237 
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Table 4.6 Comparison of MPEG-7 data set. 

Method Comparison 
method 

Classification 
error rate (%) 

sgHCM [12] with 6 prototypes Direct 17.86 

sgFCMed with 6 prototypes - 10.71 

sgFPCMed with 6 prototypes - 7.86 

sgPFCMed with 6 prototypes - 4.29 

sgUPCMed with 6 prototypes - 5.00 

sgUPFCMed with 6 prototypes - 2.14 
Levenshtein distance + FCM (Length of 
substring=4, tolerance=70% ) [28] Direct 28.24 

FCM+ Levenshtein distance [29] Direct 34.56 

Curve edit distance [45] Indirect 21.83 

Shape contexts [46] Indirect 23.49 

Profile + Naïve Bayes [47] Indirect 23.0 

Profile + linear SVM [47] Indirect 27 
Shape contour descriptor + Shape similarity 
measures [48] Indirect 15.67 

Locally Constrained Diffusion Process (LCDP) 
+ Inner Distance Shape Context (IDSC) [48] Indirect 2.79 

For the indirect comparison, we compared our result with those from the 

curve edit distance [45] shape contexts [46], Naïve Bayes [47], linear SVM [48], shape 

contour descriptor [49], and locally constrained diffusion process (LCDP) with inner 

distance shape context (IDSC) [49]. We can see that our methods provided better 

classification accuracy than all other methods in literatures, but not better than the method 

in [48]. The accuracy of the best of our method is worse than IDSC. It might be due to 

the synthetic points which are added to increase some information in IDSC, but our 

algorithm was implemented on original data set without adding any synthetic points in 

the dataset. 

We can see that our methods provided better classification accuracy than 

string grammar hard clustering methods for this dataset. Our methods are more 

appropriate for applications where the structure of a pattern is important than numeric 

methods such as shape matching. However, some misclassifications have occurred in this 
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data set. It might be a result of there are some shapes in different class that are very similar 

as shown in Figure 4.4 or might be because this dataset is high intra-class variability as 

shown in Figure 4.5. 

  

 

Class bug Class fly  

 

 

 

Class key Class spoon clas Class guita 

Figure 4.4 Sample of some shape in different class that are very similar. 

 

 Figure 4.5 Sample of class device6 with high intra-class variability 

 

4.1.2 Copenhagen Chromosomes Data Set 

The Copenhagen chromosomes data set [52-54] was collected by Prof. Simon 

M. Lucas and is available for download at http://algoval.essex.ac.uk/data/sequence/.  
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There are 4400 strings in total from 22 non-sex chromosome type each with 200 strings. 

The chromosome density profiles were extracted from images of cells in the metaphases 

stage of cell division. The histogram of each image was encoded into a string. An example 

is shown in Figure 4.6. There are 44 files, each have 100 lines of the form / 7569 165 1 

78 39 / A=A==a==A=a==Aa=A==  

a==C=====b=A=a===B==a=B====c====B==a==C==d===A==a===A==b==a , 

when 7569 is an identifier and 165 ∈ [1,180] is the metaphase the sample coming from. 

The number 1, 78, and 39 are the chromosome type, the overall string length, and the 

length of p-arm, respectively. The set of alphabet in this case is 

∑={=,a,b,c,d,e,f,A,B,C,D,E,F}. It should be noted that we downloaded the encoded data 

set, not the chromosome images.  

 

 
Original image 

 

 Six level string represent: 66566363365655565546445555546 

Figure 4.6 An example from Copenhagen Chromosome dataset. 

The data set was divided into training and blind test data sets with 2,200 

strings in each data set. The classification rates of the validation set and blind test data set 

of the sgFCMed, sgFPCMed, sgPFCMed and sgUPFCMed are shown in Table 4.7 to 

Table 4.10.  

The classification accuracy rates of the ten-folds cross validation for single 

prototype of the sgHCM, sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed and 

sgUPFCMed are shown in Table 4.6. We can see that the best validation result from the 
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sgUPFCMed m=1.5, η=2 is 90.45% correct classification, while that of the sgHCM, 

sgFCMed, sgFPCMed, sgPFCMed and sgUPCMed are 85.46%, 86.36%, 88.64%, 90%, 

and 90%, respectively. The best sgUPFCMed on test set also provides 89.66% with m=2, 

η=2 for the best correct classification on the blind test data set. The sgHCM, sgFCMed, 

sgFPCMed, sgPFCMed and sgUPCMed yield 85.46%, 84.91%, 86.37%, 87.36%, 87.41, 

respectively on the blind test data set. Again, the sgUPFCMed outperforms the sgHCM, 

sgFCMed, sgFPCMed, sgPFCMed and sgUPCMed. 

Table 4.7 Single-prototype classification error rate (%) on validation sets for 
Copenhagen chromosomes data set. 

m 
 

η 
 

training data set 
(best validation set result) 

sgHCM sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 
1.5 1.5 

14.54 

13.64 

11.82 10.45 

10.00 

10.00 
1.5 2.0 11.36 10.00 9.55 
1.5 3.0 11.68 10.91 10.00 
1.5 4.0 12.72 12.27 10.45 
2.0 2.0 

14.54 
11.36 11.36 

10.91 
11.36 

2.0 3.0 11.82 10.91 10.00 
2.0 4.0 11.82 11.36 10.91 
3.0 2.0 

14.09 
12.27 12.72 

12.14 
10.91 

3.0 3.0 11.36 10.91 10.45 
3.0 4.0 11.82 11.82 11.45 

 
In order to compare the performance of these multi-prototypes string 

grammar clustering, i.e., sgHCM, sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed and 

sgUPFCMed for Copenhagen Chromosome dataset. We implement these algorithms with 

c = 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 and 26 prototypes with the best parameter 

from single-prototype of each class so that the clustering results could completely 

consider all situations for this Copenhagen Chromosome dataset as shown in Table 4.9 

and Table 4.10.  
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Table 4.8 Single-prototype classification error rate (%) on blind test dataset for 
Copenhagen chromosomes data set. 

m 
 

η 
 

blind test dataset 
sgHCM sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 

1.5 1.5 

16.00 

16.00 

15.95 15.14 

12.91 
 

11.56 
1.5 2.0 13.72 13.05 12.54 
1.5 3.0 13.63 12.86 11.32 
1.5 4.0 15.91 15.09 11.36 
2.0 2.0 

15.09 
 

13.63 12.64 

12.59 

10.34 
2.0 3.0 13.77 13.55 11.87 
2.0 4.0 13.77 13.05 11.21 
3.0 2.0 

16.05 

13.91 15.59 

13.50 

11.54 
3.0 3.0 13.86 13.50 11.59 
3.0 4.0 13.81 13.45 11.56 

 

Table 4.9 Multi-prototypes classification error rate (%) on validation sets for 
Copenhagen chromosomes data set.  

# prototype 
of each class  

training data set 
(best validation set result) 

sgHCM sgFCMed 
 (m=1.5) 

sgFPCMed 
(m=1.5, η=2) 

sgPFCMed 
(m=1.5,η=2) 

sgUPCMed 
(m=1.5) 

sgUPFCMed 
(m=1.5, η=2) 

2 13.46 9.69 9.28 8.34 8.07 7.97 
4 13.41 9.65 9.18 8.11 8.05 7.87 
6 11.67 9.56 8.66 7.62 7.75 7.52 
8 11.64 9.40 8.60 7.58 7.52 7.01 
10 11.56 9.31 8.55 7.27 7.49 6.54 
12 11.24 9.09 8.29 6.81 7.49 6.25 
14 10.60 8.51 8.11 6.68 7.43 5.83 
16 10.20 8.38 8.08 6.56 7.24 5.78 
18 10.15 7.99 8.00 6.52 7.10 5.46 
20 9.98 7.92 7.90 6.47 6.63 4.78 
22 10.08 7.99 7.94 6.57 6.74 5.05 
24 10.14 8.14 8.05 6.63 6.89 5.18 
26 10.19 8.42 8.15 6.84 7.03 5.89 
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Table 4.10 Multi-prototypes classification error rate (%) on blind test dataset for 
Copenhagen chromosomes data set.  

# prototype of 
each class 

blind test data set 

sgHCM 
sgFCMed 

(m=2) 

sgFPCMed 

(m=2, η=2) 

sgPFCMed 

(m=2, η=2) 

sgUPCMed 

(m=2) 

sgUPFCMed 

(m=2, η=2) 

2 14.88 14.79 11.32 10.22 10.32 8.07 

4 14.82 13.37 10.70 9.18 9.27 7.92 

6 14.61 13.15 9.04 8.94 9.26 7.91 

8 14.48 13.07 8.61 8.51 9.20 7.90 

10 14.35 12.18 8.31 7.54 8.99 7.82 

12 14.32 12.06 8.29 7.29 7.95 7.44 

14 14.12 11.94 7.93 7.14 7.77 7.36 

16 13.72 11.86 7.86 7.10 7.31 6.64 

18 11.68 11.17 7.60 6.95 6.97 6.59 

20 10.84 10.49 7.27 6.61 6.58 6.34 

22 10.99 10.84 7.89 6.82 6.74 6.52 

24 11.13 11.08 8.12 7.02 6.93 6.63 

26 11.43 11.29 8.28 7.44 7.01 6.87 
  

We can see that 20 prototypes of sgUPFCMed gives 95.22% correct 

classification rate on the validation set with m=1.5, η=2. Whereas the sgHCM, sgFCMed, 

sgFPCMed, sgPFCMed and sgUPCMed provide 90.02%, 92.08%, 92.10, 93.53%, and 

93.37% correct classification, respectively, on the best validation set. The best 

sgUPFCMed on test set also provides 93.66% with m=2, η=2 for the best correct 

classification on the blind test data set. The sgHCM, sgFCMed, sgFPCMed, sgPFCMed 

and sgUPCMed yield 89.16%, 89.51%, 92.73, 93.39%, and 93.42% %, respectively on 

the blind test data set. 

Figure 4.7 show the sample of the termination error value of each iteration 

until our algorithms have converged (we only show the termination error of 4-prototypes 

clustering for Copenhagen Chromosome dataset). 
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(a)Termination measure of sgFCMed 
 

(b)Termination measure of sgFPCMed 

 

 

(c)Termination measure of sgPFCMed (d)Termination measure of sgUPCMed 

 

(e)Termination measure of sgUPFCMed 

Figure 4.7 Termination measure of Copenhagen Chromosome dataset. 
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 The sgUPFCMed outperforms the sgHCM, sgFCMed, sgFPCMed, 

sgPFCMed and sgUPCMed. An overall comparison between the performances on the 

partition of clusters is shown in Table 4.12. As one can observe, sgUPFCMed partition 

has higher partition coefficient and the PE and the XB index are lower which indicates a 

good clustering. As expected, sgUPFCMed model outperforms sgHCM, sgFCMed, 

sgFPCMed, sgPFCMed and sgUPCMed models. 

For indirect comparison, we compared our results with the 12-NN normalized 

distance [2] ECGI algorithm [55], and Multilayer Perceptron [55]. The direct and indirect 

comparison is shown in Table 4.11. We can see that our results are better than all other 

algorithms. 

When we measured the degree of overlapping data of the dataset, the R-value was 

equal to 0.2227. This indicated that the dataset did not contain large area of overlapping.  

Similar to the MPEG-7 data set, the result of classification of our five string 

grammar fuzzy clustering algorithms on Copenhagen chromosomes data set are better 

than sgHCM for all of experiments. The sgUPFCMed provide the best classification rate 

than sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed with same reasons of the previous 

dataset (the MPEG-7 data set). Again, using only single-prototype to represent each 

cluster, which may not provide good result because of the limiting of the clustering 

performance on overlapping data. The multi-prototypes method was also utilized in this 

dataset to improve the performance of classification. When we also ran multi-prototypes, 

the results show that sgUPFCMed with 20 prototypes is the best of classification results.   

The number of prototypes of this dataset is large might be because the intra-class 

variability of this dataset is low and inter-class variability of this dataset is high.  

For the indirect comparison, we compared our result with those from the 12-NN 

normalized distance [2] ECGI algorithm [55], and Multilayer Perceptron [55]. We can 

see that the best of our method with 20 prototypes provides better classification accuracy 

than other methods in literatures. Again, our methods provide better classification 

accuracy than string grammar hard clustering methods and other methods in works of 

literature for this dataset.  
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Table 4.11 Comparison of Copenhagen chromosomes data set 

Method Comparison 
method 

Classification error rate 
(%) 

Training set Test set 
sgHCM [12] with 20 prototypes Direct 9.98 10.84 
sgFCMed with 20 prototypes - 7.27 9.86 

sgFPCMed with 20 prototypes - 7.10 9.21 

sgPFCMed with 20 prototypes - 5.82 7.24 

sgUPCMed with 20 prototypes - 6.63 6.58 

sgUPFCMed with 20 prototypes - 4.78 6.34 

Levenshtein distance + FCM (Length of 
substring=4, tolerance=70% )  [28] 

Direct 19.55 20.98 

FCM+ Levenshtein distance [29] Direct 26.82 29.34 

12-NN normalized distance [2] Indirect 4.9 - 

ECGI algorithm [55] Indirect 7.5 - 

Multilayer Perceptron [55] Indirect 9.1 - 



 

 

 

Table 4.12 Cluster validity indices of sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed and sgUPFCMed on Copenhagen 
chromosomes data set. 

 sgFCMed 
 (m=1.5) 

sgFPCMed  
(m=1.5, η=2) 

sgPFCMed  
(m=1.5, η=2) 

sgUPCMed 
 (m=1.5) 

sgUPFCMed  
(m=1.5, η=2) 

#prototype 

of each class 
PC PE XB PC PE XB PC PE XB PC PE XB PC PE XB 

1 0.127 2.997 18.9143 0.197 1.434 18.675 0.2440 1.398 18.322 0.2593 1.4133 17.9926 0.294 1.321 18.210 

2 0.1321 2.9867 18.8616 0.1244 1.4219 18.6564 0.2463 1.3874 18.6564 0.2606 1.4112 17.9707 0.2552 1.3176 18.2069 

4 0.1337 2.9026 18.5756 0.1261 1.4193 18.5118 0.2473 1.3842 18.5118 0.2632 1.4112 17.6623 0.2784 1.3152 18.1889 

6 0.1340 2.8782 18.5563 0.1268 1.4011 18.3725 0.2522 1.3706 18.3725 0.2895 1.3787 17.6177 0.2826 1.3141 18.0975 

8 0.1369 2.8067 18.5269 0.1305 1.3966 18.2891 0.2610 1.3688 18.2891 0.2938 1.3691 17.5643 0.2841 1.3065 17.9758 

10 0.1381 2.7586 18.4625 0.1319 1.3915 18.2761 0.2617 1.3495 18.2761 0.3017 1.3682 17.4469 0.2866 1.2943 17.9106 

12 0.1389 2.7040 18.4488 0.1347 1.3910 18.1591 0.2714 1.3438 18.1591 0.3059 1.3638 17.3252 0.2907 1.2921 17.8921 

14 0.1392 2.6704 18.4290 0.1375 1.3786 17.9761 0.2747 1.3338 17.9761 0.3082 1.3483 17.3222 0.2941 1.2906 17.8678 

16 0.1411 2.4921 18.3640 0.1384 1.3785 17.9587 0.2771 1.3282 17.9587 0.3190 1.3373 17.3099 0.3104 1.2901 17.3688 

18 0.1423 2.3497 18.1483 0.1402 1.3783 17.8798 0.3089 1.3266 17.8798 0.3259 1.3365 17.2936 0.3144 1.2840 17.3201 

20 0.1431 1.984 17.6844 0.3520 1.372 17.4800 0.3380 1.2800 17.410 0.3311 1.3037 17.2047 0.3870 1.2750 16.973 

22 0.1425 2.254 18.3450 0.1478 1.3945 17.8798 0.3078 1.3543 17.6756 0.3254 1.3334 17.2765 0.3167 1.2876 17.334 

24 0.1415 2.262 18.3678 0.1412 1.432 17.9776 0.2986 1.3964 17.6954 0.3135 1.3376 17.2965 0.3075 1.2965 17.678 

26 0.1411 2.269 18.3987 0.1265 1.4865 17.9954 0.2646 1.4076 17.7054 0.3076 1.3468 17.3754 0.2896 1.3154 17.975 
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4.1.3 MNIST Database of Handwritten Digits 

The MNIST database of handwriting digit data set is available from 

http://algoval.essex.ac.uk/data/sequence/ as described in [56-59] was collected by Prof. 

Simon M. Lucas. It contains training set of 60,000 examples, and a test set of 10,000 

examples. Digits in data set ranging from 0 to 9. Table 4.13 shows the number of each 

digit in training and test sets.  Examples are shown in Figure 4.8. 

 

Figure 4.8 Examples of images in the MNIST data set. 

Table 4.13 Number of samples in each digit in training and test sets of MNIST database 
of handwritten digits 

 0 1 2 3 4 5 6 7 8 9 
Training 5923 6742 5958 6131 5842 5421 5918 6265 5851 5949 
Blind test 980 1135 1032 1010 982 892 958 1028 974 1009 

 
Again, we acquired the string data set from the website, not the original 

images. The classification results on the validation set and the blind test set from the 

sgHCM, sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed and sgUPFCMed are shown in 

Tables 4.14 and 4.15. We can see that the best correct classification rate on the validation 

set for single prototype is 98.07% from sgUPFCMed with m=1.5, η=1.5 from and the best 

correct classification rate on the blind test dataset for single-prototype is 98.46% from 

sgUPFCMed with m=1.5, η=1.5. 
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Table 4.14 Single-prototype classification error rate (%) on validation sets for the 

MNIST data set. 

m 
 

η 
 

training data set 
(best validation set result) 

sgHCM sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 

1.5 1.5 

2.98 

1.97 

1.97 1.97 

1.97 

1.93 

1.5 2.0 1.97 1.97 1.95 

1.5 3.0 1.98 1.98 1.98 

1.5 4.0 2.00 1.98 1.98 

2.0 2.0 

2.57 

1.98 1.98 

1.98 

1.98 

2.0 3.0 2.00 2.00 1.98 

2.0 4.0 2.00 1.98 1.97 

3.0 2.0 

2.78 

2.05 2.03 

2.00 

2.00 

3.0 3.0 2.07 2.03 1.98 

3.0 4.0 2.03 2.00 1.98 
 
 

Table 4.15 Single-prototype classification error rate (%) on blind test dataset for 
MNIST database of handwritten digits 

m 
 

η 
 

training data set 
(best validation set result) 

sgHCM sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 

1.5 1.5 

2.77 

1.58 

1.58 1.56 

1.56 

1.54 

1.5 2.0 1.57 1.54 1.54 

1.5 3.0 1.58 1.58 1.55 

1.5 4.0 1.59 1.59 1.56 

2.0 2.0 
1.63 

 

1.59 1.57 

1.58 

1.56 

2.0 3.0 1.59 1.57 1.56 

2.0 4.0 1.60 1.62 1.58 

3.0 2.0 

1.68 

1.64 1.63 

1.62 

1.60 

3.0 3.0 1.65 1.63 1.62 

3.0 4.0 1.62 1.62 1.58 
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Table 4.16 Multi-prototypes classification error rate (%) on validation sets for MNIST 
database of handwritten digits 

 
# 

prototype 
of each 
class 

training data set 
(best validation set result) 

sgHCM sgFCMed 
(m=1.5) 

sgFPCMed 
(m=1.5,η=1.5) 

sgPFCMed 
(m=1.5, η=1.5) 

sgUPCMed 
(m=1.5) 

sgUPFCMed 
(m=1.5, η=1.5) 

5 2.65 1.55 1.56 1.48 1.50 1.34 
10 2.64 1.52 1.56 1.24 1.22 1.12 
15 2.62 1.48 1.41 1.12 1.16 1.08 
20 2.62 1.48 1.41 1.12 1.16 1.08 
25 2.60 1.48 1.25 1.06 1.06 1.07 
30 2.59 1.43 1.21 1.02 1.06 1.05 
35 2.49 1.43 1.18 0.98 1.04 1.05 
40 2.02 1.42 1.16 0.98 1.02 0.92 
45 1.98 1.38 1.14 0.95 1.02 0.90 
50 1.93 1.38 1.12 0.95 0.98 0.88 

 
Table 4.17 Multi-prototypes classification error rate (%) on blind test dataset for 

MNIST database of handwritten digits 
 

# 
prototype 
of each 
class 

blind test data set 

sgHCM sgFCMed 
(m=1.5) 

sgFPCMed 
(m=1.5, η=1.5) 

sgPFCMed 
(m=1.5, η=1.5) 

sgUPCMed 
(m=1.5) 

sgUPFCMed 
(m=1.5, η=1.5) 

5 2.45 1.59 1.56 1.48 1.43 1.34 
10 2.37 1.56 1.53 1.46 1.29 1.28 
15 2.37 1.53 1.48 1.42 1.23 1.12 
20 2.37 1.52 1.46 1.37 1.22 1.08 
25 2.35 1.49 1.43 1.37 1.14 1.03 
30 2.34 1.45 1.41 1.34 1.13 0.95 
35 2.25 1.42 1.38 1.21 1.10 0.92 
40 2.14 1.38 1.38 1.15 1.10 0.87 
45 2.10 1.35 1.35 1.12 1.09 0.85 
50 2.09 1.32 1.32 0.98 1.08 0.82 

We tested the performance of the following multi-prototypes string grammar 

clustering, i.e., sgHCM, sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed and 

sgUPFCMed. We implement these algorithms with c = 5, 10, 15, 20, 25, 30, 35, 40, 45 

and 50 prototypes of each class as shown in Tables 4.16 and 4.17. The results show that 

50 prototypes of sgUPFCMed gives 99.12% correct classification rate on the validation 

set with m=1.5, η=1.5, Whereas the sgHCM, sgFCMed, sgFPCMed, sgPFCMed and 

sgUPCMed provide 98.07%, 98.62%, 98.88%, 99.05%, and 99.02% correct 

classification, respectively, on the best validation set. The best sgUPFCMed on test set 
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also provides 99.18% with m=1.5, η=1.5 for the best correct classification on the blind 

test data set. The sgHCM, sgFCMed, sgFPCMed, sgPFCMed and sgUPCMed yield 

97.91%, 98.68%, 98.68%, 99.02%, and 98.92%, respectively on the blind test data set. 

A comparison of the cluster validity of the algorithms is reported in Table 

4.17. All three indices show that the sgUPFCMed provide more compact and separated 

clusters than the sgHCM, sgFCMed, sgFPCMed, sgPFCMed, and sgUPCMed. Again, 

we compare our result directly with that are similar algorithms including those in [28] 

and [29]. Since there have been several algorithms tested on this data set. However, all of 

them work only with numeric vectors not syntactic data set. We indirectly compare our 

sgUPFCMed result with some of the algorithms [56–59] as shown in Table 4.19.  

We computed the degree of overlapping of the dataset, the R-value was 

0.1390. Hence, this dataset is indicated that the dataset contains very small area of 

overlapping.  

Similar to the MPEG-7 and Copenhagen chromosomes data set, the result of 

classification of our five string grammar fuzzy clustering algorithms on MNIST data set 

data set are better than sgHCM for all of experiments with vary parameter m and η. Again, 

the sgUPFCMed provides the best classification rate than sgFCMed, sgFPCMed, 

sgPFCMed, sgUPCMed with same reasons of the all previous dataset. Even though this 

dataset contains very small area of overlapping data, using the multi-prototypes method 

can also improve the performance of classification on this dataset. The sgUPFCMed with 

50 prototypes provide the best of classification results.   Because of this dataset contains 

very small area of overlapping, the large number of prototype give the best accuracy rate. 

Figure 4.9 show the sample of the termination error value of each iteration 

until our algorithms have converged (we only show the termination error of 5-prototypes 

clustering for MNIST dataset). 
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(a)Termination measure of sgFCMed (b)Termination measure of sgFPCMed 

 

 

(c)Termination measure of sgPFCMed (d)Termination measure of sgUPCMed 

 

(e)Termination measure of sgUPFCMed 

Figure 4.9 Termination measure of MNIST dataset. 



 

 
 

Table 4.18 Cluster validity indices of sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed and sgUPFCMed on MNIST 
database of handwritten digits.  

#prototype 
of each class 

sgFCMed 
 (m=1.5) 

sgFPCMed  
 (m=1.5, η=1.5) 

sgPFCMed  
(m=1.5, η=1.5) 

sgUPCMed 
 (m=1.5) 

sgUPFCMed 
 (m=1.5, η=1.5) 

PC PE XB PC PE XB PC PE XB PC PE XB PC PE XB 

1 0.7966 0.9087 5.0126 0.8498 0.5010 4.4325 0.8618 0.4976 4.4989 0.8620 0.4974 4.4987 0.8623 0.497 4.4984 

5 0.8009 0.9004 5.0123 0.8506 0.5004 4.3967 0.8622 0.4962 4.4966 0.8638 0.4956 4.4942 0.8628 0.4954 4.4976 

10 0.8024 0.9004 5.0119 0.8530 0.5001 4.3905 0.8629 0.4918 4.4944 0.8633 0.4915 4.4940 0.8634 0.4911 4.4939 

15 0.8143 0.8999 5.0119 0.8545 0.4998 4.3786 0.8634 0.4898 4.4938 0.8643 0.4900 4.4931 0.8643 0.4814 4.4921 

20 0.8124 0.8997 5.0117 0.8567 0.4953 4.3690 0.8645 0.4872 4.4923 0.8647 0.4868 4.4921 0.8651 0.4865 4.4917 

25 0.8208 0.8965 5.0134 0.8612 0.4924 4.3578 0.8712 0.4867 4.4367 0.8712 0.4844 4.4567 0.8689 0.4835 4.4323 

30 0.8214 0.8954 5.0143 0.8635 0.4823 4.3456 0.8724 0.4831 4.4102 0.8728 0.4828 4.4098 0.8731 0.4827 4.4094 

35 0.8345 0.8959 5.0118 0.8633 0.4768 4.2856 0.8742 0.4804 4.4197 0.8789 0.4793 4.4075 0.8789 0.4814 4.4045 

40 0.8465 0.8967 5.0112 0.8678 0.4923 4.2394 0.8798 0.4792 4.4023 0.8802 0.4788 4.4021 0.8804 0.4787 4.4018 

45 0.8532 0.8654 5.0096 0.8712 0.4865 4.2134 0.8804 0.4623 4.4002 0.8813 0.4678 4.2154 0.8823 0.4622 4.3998 

50 0.8923 0.8345 5.0043 0.8767 0.4734 4.1856 0.8834 0.4589 4.3982 0.8838 0.4587 4.3981 0.8842 0.4586 4.3978 
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Table 4.19 Comparison of the MNIST data set. 

Method Comparison 
Method 

Classification error rate 
(%) 

Training set Test set 
sgHCM [12] with 50 prototypes Direct 1.93 2.09 
sgFCMed  with 50 prototypes - 1.38 1.32 
sgFPCMed with 50 prototypes - 1.12 1.32 
sgPFCMed with 50 prototypes - 0.95 0.98 
sgUPCMed with 50 prototypes - 0.98 1.08 
sgUPFCMed with 50 prototypes - 0.88 0.82 
Levenshtein distance + FCM 
(Length of substring=4, 
tolerance=70% ) [32] 

Direct 12.78 15.12 

FCM+ Levenshtein distance [33] Direct 13.80 15.99 
K-NN with non-linear deformation 
(P2DHMDM)[55] Indirect - 0.52 

Product of stumps on Haar features 
[56] Indirect - 0.87 

Convolutional neural network with 
pixel-based feature [57] Indirect - 0.74 

SVM RBF with gradient-based feature 
[57] Indirect - 0.57 

SVM linear with gradient-based feature 
[57] Indirect - 1.34 

SVM polynomial with gradient-based 
feature [57] Indirect - 0.47 

Extended tangent distance [58] Indirect - 1.00 

For the indirect comparison, we compare our result with those from the K-

NN with non-linear deformation (P2DHMDM) [56], Product of stumps on Haar features 

[57], Convolutional neural network with pixel-based feature [58], SVM RBF with 

gradient-based feature [58], SVM linear with gradient-based feature [58], SVM 

polynomial with gradient-based feature [58], Extended tangent distance [59]. The results 

show that the best of our method with 50 prototypes provides better classification 

accuracy than some methods from the numeric-based algorithms such as the P2DHMDM 

[56], Product of stumps on Haar features [57], SVM linear with gradient-based feature 

[58], and Extended tangent distance [59].  However, our sgUPFCMed not as good as the 

methods of Convolutional neural network with pixel-based feature [58], SVM-RBF with 

gradient-based feature [58], SVM polynomial with gradient-based feature [58]. This 
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might be because we implement our algorithm on original data without any pre-

processing. Again, our methods provide better classification accuracy than string 

grammar hard clustering methods and decision theoretic methods in works of literatures 

for this dataset. However, some misclassifications have occurred in this data set. It might 

be a result of there are some noisy samples in the dataset as shown in Figure 4.10.  

  

  

 
 

class 9 class 4 class8  class 1 class 7 class 0 

 

 

 

 

 

 

class 9 class 5 class 8 class 1 class 9 class 0 

Figure 4.10 Examples of noisy data in MNIST dataset 

4.1.4 USPS Database of Handwritten Digits 

The USPS handwritten digit data set is a well-known US Postal Service 

handwritten digit recognition data set. Examples of the data set collected by Prof. Simon 

M. Lucas and downloaded from http://algoval.essex.ac.uk/data/sequence/ [56-59] are 

shown in Figure 4.11. Again, the encoded strings were downloaded from the website.  

There are 9,298 strings for digit numbers 0 to 9. In this case, the data set was 

divided into 7,291 training strings and 2,007 blind test strings. The numbers of samples 

of all digit classes in both data sets are shown in Table 4.20. 

 

Table 4.20 Number of samples in each digit in training and blind test sets of USPS 
database of handwritten digits. 

 0 1 2 3 4 5 6 7 8 9 
Training 1194 1005 731 658 652 556 664 645 542 644 

Blind Test 359 264 198 166 200 160 170 147 166 177 
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Table 4.21 Single-prototype classification error rate (%) on validation sets for the USPS 

data set. 

m 
 

η 
 

training data set 
(best validation set result) 

sgHCM sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 
1.5 1.5 

8.09 

6.14 

4.84 4.63 

4.84 

4.12 
1.5 2.0 4.74 4.74 4.24 
1.5 3.0 4.84 4.74 4.24 
1.5 4.0 4.94 4.80 4.25 
2.0 2.0 6.12 

 

4.84 4.84 
4.74 

4.66 
2.0 3.0 4.84 4.74 4.53 
2.0 4.0 4.84 4.84 4.35 
3.0 2.0 

5.77 
4.93 4.94 

4.74 
4.53 

3.0 3.0 5.08 4.94 4.66 
3.0 4.0 4.74 4.63 3.95 

 

 
Figure 4.11 Examples of images in the USPS data set. 

The classification results on the validation set and the blind test set from the 

sgFCMed, sgFPCMed, sgPFCMed and sgUPFCMed are shown in Tables 4.21 to 4.24. 

We can see that the single-prototype sgUPFCMed gives 96.05% correct 

classification rate on the validation set with m=3, η=4. Whereas the sgHCM, sgFCMed, 

sgFPCMed, sgPFCMed and sgUPFCMed provide 91.91%, 94.23%, 95.26%, 95.37%, 

95.26% correct classification, respectively, on the best validation set. The best 

sgUPFCMed yields 94.79% correct classification on the blind test data set with m=3, η=4. 

The sgHCM, sgFCMed, sgFPCMed, sgPFCMed and sgUPFCMed yield 87.90%, 

92.63%, 93.97%, 94.02% and 94.02% respectively on the blind test data set. Again, the 

sgUPFCMed outperformed the sgHCM, sgFCMed, sgFPCMed, sgPFCMed and 

sgUPFCMed. 
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Table 4.22 Single-prototype classification error rate (%) on blind test dataset for USPS 
data set. 

m 
 

η 
 

training data set 
(best validation set result) 

sgHCM sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 
1.5 1.5 

12.10 

6.73 

6.58 6.53 

6.64 

6.34 
1.5 2.0 6.58 6.58 6.42 
1.5 3.0 6.43 6.38 6.42 
1.5 4.0 6.67 6.57 6.38 
2.0 2.0 6.38 

 

6.18 6.13 
6.18 

6.12 
2.0 3.0 6.18 6.18 6.09 
2.0 4.0 6.13 6.08 5.83 
3.0 2.0 

7.37 
6.07 6.07 

5.98 
5.92 

3.0 3.0 6.07 6.03 5.87 
3.0 4.0 6.03 5.93 5.21 

We can see that the single-prototype sgUPFCMed gives 96.05% correct 

classification rate on the validation set with m=3, η=4. Whereas the sgHCM, sgFCMed, 

sgFPCMed, sgPFCMed and sgUPFCMed provide 91.91%, 94.23%, 95.26%, 95.37%, 

95.26% correct classification, respectively, on the best validation set. The best 

sgUPFCMed yields 94.79% correct classification on the blind test data set with m=3, η=4. 

The sgHCM, sgFCMed, sgFPCMed, sgPFCMed and sgUPFCMed yield 87.90%, 

92.63%, 93.97%, 94.02% and 94.02% respectively on the blind test data set. Again, the 

sgUPFCMed is better than the sgHCM, sgFCMed, sgFPCMed, sgPFCMed and 

sgUPFCMed. 

Table 4.23 Multi-prototypes classification error rate (%) on validation sets for USPS.  

# 
prototype 
of each 
class 

training data set 
(best validation set result) 

sgHCM sgFCMed 
(m=3) 

sgFPCMed 
(m=3, η=4) 

sgPFCMed 
(m=3, η=4) 

sgUPCMed 
(m=3) 

sgUPFCMed 
(m=3, η=4) 

5 7.45 5.43 4.56 4.45 4.42 3.95 
10 6.92 4.65 4.38 4.29 4.32 3.91 
15 6.89 4.63 4.36 4.25 4.32 3.89 
20 6.89 4.54 4.35 4.21 4.31 3.88 
25 6.83 4.53 4.33 4.12 4.12 3.56 
30 6.78 4.53 4.23 3.98 4.08 3.45 
35 6.53 4.46 4.09 3.76 3.89 3.23 
40 6.49 4.43 3.98 3.56 3.76 3.07 
45 6.52 4.49 4.07 3.64 3.89 3.32 
50 6.67 4.53 4.39 3.70 3.98 3.43 
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Table 4.24 Multi-prototypes classification error rate (%) on blind test dataset for USPS 
data set. 

# 
prototype 
of each 
class 

blind test data set 

sgHCM sgFCMed 
(m=3) 

sgFPCMed 
(m=3, η=4) 

sgPFCMed 
(m=3, η=4) 

sgUPCMed 
(m=3) 

sgUPFCMed 
(m=3, η=4) 

5 12.00 6.24 5.93 5.76 5.34 5.21 
10 11.25 5.91 5.25 4.89 4.88 4.11 
15 11.25 5.91 5.25 4.89 4.88 4.11 
20 11.11 5.78 5.13 4.78 4.78 3.99 
25 11.10 5.72 5.09 4.65 4.68 3.93 
30 11.09 5.67 5.03 4.54 4.87 3.89 
35 10.76 5.58 4.56 4.34 4.56 3.76 
40 10.34 5.43 4.28 3.95 4.08 3.06 
45 10.98 5.67 4.76 4.56 4.67 3.78 
50 11.23 5.89 5.14 4.87 4.98 4.03 

 

To compare the performance of these multi-prototypes string grammar 

clustering, i.e. sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed and sgUPFCMed. We 

implement these algorithms with c = 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 prototypes 

of each class as shown in Tables 4.23 and 4.24. We can see that 40 prototypes of 

sgUPFCMed gives 96.93% correct classification rate on the validation set with m=3, η=4, 

Whereas the sgFCMed, sgFPCMed, sgPFCMed and sgUPFCMed provide 93.76%, 

95.75%, 96.02%, 96.44%, and 96.24% correct classification, respectively, on the best 

validation set. The best sgUPFCMed on test set also provides 96.94% with m=3, η=4 for 

the best correct classification on the blind test data set. The sgHCM, sgFCMed, 

sgFPCMed, sgPFCMed and sgUPCMed yield 89.66%, 94.57%, 95.72%, 96.05%, and 

95.92%, respectively on the blind test data set. All three indices show that the 

sgUPFCMed with 5 prototypes gives better clusters than sgHCM, sgFCMed, sgFPCMed, 

sgPFCMed and sgUPCMed as shown in Table 4.26. 

Figure 4.12 show the sample of the termination error value of each iteration 

until our algorithms have converged (we only show the termination error of 5-prototypes 

clustering for USPS dataset). 
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(a)Termination measure of sgFCMed (b)Termination measure of sgFPCMed 

 

 

(c)Termination measure of sgPFCMed (d)Termination measure of sgUPCMed 

 

(e)Termination measure of sgUPFCMed 
Figure 4.12 Termination measure of USPS dataset. 

Again, the direct comparison is implemented for the same algorithms 

including those from in [32] and [33]. For the same reason as in MNIST data set, we 

indirectly compare our result with those algorithms from [56-59]. Table 4.25 shows the 

direct and indirect comparison.  
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When we measure the degree of overlapping data of the dataset, the R-value 

is equal to 0.1920. Again, this dataset is indicated that the dataset contains very small area 

of overlapping.  

Table 4.25 Indirect comparison of the USPS data set. 

Method Comparison 
Method 

Classification error 
rate (%) 

Training 
set 

Test 
set 

sgHCM with 40 prototypes Direct 6.24 10.34 

sgFCMed with 40 prototypes - 4.25 5.43 

sgFPCMed with 40 prototypes - 3.98 4.28 

sgPFCMed with 40 prototypes - 3.56 3.95 

sgUPCMed with 40 prototypes - 3.76 4.08 

sgUPFCMed with 40 prototypes - 3.07 3.06 
Levenshtein distance + FCM 
(Length of substring=4,    tolerance=70% ) [32] Direct 11.40 14.67 

FCM+ Levenshtein distance [33] Direct 24.56 26.78 
K-NN with non-linear deformation 
(P2DHMDM) [55] Indirect - 1.9 

Product of stumps on Haar features [56] Indirect - 3.84 
Convolutional neural network with pixel-based 
feature [57] Indirect - 3.08 

SVM RBF with gradient-based feature [57] Indirect - 2.79 

SVM linear with gradient-based feature [57] Indirect - 3.34 
SVM polynomial with gradient-based feature 
[57] Indirect - 2.79 

Extended tangent [58] Indirect - 2.2 

Similar to the MPEG-7, Copenhagen chromosomes and MNIST data set, our 

five string grammar fuzzy clustering algorithms on MNIST data set perform better result 

of classification than sgHCM for all of experiments with vary-parameter m and η. Again, 

the sgUPFCMed provides the best classification rate as compared to sgFCMed, 

sgFPCMed, sgPFCMed, sgUPCMed with the reasons as described previously. Again, 

using only single-prototype to represent each cluster, which may not provide good result 

because of the limiting of the clustering performance on overlapping data, the multi-
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prototypes method is also utilized in this dataset to improve the performance of 

classification. The sgUPFCMed with 40 prototypes provide the best of classification 

results.   For this data set, 50 prototypes cannot compete with 40 prototypes might be 

because the objects of the other classes are might be included. 

For the indirect comparison, we compare our result with those from the K-NN with 

non-linear deformation (P2DHMDM) [56], Product of stumps on Haar features [57], 

Convolutional neural network with pixel-based feature [58], SVM RBF with gradient-

based feature [58], SVM linear with gradient-based feature [58], SVM polynomial with 

gradient-based feature [58], and Extended tangent distance [59]. We can see that the best 

of our method with 40 prototypes provides better classification accuracy than some 

methods from the numeric-based algorithms, i.e., the Product of stumps on Haar features 

[57], Convolutional neural network with pixel-based feature [58], and SVM linear with 

gradient-based feature [58].  However, does not provide as good classification as some 

numeric-based algorithms, i.e., P2DHMDM [56], SVM RBF with gradient-based feature 

[58], SVM polynomial with gradient-based feature [58] and Extended tangent distance 

[59]. This might be because we implement our algorithm on original data without any 

pre-processing. However, since our algorithm has the computations on the string, it is 

easier to transform each prototype digit string back into digit. This cannot happen with 

those numeric-based algorithms. Again, our methods provide better classification 

accuracy than string grammar hard clustering methods and decision theoretic methods in 

literatures for this dataset. However, some misclassifications have occurred in this data 

set. It might be a result of there are some noisy samples in the dataset as shown in Figure 

4.13. 



 

 
 

Table 4.26 Cluster validity indices of sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed and sgUPFCMed on USPS data set.  
 

 
sgFCMed  

(m=3) 

sgFPCMed 

 (m=3, η=4) 

sgPFCMed 

 (m=3, η=4) 

sgUPCMed 

 (m=3) 

sgUPFCMed 

 (m=3, η=4) 

#prototype 

of each class 
PC PE XB PC PE XB PC PE XB PC PE XB PC PE XB 

1 0.7966 0.9087 5.0126 0.8567 0.5010 4.4325 0.8618 0.4976 4.4102 0.8620 0.4973 4.4100 0.8626 0.4972 4.4098 

5 0.7976 0.9054 5.0123 0.8583 0.4997 4.4256 0.8709 0.4956 4.4075 0.8687 0.4956 4.4087 0.8721 0.4937 4.4078 

10 0.7983 0.9021 5.0121 0.8604 0.4997 4.3854 0.8743 0.4914 4.3999 0.8745 0.4913 4.3998 0.8747 0.4911 4.3997 

15 0.7985 0.9015 5.0117 0.8678 0.4986 4.3735 0.8757 0.4899 4.3995 0.8809 0.4812 4.3991 0.8795 0.4803 4.3989 

20 0.7998 0.8997 5.0116 0.8687 0.4953 4.3690 0.8798 0.4831 4.3989 0.8801 0.4827 4.3985 0.8803 0.4824 4.3983 

25 0.8034 0.8967 5.0114 0.8683 0.4896 4.3499 0.8798 0.4803 4.3954 0.8805 0.4809 4.3970 0.8798 0.4716 4.3958 

30 0.8214 0.8954 5.0110 0.8697 0.4823 4.3456 0.8801 0.4792 4.3923 0.8828 0.4788 4.3921 0.8727 0.4786 4.3920 

35 0.8532 0.8453 5.0104 0.8701 0.4799 4.2684 0.8825 0.4673 4.3897 0.8830 0.4675 4.3914 0.8801 0.4622 4.3899 

40 0.8923 0.8345 5.0043 0.8767 0.4734 4.1856 0.8834 0.4589 4.3882 0.8836 0.4588 4.3878 0.8839 0.4584 4.3876 

45 0.8643 0.8532 5.0134 0.8684 0.4893 4.2378 0.8711 0.4652 4.3785 0.8699 0.4789 4.3688 0.8693 0.4798 4.3975 

50 0.8465 0.8967 5.0112 0.8635 0.4923 4.2394 0.8645 0.4872 4.3723 0.8648 0.4869 4.372 0.8649 0.4867 4.3996 
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class 5 class 3 class 0 class 2 class 5 class 6 

Figure 4.13 Examples of noisy data in USPS dataset 

4.2 Conclusion 

 From the experiments, the result of classification of five string grammar fuzzy 

clustering algorithms, i.e., sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed and 

sgUPFCMed with improved fuzzy median string perform better than sgHCM for all 

experiments. The result of classification from sgFCMed based on the Levenshtein 

distance may not good for some applications with overlapping data and noisy data with 

outlier. Hence, we develop the sgFPCMed to solve these problems. Although sgFPCMed 

is created for solving noisy data, it seems to be worse than sgPFCMed in large dataset. 

The sgPFCMed can improve the result of clustering in domain of string by relaxing the 

constraint of sgFPCMed.  For improving the classification accuracy result, we proposed 

sgUPCMed that objective function based on the validity indexes PC and PE from UPCM 

so that the exponential membership functions are used to describe the degree of 

belonging. Hence, we can detect the outlier of dataset as well since the membership value 

tends to be zero where the string is too far from its prototype. However, we found 

sgUPCMed sometimes generates coincident cluster when we run multi-prototypes 

clustering. For example, when we run sgUPCMed with p-prototypes of each class, after 

the algorithm converges, it might produce some prototypes with the same location 

because the algorithm can generate the same memberships values from relaxing 

constraint 1iku =∑ . Because the columns and rows of the possibilistic values are 

independent of each other. To solve this problem, we proposed sgUPFCMed that 

objective function based on the validity indexes PC and PE so that the exponential 
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membership functions are used to describe the degree of belonging and take advantages 

of possibility value from PFCMed. Hence, we can detect the outlier of dataset as well and 

can solve coincident cluster of sgUPCMed. However, using only single-prototype to 

represent each cluster, which may not adequately model the clusters of arbitrary shape 

and size and hence limit the clustering performance on overlapping data. Hence, the 

multiple prototypes of each class technique is utilized in clustering algorithm to improve 

the performance of classification. For multi-prototypes clustering, choosing the number 

of prototypes of each class is important. The number of prototypes depends on the 

distribution, the intra-class variability and inter-class variability of each dataset. We 

should preserve discrimination between classes for improving the classification accuracy 

rate. We suggest choosing the number of prototypes of each class large enough that noise 

in the data is minimized and small enough so the samples of the other classes are not 

included.  

For all of experiments, we utilized the R-value to measure the overlapping degree 

of each data set. The R-value is related to the classification accuracy. For example, i.e., 

the R-value of MPEG-7 dataset is higher than MNIST dataset, then the MPEG-7 dataset 

is considered to have a larger area of overlapping than MNIST dataset, and MNIST 

dataset yields higher classification accuracy than MPEG-7 dataset. The classification 

accuracy of four string grammar clustering and value of R for four data sets are shown in 

figure 4.14. We can see that the graph pattern of R-value is the opposite of the graph 

pattern of classification accuracies. This mean that R- value is strongly related with the 

accuracy of our algorithms. 
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Figure 4.14 Comparison between classification accuracies of four string grammar 
clustering and R-value. 

We can conclude advantages and disadvantages of each algorithm below: 

1) The sgFCMed can better classify overlapping data than the sgHCM. However, 

the restriction that the sum of membership values of a data point in all the clusters must 

be equal to one tends to give high membership values for the outlier points and due to 

this the algorithm has difficulty in handling outlier points. Hence, sgFCMed may not be 

good for some applications with large overlapping data and noisy data with outlier. 

2) The sgFPCMed is a hybridization of possibilistic theory and sgFCMed and it can 

enables clustering of noisy data samples i.e. datasets with presence of outliers or noisy 

points. However, the row sum constraints that may be problematic for large data sets 

because of the constraint 1ikt =∑ . 

3) The sgPFCMed provides an improvement to sgFPCMed by eliminating the row 

sum constraints of sgFPCMed. From the experiments, the sgPFCMed are less sensitive 

to outliers than sgFCMed and sgFPCMed. However, the accuracy depends on several 

parameters such as m, η, a, b and γ. 
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4) The sgUPFCMed has the objective functions based on the validity indexes PC 

and PE so that the exponential membership functions are used to describe the degree of 

belonging. Hence, we can detect the outlier of the dataset as well since the membership 

value tend to be zero where the string is too far from its prototype. However, sgUPCMed 

sometimes generates coincident when we run multi-prototypes clustering. It might 

produce some prototypes with the same location because the algorithm can generate the 

same memberships values from relaxing constraint 1iku =∑ . Hence, sometimes the 

accuracy rate of sgUPCMed is not good enough. 

5) The sgUPFCMed can solve the problems described previously because the 

objective function of sgUPFCMed based on the validity indexes PC and PE so that the 

exponential membership functions are used to describe the degree of belonging and take 

advantages of possibility value from PFCMed. Hence, we can detect the outlier of dataset 

as well and can solve coincident cluster of sgUPCMed. However, the accuracy depends 

on several parameters such as m, η, a, and b. 

We can see that our methods provide better classification accuracy than string 

grammar hard clustering methods and some other methods in literatures. Our methods are 

more appropriate for applications where the structure of a pattern is important than 

numeric methods. Unfortunately, there are some problems are detected on our algorithms. 

1) One problem with our string grammar fuzzy clustering methods is that the 

median cluster center only suits for symmetric distribution data set, it may not be suitable 

for largely skewed distribution.  

2) Another problem of our system is the problem of Levenshtein distance. The 

Levenshtein distance takes all transform operations in the same way without taking into 

account the character that is used in the transform operation. For example, we have three 

strings ‘aba’, ‘abba’, and ‘abc’ as shown in Figure 4.15. The strings ‘abba’ is in the same 

cluster as strings ‘aba’ but string ‘abc’ is in the other cluster. However, the distance of 

string ‘aba’ and string ‘abba’ is equal to 1 and the distance of string ‘aba’ and string ‘abc’ 

is also equal to 1. They have same values of distance because they use the same 

transformation operation. This drawback might affect to the result of classification.  
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Figure 4.15 Example of three strings ‘aba’, ‘abba’, and ‘abc’. 

3) Moreover, we may be need to resize image before creating string sequence 

because our algorithms may not be invariant to scale. For example, a string representation 

is shown in Figure 4.16, these are equilateral triangles structures of various sizes. String 

representation of these triangles are not same.  

 
Figure 4.16 String representations of equilateral triangles. 

Hence, the above issues should carefully be considered and taken into account for 

improving the algorithms in the future. 


