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CHAPTER 5 

Applications 

This chapter, we apply five proposed methods, i.e., sgFCMed, sgFPCMed, 

sgPFCMed, sgUPCMed and sgUPFCMed for real applications, i.e., Thai sign language 

translation and identification of cardio-pulmonary resuscitation activity in medical 

simulation videos.  

5.1 Thai sign language translation 

The one of the communication method for Thai hearing impaired people is Thai 

sign language (TSL) [60]. TSL is a way to communicate with deaf people through hand 

gestures. Since the most hearing people cannot understand their sign language, the 

communication between deaf and hearing people is difficult. To solve this problem, hand 

sign language translation is expected to assist the deaf or hearing impaired people 

communicate with hearing people.  

Our objective of this study is to improve dynamic Thai sign language translation 

system with video caption without prior hand region detection and segmentation using 

Scale Invariant Feature Transform (SIFT) [61] and various string grammar fuzzy 

clustering. The SIFT use to match test frame with symbols in the signature library. String 

grammar fuzzy clustering, i.e., sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed, 

sgUPFCMed and fuzzy K-nearest neighbor (FKNN) [62] are used to find a matched sign 

words.
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 5.1.1 Dataset 

In our experiment dataset (training and test video data set) is collected from 

25 subjects at different times of day for several days. The dataset consists of 10 hand sign 

words (classes), i.e., ‘‘elder’’, ‘‘grandfather’’, ‘‘grandmother’’, ‘‘gratitude’’, ‘‘female’’, 

‘‘male’’, ‘‘glad’’, ‘‘thank you’’, ‘‘understand’’, ‘‘miss’’, the number of samples for each 

hand sign are shown in Table 5.1.  In each video, the signers are requested to wear a black 

shirt with long sleeves and stand in front of dark background for subjects 1-20 and signers 

can wear any shirt and stand in front of complex background for subjects 21-25 while 

they are performing the Thai sign language.  

5.1.2 System description 

We first collect keyframes of 31 hand gestures of 10 Thai words in signature 

library from five subjects. We manually select the representative frame (RFrame) of each 

video file in each word of Thai hand sign language, the number of image of each hand 

gesture is also shown in Figure 5.1 and we then manually selected the hand part of each 

frame with the size of 190×190 pixels. After that, we compute keypoint descriptors of 

each frame using SIFT and then we keep these keypoint descriptors in signature library 

database. Our Signature library contains 730 keypoint descriptors from each subject and 

3,650 keypoint descriptors in total.  

 

Table 5.1 Number of words in the training data set from subjects 1-15 and test data set 
from subject 1-25 

 Subjects elder grand- 
father 

grand- 
mother 

female male glad under-
stand 

miss 

Training 
 data set 

1a 36 36 36 12 36 36 36 36 
2a-15a 32 32 32 32 32 32 32 32 

Test data set 1b 12 12 12 12 12 12 12 12 
2b-15b 8 8 8 8 8 8 8 8 
16-19 20 20 20 20 20 20 20 20 
20 10 10 10 10 10 10 10 10 
21-25 5 5 5 5 5 5 5 5 

 



 

93 

In order to translate Thai hand sign language, we proposed SIFT [61] and 

string grammar fuzzy clustering method for improving the classification result. The 

diagram of the proposed system is given in Figure 5.2 which composed mainly of three 

steps, i.e., string representation, string grammar clustering, and classification. 
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Figure 5.1 Examples of 31 hand gestures. 
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Figure 5.2 System overview of Thai sign language translation. 

1)      String representation.  

To transform image sequence into a string of symbols, we can describe 

as the following step.  

1.1) Extract video frame of each video to JPEG file with the size of 

720×576 pixels. 

1.2) We manually select only 14 image frame from each image frame 

sequence. 

1.3) SIFT is utilized to extract some interesting point from images.  The 

example of keypoints found on keyframe of SIFT [61] process is shown in Figure 5.3, 

while Figure 5.4(a)–(c) shows examples of keypoint descriptors of three hand gestures. 

 

Figure 5.3 Keypoints found on a keyframe. 
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(a) (b) (c) 

Figure 5.4 Keypoint descriptors found on hand gesture. 

1.4) Match keypoint of test image frame to each other in the signature 

library by identifying their nearest neighbor with 0.65, 0.7 and 0.75 SIFT threshold. 

Matching is performed by comparing each local extrema based on the associated 

descriptors using the Euclidean distances that measure between each other keypoint 

descriptors in the signature library database and the current keypoint descriptor.  

The matched symbol is selected by choosing the one that gives the 

maximum of the average number of matched keypoints per keyframes (Avg_Match) [63] 

of each symbol. Since, the keyframes for each symbol in the signature library may have 

different numbers of keypoints, The equation of Avg_Match is as follow: 

 
No.of matched keypoints of the symbol _

No. of key frames of the symbol
Avg Match =  (5.1) 

An example of the computed Avg_Match of the symbol ‘‘b’’ is 

shown in Figure 5.5. The matched symbol in Figure 5.5 is ‘‘b’’ with Avg_Match of 4.89.  

 
 

Figure 5.5 Avg_Match of symbols “b” matched symbol is “b” 
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The process of matching between keypoint descriptors of the test 

keyframe and the keyframe in signature library database are shown in Figure 5.6(a) and 

(b). Hence, we get the sequence of symbol of each frame in the sequence used as primitives 

in our string grammar fuzzy clustering algorithms. 

 
 

(a) (b) 

Figure 5.6 The hand gesture (a) “b” assigned to test image using SIFT and test images with 

constraint, (b) “k” is assigned to test image using SIFT and test frames without constraint. 

2)      String grammar clustering. 

We use five string grammar clustering algorithms, i.e., sgFCMed, 

sgFPCMed, sgPFCMed, sgUPCMed and sgUPFCMed for finding multi-prototypes of 

Thai hand sign language training dataset. For our five string grammar clustering 

algorithms which are utilized for finding multi-prototypes of each Thai hand sign 

language class, more details can be referred in Chapter 3. The parameters setting for Thai 

hand sign language dataset is shown in Table 5.2.  

Table 5.2 The parameter setting of our algorithms for Thai hand sign language data set. 

parameter sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 

m 2 2 2 2 2 
η - 2 2 - 2 
γ - - 2 - - 
a - - 1 - 1 
b - - 6 - 6 

stopping criteria 0.1 0.1 0.1 0.1 0.1 
maximum 
number of 
iterations 

100 100 100 100 100 
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3)       Fuzzy K-nearest neighbor classification. 

 For testing process, after the multi-prototypes, i.e. 

{ }1 2

1 1 2 2
1 1 1,..., , ,..., , ,...,

C

C C
N N NSC sc sc sc sc sc sc= where j

ksc is string prototype k of class j for 

each class from sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed and sgUPFCMed are 

created. We apply the fuzzy K-nearest neighbor [61] to classify the test dataset. FKNN is 

similar to K-nearest neighbor (KNN) The data point from FKNN can belong to multiple 

classes with different membership functions associated to these classes. For each s, the 

membership value ui in class i can be calculated as the following formulation: 
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where uij is the membership value of prototype q
jsc  in the class i ,c 

number of class and K is number of nearest neighbors. From the equation (5.2), we can 

see the assigned memberships of s are affected by the inverse of the levenshtein distances 

from the nearest neighbors and their class memberships.  Hence the result of classification 

is determined by the assigned membership of the string s, s is assigned to class i if ui(s)> 

uj(s) for all  j≠i.  

In our experiment, we used the crisp membership to assign each 

prototype since we have been known class of each prototype already. We set membership 

is 1 for  q
jsc  in class q and we set memberships are zero for  all other classes. The 

parameter m is used to determine how heavily the distance is weighted when calculating 

each neighbor’s contribution to the membership value, and its value is chosen for our 

experiment as m=2.  
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5.1.3 Result and Discussion 

The videos datasets are recorded from subjects 1–25 that are described in 

Table 5.1. Each video is decimated, left only 14 frames. We divided our experiments into 

three parts: training with subject 1a, training with subjects 1a–5a and training with subjects 

1a–15a. There are three groups of blind test, i.e., dataset 1b-15b, dataset 16-20 (used to 

represent signer-independent), and 21-25 (with various complex natural backgrounds). For 

all training and test dataset, we assign symbols to each frame in the training data set using 

the SIFT and we use the threshold values for the experiment are varied from 0.65, 0.7, and 

0.75. We then use several multi-prototype string grammar clustering algorithms to classify 

ten hand sign words which the lengths of each string representation are 14. After we create 

multi-prototypes in terms of a sequence of primitives already, the test string is assigned to 

a word the closest prototype belongs to according to the FKNN based on Levenshtein 

distance. 

1) Comparison the performance of the five string grammar fuzzy 

clustering on validation training set. 

For comparison the performance of the five string grammar fuzzy clustering, 

we implement the 4-folds cross-validation on the training set and we implement each string 

grammar fuzzy clustering algorithm, i.e., sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed 

and sgUPFCMed with 4, 8, and 12 clusters on each class separately to create multi-

prototypes for each class. Then the FKNN with K = 1, 3, 5, 7 and 9 are implemented as a 

classifier on each set of created multi-prototypes. Tables 5.3 to 5.5 show the best correct 

classification of the validation set of training with 1a, training with 1a–5a and training with 

1a–15a for FKNN with K = 1, 3, 5, 7 and 9, respectively. 

 From Table 5.3, we can see that the best average classification of 100.00% on 

the validation set when training with 1a is from the sgUPFCMed with 12 prototypes on 

0.75 sift threshold using K = 9. For sgUPFCMed with 4 and 8 prototypes yield 90.48% 

(with K = 7) and 98.81% (with K = 9), respectively. Whereas, the best average of 
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sgFCMed, sgFPCMed, sgPFCMed and sgUPCMed provide 92.86%, 95.24%, 97.62% and 

98.81%, respectively. 

We also can see that on 4-folds cross-validation when training with data set 

1a–5a for FKNN on 0.65 sift threshold from sgUPFCMed gives the best average 

classification rate of 90.10% (with K = 5), 92.33% (with K = 7) and 95.79% (with K = 9), 

using 4, 8 and 12, respectively in Table 5.4. Whereas, the best average of sgFCMed, 

sgFPCMed, sgPFCMed and sgUPCMed with 12-prototypes provide 90.10%, 93.81%, 

95.30% and 94.55%, respectively.  



 

 

 

Table 5.3 The best classification rate (%) of the validation set from 4-fold cross validation when training with data set 1a 
for FKNN with K = 1, 3, 5, 7 and 9. 

K of FKNN Sift threshold 

Number of prototype in each class 

4 8 12 

sgFC
M

ed 

sgFPC
M

ed 

sgPFC
M

ed 

sgU
PC

M
ed 

sgU
PFC

M
ed 

sgFC
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sgFPC
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PFC

M
ed 
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sgPFC
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ed 

sgU
PC

M
ed 

sgU
PFC

M
ed 

1 
0.65 75.00 78.57 79.76 78.57 79.76 79.76 84.52 89.29 89.29 90.48 82.14 83.33 84.52 91.67 92.86 
0.7 76.19 80.95 78.57 79.76 78.57 85.71 86.90 90.48 89.29 92.86 86.90 91.67 94.05 92.86 94.05 

0.75 75.00 76.19 82.14 83.33 82.14 78.57 84.52 86.90 88.10 90.48 79.76 83.33 85.71 92.86 94.05 

3 
0.65 80.95 80.95 84.52 86.90 84.52 80.95 86.90 89.29 88.10 90.48 89.29 91.67 95.24 89.29 92.86 
0.7 78.57 79.76 82.14 82.14 82.14 83.33 86.90 90.48 88.10 91.67 89.29 91.67 96.43 92.86 94.05 

0.75 79.62 80.95 78.57 76.19 78.57 80.95 85.71 90.48 90.48 91.67 83.33 85.71 86.90 89.29 92.86 

5 
0.65 82.14 83.33 88.10 86.90 88.10 86.90 89.29 95.24 96.43 97.62 89.29 91.67 95.24 96.43 98.81 
0.7 79.76 83.33 88.10 88.10 88.10 89.29 92.86 98.81 96.43 90.48 91.67 95.24 95.24 91.67 92.86 

0.75 72.76 76.19 84.52 85.71 84.52 84.52 86.90 91.67 89.29 92.86 89.29 91.67 96.43 91.67 95.24 

7 
0.65 73.81 79.76 84.52 85.71 84.52 83.33 88.10 92.86 92.86 95.24 88.10 91.67 96.43 95.24 98.81 
0.7 80.95 85.71 90.48 90.48 90.48 84.52 85.71 86.90 89.29 90.48 89.29 92.86 96.43 90.48 94.05 

0.75 75.00 76.19 78.57 80.95 88.10 79.76 83.33 85.71 88.10 89.29 84.52 85.71 88.10 90.48 91.67 

9 
0.65 70.24 76.19 79.76 79.76 79.76 76.19 77.38 82.14 82.14 85.71 92.86 91.67 94.05 84.52 86.90 
0.7 76.19 78.57 82.14 80.95 82.14 80.95 82.14 86.90 88.10 89.29 94.05 91.67 97.62 89.29 91.67 

0.75 67.86 71.43 77.38 78.57 79.76 76.19 80.95 83.33 89.29 98.81 95.24 95.24 95.24 98.81 100.00 
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Table 5.4 The best classification rate of the validation set from 4-fold cross validation when training with data set 1a–5a for 
FKNN with K = 1, 3, 5, 7 and 9.  

 

K of FKNN Sift threshold 

Number of prototype in each class 

4 8 12 
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PC
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PFC
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PC
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M
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1 
0.65 87.13 88.37 89.11 88.86 89.85 87.62 88.12 88.86 88.61 89.60 88.37 88.37 89.60 89.11 90.10 
0.7 86.14 87.38 88.61 88.12 89.36 86.63 87.62 88.61 87.87 88.86 87.62 88.61 89.85 89.36 90.10 

0.75 85.89 86.39 87.62 87.13 88.37 86.63 87.87 88.61 88.37 89.11 86.63 87.13 87.87 87.13 88.12 

3 
0.65 87.62 88.37 88.37 87.87 88.86 88.37 89.11 89.85 89.60 90.59 89.85 90.59 90.84 90.10 91.09 
0.7 87.13 87.62 88.12 87.62 88.37 88.86 90.10 91.34 91.09 91.58 89.11 89.60 90.59 89.85 90.84 

0.75 86.88 87.62 87.38 86.63 87.87 86.63 87.62 88.61 87.87 89.11 89.60 89.60 90.10 89.36 90.84 

5 
0.65 87.38 89.36 89.60 88.86 90.10 87.62 90.10 90.59 90.10 91.09 88.86 90.35 92.57 91.83 93.32 
0.7 87.13 87.87 88.86 88.37 89.11 87.62 88.12 89.11 88.61 89.85 89.60 91.34 93.32 93.07 94.06 

0.75 86.63 89.11 89.36 88.86 89.85 87.38 89.85 90.10 89.60 90.59 87.87 88.86 91.09 90.84 91.83 

7 
0.65 88.37 89.36 89.36 88.86 89.60 89.60 90.35 91.58 91.34 92.33 88.86 91.34 94.31 93.56 94.06 
0.7 87.62 88.12 88.61 88.12 88.86 88.86 91.09 92.08 91.83 90.59 89.60 91.34 92.57 93.07 90.84 

0.75 88.12 88.86 89.36 88.86 89.85 88.61 89.36 89.85 89.11 90.59 89.60 93.56 93.81 93.56 94.06 

9 
0.65 86.88 87.62 88.61 88.37 89.11 87.62 87.87 89.60 88.86 90.35 88.61 93.81 95.30 94.55 95.79 
0.7 86.88 87.62 88.12 87.38 88.37 87.13 88.12 90.35 89.60 91.09 90.10 88.61 94.06 93.32 94.80 

0.75 85.89 86.63 87.38 88.86 89.85 86.14 86.88 88.86 88.61 89.60 87.87 90.84 92.82 89.11 90.10 
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Table 5.5 The best classification rate of the validation set from 4-fold cross validation when training with data set 1a–15a for 
FKNN with K = 1, 3, 5, 7 and 9.  

 

K of FKNN Sift threshold 

Number of prototype in each class 

4 8 12 
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M
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sgU
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M
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1 
0.65 84.88 85.38 85.80 85.63 85.96 85.38 85.88 86.21 85.96 86.30 85.96 86.38 86.71 86.63 86.96 
0.7 85.38 86.05 86.38 86.30 86.46 85.88 86.30 86.79 86.63 87.04 86.30 86.88 87.29 87.04 87.54 

0.75 83.14 83.72 83.97 83.89 84.14 83.72 83.97 84.22 84.05 84.47 83.89 84.22 84.80 84.72 84.88 

3 
0.65 85.30 85.30 85.22 85.13 85.30 85.80 86.38 86.71 86.46 86.96 86.05 86.54 86.96 86.79 87.21 
0.7 85.80 85.47 85.63 85.47 85.88 86.05 86.54 86.96 86.88 87.04 87.04 87.29 87.54 87.38 87.62 

0.75 83.06 83.39 83.22 82.97 83.39 83.64 84.14 84.55 84.30 84.63 84.30 84.72 85.05 84.97 85.22 

5 
0.65 84.55 85.13 85.63 85.38 85.88 85.13 85.63 86.05 85.96 86.21 86.54 87.04 87.54 87.29 87.62 
0.7 84.88 85.47 85.63 85.55 85.88 85.30 85.71 86.21 86.05 86.30 86.79 87.38 87.96 87.71 88.04 

0.75 82.89 83.31 83.55 83.31 83.72 83.14 83.72 84.05 83.97 84.14 84.63 85.13 87.46 87.38 87.54 

7 
0.65 86.21 86.21 86.38 86.13 86.63 86.79 86.79 87.46 87.38 87.62 87.13 87.38 88.04 87.79 88.12 
0.7 86.71 87.71 87.79 87.54 88.04 87.13 87.96 88.12 87.96 88.21 87.62 88.21 85.38 85.22 85.47 

0.75 84.72 84.88 84.97 84.72 85.13 84.97 85.22 85.63 85.47 85.80 85.30 85.55 85.96 85.71 86.05 

9 
0.65 85.96 85.88 85.96 85.71 86.21 86.54 86.63 87.04 86.79 87.29 86.96 87.38 87.96 87.71 88.12 
0.7 86.46 87.62 87.54 87.46 87.71 86.96 87.71 88.04 87.79 88.12 87.62 88.79 88.54 88.37 88.79 

0.75 84.55 84.55 84.72 84.47 84.88 84.72 85.13 85.63 85.47 85.71 85.30 85.55 85.55 85.30 85.63 
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Again, sgUPFCMed gives higher recognition rate than the others on 0.7 sift 

threshold when training with 1a-15a as shown in Table 5.5. The best average classification 

accuracy rates are 88.04% (with K = 7), 88.21% (with K = 7) and 88.79% (with K = 9), 

using 4,8 and 12, respectively. Whereas, the best average of sgFCMed, sgFPCMed, 

sgPFCMed and sgUPCMed with 12-prototypes provide 87.62%, 88.79%, 88.54% and 

88.37%, respectively. From all experiments on the validation set from 4-folds cross-

validation, we can see that if we increase the number of prototypes in the process of string 

grammar clustering, there is it chance that the classification rates of all type of signer will 

also increase. From the results in Tables 5.3 to 5.5, the 12-prototypes string grammar 

clustering with 9-FKNN gives the classification rate higher than the other number of 

prototype. Hence we use 12-prototypes string grammar clustering with 9-FKNN for the 

blind test dataset as shown in Tables 5.6 to 5.14. 

2) Comparison the performance of the five string grammar fuzzy 

clustering on testing set. 

We measured performances of our algorithms, including, sgFCMed, 

sgFPCMed, sgPFCMed, sgUPCMed and sgUPFCMed. We divided our experiments into 

three parts: training with 1a, training with 1a–5a and training with 1a–15a. There are 3 

groups of blind test, i.e., dataset 1b-15b, dataset 16-20 (used to represent signer-

independent), and 21-25 (with various complex natural backgrounds). We set   number 

of prototype for each class equal to 12 and K of FKNN equal to 9. 

In Table 5.6 to 5.8, our blind test datasets are training on the data sets 

1a, the classification result of the blind test datasets 1a and 1b (signer-dependent) are 

shown in Table 5.6. From these tables, we can see that the blind test results from 

sgUPFCMed with 0.7 SIFT threshold gives the best classification as 100% and 95.85% 

for datasets 1a and 1b, respectively. These experiments reach 100% accuracy rate on blind 

test dataset 1a, since both training and testing dataset are the same dataset, that is 1a.  

Since, the dataset 1a and 1b is the same signer, the result of 1b dataset also high accuracy.   



 

 

 

Table 5.6 Classification rate on test sets of signer-dependent when training with data set 1a. 

te
st

 

sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 

Sift threshold Sift threshold Sift threshold Sift threshold Sift threshold 

0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 

1a 98.21 98.21 98.51 98.21 98.51 99.40 98.81 93.33 95.31 97.92 97.92 97.92 99.40 100.00 99.40 

1b 90.00 92.50 92.50 93.33 93.33 92.50 93.65 93.33 90.94 90.83 91.67 89.17 94.17 95.83 92.50 
 

Table 5.7 Classification rate on test sets of signer-semi-dependent  when training with data set 1a. 

te
st

 

sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 

Sift threshold Sift threshold Sift threshold Sift threshold Sift threshold 

0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 

2a 61.57 64.69 65.00 62.19 65.00 65.31 62.81 65.94 65.94 62.19 65.00 65.00 63.75 66.88 66.56 

3a 63.44 71.88 59.37 63.75 72.81 60.31 65.00 73.44 60.94 64.69 73.13 60.31 65.31 73.75 61.56 

4a 52.19 49.69 53.13 52.50 50.63 53.44 53.44 51.25 54.38 53.13 50.63 53.75 53.75 51.88 55.00 

5a 55.32 61.25 51.26 55.63 61.88 51.88 56.56 62.50 52.19 55.63 61.88 51.25 57.19 63.44 52.50 

2b 57.50 56.25 51.25 58.75 57.50 52.50 60.00 60.00 55.00 58.75 58.75 51.25 63.75 61.25 57.50 

3b 60.00 58.75 45.00 62.50 61.25 46.25 66.25 63.75 48.75 65.00 60.00 48.75 70.00 67.50 52.50 

4b 57.50 63.75 52.50 58.75 65.00 55.00 60.00 66.25 57.50 58.75 65.00 56.25 62.50 67.50 60.00 

5b 57.50 62.50 63.75 58.75 63.75 66.25 61.25 66.25 68.75 57.50 63.75 67.50 62.50 68.75 72.50 
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Table 5.8 Classification rate on test sets of signer-independent when training with data set 1a. 

te
st

 sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 
Sift threshold Sift threshold Sift threshold Sift threshold Sift threshold 

0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 
6a 40.01 39.38 31.56 40.94 39.69 31.88 40.94 40.63 32.81 40.00 40.00 32.19 41.25 41.56 33.13 

7a 57.82 70.32 61.88 58.13 70.94 62.19 58.75 71.25 62.81 58.44 70.94 62.50 59.06 71.88 63.44 

8a 55.32 66.57 68.75 55.94 67.19 69.38 56.25 68.13 70.31 55.31 67.50 69.38 57.19 68.44 70.63 

9a 28.44 29.38 26.56 28.75 29.69 26.88 30.31 30.31 27.81 29.38 29.69 27.19 31.25 31.25 28.75 

10a 24.38 25.94 30.94 24.69 26.25 31.25 25.31 27.19 32.19 24.69 26.88 31.25 26.25 27.81 32.81 

11a 62.19 63.44 56.56 63.13 64.38 57.19 62.81 64.69 57.50 61.88 64.06 57.19 63.75 65.63 58.44 

12a 43.75 51.25 45.63 44.69 52.19 45.94 45.31 52.50 46.56 44.38 52.19 45.63 45.94 52.81 47.19 

13a 31.26 39.38 35.00 31.88 40.00 35.63 32.81 40.63 36.25 31.88 39.69 35.63 33.75 41.56 36.88 

14a 56.57 59.07 55.01 57.50 60.00 55.94 57.50 60.31 56.56 56.56 60.00 55.63 58.44 60.94 57.50 

15a 42.81 48.44 40.63 43.75 48.75 41.25 44.06 49.06 42.19 43.75 48.75 41.56 44.69 49.38 43.13 

6b 43.75 41.25 40.00 46.25 45.00 41.25 50.00 46.25 42.50 46.25 42.50 38.75 52.50 50.00 45.00 

7b 66.25 80.00 75.00 70.00 81.25 78.75 73.75 85.00 82.50 71.25 83.75 80.00 76.25 87.50 83.75 

8b 70.00 76.25 80.00 71.25 78.75 83.75 72.50 81.25 87.50 68.75 77.50 83.75 75.00 82.50 88.75 

9b 40.00 40.00 31.25 43.75 43.75 35.00 47.50 45.00 38.75 46.25 41.25 33.75 48.75 48.75 41.25 

10b 30.00 40.00 41.25 33.75 43.75 43.75 37.50 45.00 45.00 33.75 43.75 45.00 38.75 46.25 48.75 
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Table 5.8 Classification rate on test sets of signer-independent when training with data set 1a. (continue). 

te
st

 

sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 

Sift threshold Sift threshold Sift threshold Sift threshold Sift threshold 

0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 
11b 67.50 67.50 60.00 71.25 68.75 62.50 75.00 72.50 65.00 72.50 68.75 62.50 77.50 73.75 65.00 

12b 51.56 57.50 53.13 55.00 60.00 57.50 56.25 61.25 58.75 52.50 57.50 58.75 60.00 65.00 62.50 

13b 35.00 41.25 27.50 36.25 42.50 28.75 38.75 43.75 31.25 37.50 41.25 28.75 42.50 46.25 35.00 

14b 51.25 51.25 48.75 52.50 52.50 50.00 56.25 53.75 52.50 53.75 50.00 50.00 58.75 55.00 55.00 

15b 41.25 41.25 41.25 43.75 42.50 43.75 46.25 45.00 46.25 43.75 41.25 45.00 50.00 46.25 48.75 

16 55.50 52.00 55.00 55.50 57.00 60.00 60.50 57.00 61.00 60.00 56.50 60.00 61.00 58.00 62.00 

17 68.00 64.50 66.50 68.00 64.50 66.50 74.50 70.50 71.50 73.50 69.50 70.50 75.50 72.00 72.50 

18 44.50 47.00 63.00 44.50 48.50 78.50 60.50 63.00 79.00 60.00 62.50 78.00 62.00 64.50 80.50 

19 50.00 55.00 60.50 59.00 58.00 60.50 65.00 62.00 62.00 63.50 60.50 60.50 66.00 63.50 63.00 

20 48.00 57.00 54.00 55.50 62.00 60.00 57.00 56.00 59.00 55.00 54.00 58.00 59.00 57.00 61.00 

 

 

 

 

 

106 

 



 

 

 

Table 5.9 Classification rate on test sets of signer-dependent when training with data set 1a-5a. 

test 

sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 

Sift threshold Sift threshold Sift threshold Sift threshold Sift threshold 

0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 
1a 98.81 98.81 98.51 99.11 99.40 98.81 100.00 100.00 99.70 99.11 98.81 99.11 100.00 100.00 100.00 

2a 96.88 96.88 96.25 97.50 97.50 96.56 98.13 98.44 96.88 97.50 98.13 96.25 98.75 98.75 97.81 

3a 96.56 94.38 95.31 97.19 95.00 95.94 97.81 95.94 96.56 97.19 94.69 95.63 98.13 95.94 97.19 

4a 94.38 90.00 84.06 95.31 90.31 85.00 96.25 90.94 85.31 95.94 90.31 84.69 97.19 91.88 86.25 

5a 92.81 92.81 90.63 93.13 93.44 91.25 93.44 94.38 91.88 93.44 93.44 90.94 95.00 95.00 92.81 

1b 95.83 92.50 94.17 98.33 94.16 95.00 98.33 95.83 96.67 99.17 95.83 95.00 99.17 97.50 98.33 

2b 80.00 78.75 78.75 82.50 82.50 80.00 83.75 83.75 82.50 82.50 82.50 80.00 88.75 87.50 83.75 

3b 96.25 92.50 92.50 98.75 96.25 96.25 98.75 98.75 97.50 97.50 93.75 96.25 98.75 98.75 98.75 

4b 93.75 92.50 80.00 97.50 93.75 81.25 97.50 96.25 83.75 95.00 96.25 80.00 98.75 98.75 86.25 

5b 93.75 92.50 86.25 95.00 93.75 88.75 98.75 97.50 91.25 95.00 93.75 90.00 97.50 98.75 95.00 
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Table 5.10 Classification rate on test sets of signer-independent when training with data set 1a-5a. 

test 

sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 

Sift threshold Sift threshold Sift threshold Sift threshold Sift threshold 

0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 

6a 50.31 50.63 56.88 50.63 51.26 57.19 51.56 51.56 57.50 50.94 51.25 56.88 51.88 52.19 57.81 

7a 75.94 79.69 75.00 76.25 80.00 75.94 76.56 80.63 76.25 75.94 79.69 75.63 77.19 80.94 76.56 

8a 77.81 77.81 82.50 78.44 78.44 82.81 78.75 79.38 83.75 78.75 78.75 83.44 80.31 79.69 84.06 

9a 52.50 55.63 57.81 53.13 56.57 58.75 54.06 57.19 59.69 52.81 56.88 59.06 54.06 58.13 60.63 

10a 56.25 54.69 63.13 57.19 55.63 63.44 57.50 56.56 63.75 57.19 55.63 62.81 58.13 56.25 64.06 

11a 70.63 72.50 71.25 71.57 73.13 72.19 72.19 73.44 72.81 72.19 72.50 72.19 73.44 73.75 73.75 

12a 67.81 67.19 71.56 68.75 67.50 72.50 69.69 68.44 72.81 68.75 67.19 72.19 70.63 69.06 73.44 

13a 52.81 55.31 52.81 53.76 55.63 53.44 54.69 56.56 54.06 53.13 55.31 53.44 54.38 56.25 54.38 

14a 68.44 66.56 74.06 69.06 67.50 74.37 69.38 68.44 75.31 69.69 67.19 74.38 70.63 69.06 75.63 

15a 78.13 75.94 75.00 78.44 76.25 75.62 79.06 77.19 75.94 78.44 75.94 75.31 80.31 77.19 76.25 

6b 48.75 55.00 52.50 52.50 57.50 55.00 55.00 61.25 57.50 53.75 55.00 55.00 56.25 62.50 58.75 

7b 60.00 73.75 73.75 63.75 75.00 77.50 66.25 77.50 81.25 62.50 75.00 80.00 68.75 81.25 85.00 

8b 68.75 76.25 75.00 71.25 77.50 78.75 75.00 81.25 80.00 70.00 77.50 78.75 75.00 82.50 81.25 

9b 47.50 43.75 47.50 48.75 47.50 50.00 52.50 48.75 51.25 50.00 47.50 50.00 52.50 51.25 53.75 
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Table 5.10 Classification rate on test sets of signer-independent when training with data set 1a-5a. (continue) 

test 

sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 

Sift threshold Sift threshold Sift threshold Sift threshold Sift threshold 

0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 

10b 52.50 53.75 62.50 55.00 55.00 66.25 58.75 58.75 67.50 57.50 53.75 65.00 61.25 61.25 71.25 

11b 52.50 51.25 62.50 55.00 55.00 66.25 57.50 56.25 67.50 55.00 56.25 66.25 60.00 58.75 70.00 

12b 71.25 70.00 80.00 73.75 73.75 82.50 76.25 75.00 85.00 71.25 73.75 83.75 76.25 76.25 88.75 

13b 53.75 51.25 53.75 55.00 53.75 57.50 58.75 55.00 58.75 56.25 52.50 57.50 58.75 60.00 62.50 

14b 53.75 52.50 56.25 55.00 55.00 58.75 56.25 58.75 61.25 55.00 53.75 58.75 62.50 60.00 62.50 

15b 63.75 67.50 56.88 67.50 68.75 72.50 70.00 70.00 76.25 66.25 71.25 72.50 73.75 75.00 77.50 

16 54.50 62.00 65.50 55.50 63.00 66.50 57.00 64.00 67.00 55.50 63.50 66.00 57.50 65.00 67.50 

17 78.50 85.00 86.50 79.50 86.00 88.00 80.50 86.50 89.00 78.50 85.50 88.00 80.50 87.50 90.00 

18 54.50 57.00 73.00 55.00 57.50 73.50 56.50 58.50 75.00 54.50 58.00 74.50 56.50 59.00 76.00 

19 68.00 66.00 65.50 68.50 67.00 66.00 69.00 67.50 67.00 68.00 66.00 66.50 70.50 68.50 68.00 

20 54.00 56.00 62.00 57.00 58.00 64.00 58.00 61.00 67.00 57.00 59.00 64.00 62.00 63.00 69.00 
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Table 5.11 Classification rate on test sets of signer-dependent  when training with data set 1a-15a. 

test 

sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 

Sift threshold Sift threshold Sift threshold Sift threshold Sift threshold 

0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 

1a 98.51 98.21 98.81 98.81 99.11 99.11 99.70 99.70 99.40 99.11 98.81 98.81 100.00 100.00 99.70 

2a 95.94 95.00 90.63 96.57 95.95 90.95 97.19 96.56 91.88 96.88 95.63 91.56 97.81 97.19 92.19 

3a 92.81 92.81 92.81 93.76 93.76 93.76 94.38 94.38 94.69 94.06 93.75 94.06 95.00 95.31 95.63 

4a 85.31 80.94 77.50 85.95 81.89 77.82 86.88 82.50 78.75 86.25 81.56 78.13 87.81 83.44 79.38 

5a 90.31 91.25 90.00 90.95 92.20 90.64 91.88 92.50 91.56 90.94 92.19 90.63 92.50 93.13 91.88 

1b 91.67 91.67 90.83 94.17 93.75 92.50 95.00 96.67 95.00 92.50 94.17 92.50 95.83 99.17 97.50 

2b 91.25 90.00 83.75 93.33 91.25 85.00 96.25 95.00 87.50 95.00 93.75 86.25 96.25 97.50 90.00 

3b 76.25 87.50 82.50 80.00 88.75 86.25 81.25 90.00 87.50 80.00 88.75 85.00 83.75 92.50 91.25 

4b 86.25 81.25 81.25 90.00 85.00 82.50 92.50 88.75 86.25 91.25 87.50 85.00 96.25 90.00 88.75 

5b 80.00 81.25 87.50 81.25 83.75 90.00 85.00 86.25 92.50 82.50 83.75 91.25 87.50 88.75 95.00 
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Table 5.12 Classification rate on test sets of signer-semi-independent when training with data set 1a-15a. 

test 

sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 

Sift threshold Sift threshold Sift threshold Sift threshold Sift threshold 

0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 

6a 75.94 76.88 78.13 76.89 77.51 78.45 77.81 77.81 79.06 77.50 76.88 80.00 78.13 78.75 78.44 

7a 97.81 95.63 91.25 98.45 96.57 91.89 99.06 97.19 92.19 98.75 96.88 92.81 99.69 98.13 91.25 

8a 93.44 91.25 90.63 94.39 91.57 90.95 95.00 92.50 91.88 94.06 92.19 92.19 95.94 93.44 91.56 

9a 79.38 81.88 77.19 79.70 82.51 78.14 80.63 83.13 78.75 80.31 82.50 79.38 81.25 83.44 77.81 

10a 78.75 80.94 79.69 79.39 81.57 80.32 80.31 82.50 80.94 80.00 81.88 81.88 80.94 83.13 80.63 

11a 82.50 84.06 78.44 83.45 84.39 79.07 84.06 84.69 79.38 83.44 83.75 80.00 85.00 85.00 78.44 

12a 74.69 77.50 80.94 75.01 78.45 81.89 75.63 78.75 82.81 75.31 77.81 83.75 75.94 79.06 82.19 

13a 81.25 82.50 81.56 81.57 83.45 82.20 82.50 84.06 83.13 81.56 83.44 83.44 82.81 85.00 82.81 

14a 87.81 91.25 88.13 88.14 91.57 88.76 88.75 92.19 89.06 88.13 91.88 89.69 89.38 93.13 88.75 

15a 90.63 91.88 87.19 91.26 92.51 88.14 92.19 93.44 88.75 91.88 92.81 89.69 92.50 94.38 88.44 

6b 82.50 83.75 81.25 85.00 85.00 85.00 87.50 87.50 88.75 85.00 86.25 91.25 88.75 91.25 85.00 

7b 81.25 91.25 91.25 83.75 92.50 95.00 85.00 95.00 96.25 83.75 92.50 98.75 87.50 98.75 92.50 

8b 93.75 86.25 88.75 95.00 87.50 90.00 96.25 90.00 93.75 92.50 88.75 95.00 97.50 91.25 92.50 
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Table 5.12 Classification rate on test sets of signer-semi-independent when training with data set 1a-15a. (continue) 

test 

sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 

Sift threshold Sift threshold Sift threshold Sift threshold Sift threshold 

0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 

9b 76.25 70.00 70.00 80.00 73.75 73.75 82.50 75.00 77.50 81.25 72.50 78.75 85.00 76.25 73.75 

10b 68.75 60.00 65.00 70.00 62.50 66.25 73.75 65.00 68.75 70.00 61.25 72.50 76.25 66.25 66.25 

11b 62.50 68.75 73.75 63.75 72.50 75.00 66.25 73.75 78.75 65.00 72.50 80.00 67.50 77.50 75.00 

12b 70.00 73.75 70.00 72.50 76.25 73.75 73.75 77.50 77.50 70.00 75.00 80.00 76.25 78.75 76.25 

13b 76.25 72.50 71.25 78.75 73.75 73.75 80.00 77.50 77.50 77.50 73.75 81.25 81.25 78.75 76.25 

14b 76.25 75.00 77.50 78.75 76.25 80.00 81.25 78.75 81.25 77.50 76.25 82.50 82.50 80.00 78.75 

15b 75.00 76.25 80.00 78.75 78.75 83.75 82.50 82.50 86.25 80.00 78.75 90.00 86.25 85.00 82.50 

 

Table 5.13 Classification rate on test sets of signer- independent when training with data set 1a-15a. 

test 

sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 

Sift threshold Sift threshold Sift threshold Sift threshold Sift threshold 

0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 

16 75.00 79.00 72.00 76.50 73.50 72.50 77.00 74.00 74.00 76.00 73.00 72.50 79.00 76.00 75.00 

17 95.00 98.50 92.50 96.00 93.50 94.00 97.00 94.00 94.50 96.50 94.50 93.50 98.50 96.50 95.00 
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Table 5.13 Classification rate on test sets of signer- independent when training with data set 1a-15a. (continue) 

test 

sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 

Sift threshold Sift threshold Sift threshold Sift threshold Sift threshold 

0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 

18 64.50 69.00 80.50 66.00 70.50 81.00 67.00 71.00 82.00 67.00 71.00 81.50 69.00 72.50 82.50 

19 84.00 87.00 77.50 85.50 82.00 79.00 86.50 82.50 80.50 85.00 81.50 79.00 87.00 84.00 82.00 

20 71.00 79.00 63.00 74.00 75.00 65.00 75.00 78.00 66.00 75.00 77.00 63.00 79.00 81.00 67.00 

 

Table 5.14 Classification rate on test sets of signer- independent when training with data set 1a-15a and test with various 

complex natural backgrounds.  

test 

sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 

Sift threshold Sift threshold Sift threshold Sift threshold Sift threshold 

0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 0.65 0.7 0.75 

21 61.00 60.00 55.00 71.00 69.00 55.00 71.00 74.00 58.00 72.00 76.00 66.00 74.00 76.00 72.00 

22 57.00 55.00 47.00 61.00 66.00 51.00 63.00 73.00 54.00 72.00 80.00 58.00 74.00 78.00 70.00 

23 63.00 57.00 47.00 63.00 58.00 63.00 66.00 69.00 57.00 65.00 66.00 64.00 66.00 68.00 68.00 

24 58.00 54.00 40.00 65.00 55.00 57.00 62.00 61.00 58.00 68.00 68.00 66.00 69.00 71.00 70.00 

25 57.00 57.00 42.00 57.00 57.00 56.00 59.00 58.00 56.00 54.00 56.00 62.00 64.00 66.00 64.00 
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Whereas, the average of the best classification results of the blind test dataset 

from 2a–5a, 2b–5b (signer semi-independent) is around 65% from sgUPFCMed signer-

independent are not as good as those of the signer-dependent and signer-semi-dependent, 

the average of classification rates in each category are above 90%.The average 

classification rates of sgFCMed, sgFPCMed, sgPFCMed and sgUPCMed are 61.09%, 

62.23%, 63.67% and 63.27% as shown in Table 5.7. 

 The average of the best classification results from 6a-15a, 6b-15b, and 16–

20 (signer-independent) is 57.10% from sgUPFCMed as shown in Table 5.8, and the 

average classification rates of sgFCMed, sgFPCMed, sgPFCMed and sgUPCMed are 

52.20%, 53.91%, 55.68% and 54%.   The results of signer semi-independent and signer-

independent provide low accuracy rate may be because the signer from blind test and 

training dataset are different.  

From Tables 5.9, when we trained on the data sets 1a-5a, the average of the 

best classification rates of the blind test data sets of signer-dependent (subjects 1–5) are 

97.20%, 96.28% and 93.61% with 0.65, 0.7 and 0.75 SIFT threshold, respectively from 

sgUPFCMed. Whereas the average classification rates of sgFCMed, sgFPCMed, 

sgPFCMed and sgUPCMed are 93.90%, 93.61%, 96.27% and 95.24%.    

From Table 5.10, the best average classification rates of the blind test data 

sets of signer-independent (subjects 6 to 15) are 65.80%, 67.06% and 70.39% with 0.65, 

0.7 and 0.75 SIFT threshold, respectively from sgUPFCMed, and that of signer-

independent (subjects 16–20) are 65.40%, 68.60% and 74.41% with 0.65, 0.7 and 0.75 

SIFT threshold, respectively from sgUPFCMed. Whereas the average classification rates 

of the blind test data sets of subjects 6 to 15from sgFCMed, sgFPCMed, sgPFCMed and 

sgUPCMed are 65.03%, 67.56%, 68.91% and 67.64% with 0.75 SIFT threshold and that 

of subjects 16–20 are 70.5%, 71.60%, 73% and 71.8% with 0.75 SIFT from sgFCMed, 

sgFPCMed, sgPFCMed and sgUPCMed, respectively    

 From the Tables 5.9 and 5.10 in our experiments, we can see that the 

classification rates for all type of signer are increased as we increase the number of signers 

in training process of the string grammar fuzzy clustering. 



 

115 

When we are training on the data sets 1a-15a, we utilize 5 string grammar 

fuzzy clustering algorithms on all data sets and the classification rates are also shown in 

Tables 5.11 to 5.13. We can see that the best average classification rates of the blind data 

sets of signer-dependent (subjects 1–5) with 0.65, 0.7 and 0.75 SIFT threshold are 

93.27%, 93.70% and 92.13%, respectively from sgUPFCMed, whereas that of signer-

semi-dependent (subjects 6 to 15) are 84.52%, 84.86% and 81.95%, respectively from 

sgUPFCMed. The best average classification rates of the blind data sets of signer-

independent (subjects 16–20) are 82.5%, 82% and 80.3% with 0.65, 0.7 and 0.75 SIFT 

threshold, respectively from sgUPFCMed.  

  

Figure 5.7 Mismatched keypoints from sift process, the hand gesture “e” is assigned to 

test image using SIFT and test images without constraint  

 

Moreover, we also implement our system trained with 1a–15a on subjects 21-

25 without constraint in which the signer wears any shirt and stand in the front of natural 

backgrounds while they take action each sign for five times of each subject. The 

classification results are also shown in Table 5.14. We can see that the best correct 

classification rates on five subjects are 76%, 78% 68%, 71% and 66%, respectively, at 

0.7 SIFT threshold from sgUPFCMed. Since the signers of this testing set (subjects 21-

25) are different signers from training dataset and signature library, the results of this 

experiment provide low classification. Furthermore, when we use SIFT for the 

unconstrained system with complex natural background, the keypoints might be 

incorrectly matched as shown Figure 5.7. We can use the equation 5.1 to find the correct 

symbol for each test frame even though it has some mismatched keypoints from SIFT 

process. However, our algorithm cannot find the right symbol if it is found that there are 

too many mismatched keypoints. 
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5.1.4 Comparison the results of string grammar fuzzy clustering with the 

other methods 

We compare the performance of our algorithms with the reported 

classification rate results of Thai sign language translation system (TSL) [60] that use 

Hidden Markov Model (HMM) on the same dataset . The comparison can be done 

between this method and the best average of our translation system. Our system yields a 

pretty good result that is comparable with TSL for all experiment.  

Table 5.15 The comparison of classification rate on test sets of our proposed method 

with TSL (with HMM) 

 Mode 

The best average of classification rate 
(%) 

Sift threshold 

0.65 0.7 0.75 

TSL  
(with HMM) 

signer-dependent 88.60 88.29 87.82 
signer-semi-
dependent 80.35 80.45 80.55 

signer-independent 76.75 76.32 75.23 

Proposed 
Method 

 

signer-dependent 93.27 93.70 92.13 
signer-semi-
dependent 84.52 84.86 81.95 

signer-independent 82.50 82.00 80.93 

 

It is difficult to directly compare our method with the other methods because 

the sign languages from other countries are different from Thai sign language. However, 

we indirectly compared the performance of our algorithm with American Sign Language 

(ASL) [64], Arabic Sign Language (ArSL) [65] and Malaysian Sign Language (MSL) 

[66] as shown in Table 5.16.  

 We can see that our algorithm can be comparable to ArSL and give the better 

result than the remaining other methods. However, some misclassifications have occurred 

in our system. It might be a result of there are some hand gestures in the signature library 

that are very similar to each other as shown in Figure 5.8. Moreover, it might be some 

keyframes in signature library that are blurred which effect of movement of signer when 
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performing the action of sign language as shown in Figure 5.9. In addition, it might be 

because each signer perform any action is different to each other in signature library as 

shown in Figure 5.10 that it cause test frame has too many mismatched keypoints which 

can affect the accuracy in classification process. 

Table 5.16 The indirect comparison of classification rate on test sets of our proposed 

method with the other methods 
 Instrument used Mode Pre-process 

with 
segmentation 

#of 
signers 

Classification 
rate (%) 

ASL [64] None: free hand signer-independent Yes 3 89.09 

ArSL 
[65] 

None: free hand signer-dependent Yes 18 97.4 

None: free hand signer-independent Yes 18 90.6 

MSL 
[66] 

None: free hand signer-dependent N/A 36 75.33 

None: free hand signer-semi-
dependent 

N/A 36 69.67 

None: free hand signer-independent N/A 36 74 

TSL 
(with 

HMM) 

None: free hand signer-dependent No 5 86-95 
(on average) 

None: free hand signer-semi-
dependent 

No 10 80 (on average) 

None: free hand signer-independent No 5 75-76  
(on average) 

Proposed 
Method 

 

None: free hand signer-dependent No 5 92-93  
(on average) 

None: free hand signer-semi-
dependent 

No 10 81-85 
 (on average) 

None: free hand signer-independent No 5 80-83  
(on average) 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5.8 The hand part of similar keyframe (a) “g” (b) “g2” (c) “k”. 
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(a) (b) (c) 

Figure 5.9 The hand part of blurred keyframe (a) “kl1” (b) “kl2” (c) “nh1”. 

  

Figure 5.10 The hand part of each signer is different to each other that perform the same 

action 

In this work, we improve dynamic Thai sign language translation system with 

video caption without prior hand region detection and segmentation using SIFT and 

various string grammar fuzzy clustering. The SIFT use to match test frame with symbols 

in the signature library. String Grammar Fuzzy clustering, i.e. string grammar fuzzy C-

medians, string grammar fuzzy possibilistic C-Medians, string grammar possibilistic 

fuzzy C-medians, string grammar unsupervised possibilistic C-medians, and string 

grammar unsupervised possibilistic fuzzy C-medians are utilized for finding the multi-

prototypes of each sign. The fuzzy K-nearest neighbor is used to find a matched sign 

words. We found that the best result of the blind data sets of signer-dependent is in 

between 92% and 93% from string grammar unsupervised possibilistic fuzzy C-medians 

on average and the average of that of signer-semi-independent (same subjects used in the 

string grammar clustering training) is around 81-85% from string grammar unsupervised 

possibilistic fuzzy C-medians.  Whereas the best average classification rate of the blind 

data sets of signer-independent is 80-83% from string grammar unsupervised possibilistic 

fuzzy C-medians. Moreover, our system can perform translating each video without the 

need for any pre-processing techniques, i.e., segmentation and hand detection. The SIFT 



 

119 

more provides informative about position, shape and orientation of the hand and finger. 

This allows the system to be able to recognize the hand sign words that have similar 

gestures. However, when we test our algorithm without constraint on five signers 

(subjects 21-25) who are asked to stand in front of various complex backgrounds and can 

wear any shirt. The best correct classification rate in this case is around 66-78% on the 

average. We also compare with the method of HMM, we can see the best classification 

of our methods is better than HMM for all experiments. Since the HMM may create the 

higher misclassification than our method because there might be a chance that the model 

that gives the maximum value is not the right one. Whereas our method not only choose 

the maximum one, it utilizes string grammar fuzzy clustering for finding the multi-

prototypes and after that FKNN will choose the closest string prototypes using K-nearest 

neighbor. Although our system provides better classification rate than previous methods 

for Thai hand sign language, there are still some issues that can improve its performance. 

For instance, string representation process could be improved by using other features 

because SIFT cannot extract some interesting point from images with complex natural 

background. Hence, the classification rate in this case is low. Moreover, our system 

performs without any pre-processing. The accuracy results might be reduced.  

5.2 Identification of Cardio-Pulmonary Resuscitation activity in Medical Simulation 

Videos 

Cardio-pulmonary resuscitation (CPR) [71] is an emergency lifesaving procedure 

are taken to restore breathing in a person who is in cardiac arrest. The CPR technique is 

a process that consists of chest compressions and follows by breaths. The procedures can 

help brain and organ damage from oxygen.  The typical recommendation is 30 chest 

compressions and two breaths. Repeat the cycle until the patient begins to recover. 

However, CPR has the risk because pressing on the chest can cause a sore chest, broken 

ribs or a collapsed lung. Hence, the person who performs CPR must be well trained 

before.  

In our experiment, the CPR video dataset was collected by Panicker, A (member of 

MRIL Lab at University of Louisville). She collected dataset from Pediatric Assessment 



 

120 

Resuscitation and Communication (SPARC) group of the Department of Pediatrics at 

University of Louisville, USA. Each simulation sessions video involves 4 to 9 trainees, 

and the length of each video is about 15 minutes to one hour. All video session need to 

be manually revised by expert or instructor to help trainees to reflect on their experiences 

and teach them to be more efficient during such real life scenarios.  Since an amount of 

video scene in simulation sessions that need to be manually reviewed by an instructor is 

enormous.  In each video does not only have CPR activity but include other activities in 

video. This process is hard work, and it takes a long time. 

From problem mentioned above, we developed automated tools for CPR activity 

frames identification from an extensive CPR training sessions database. It will help the 

instructor to review and debrief team easily. In this work, we identify video frame that 

involve CPR by using spatio temporal descriptor based on three-dimensional gradients 

(HOG3D) [67] and self-organizing feature map (SOM) [68] for string representation and 

by using string grammar fuzzy clustering model, i.e., String Grammar Fuzzy C-Medians, 

String Grammar Fuzzy Possibilistic C-Medians, String Grammar Possibilistic Fuzzy C-

Medians, String Grammar Unsupervised Possibilistic C-Medians and String Grammar 

Unsupervised Possibilistic Fuzzy C-Medians   for finding prototypes of CPR and non-

CPR. We then use fuzzy K-nearest neighbor to classify the test dataset. Our process does 

not require expensive optical flow computations or motion tracking for the CPR activity 

recognition.  

5.2.1 System Description 

We first manually select few frames that contain CPR activity from the video 

and extract bounding box containing only the hand part of the person who is performing 

the CPR activity with the size of 40×40 pixels.  For each CPR activity sequence includes 

12 frames that will have at least 2-3 CPR cycles which are essential for capturing the 

rhythmic activity in the temporal dimension. For non-CPR sequences, we also manually 

select blocks with the size of 40 x 40 at random spatial and temporal locations that do not 

overlap with blocks of CPR regions.  
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In order to identify CPR activity frame in medical simulation videos, we 

proposed the method without pre-processing i.e. segmentation, tracking specifics region 

and motion detection to avoid error occurs in these process.  The HOG3D [67] is utilized 

as feature descriptor, and it has been proved that HOG3D give an efficient feature for 

identification of Cardio-Pulmonary Resuscitation activity in medical Simulation videos 

better than other methods [72]. Hence we follow [72] by using the HOG3D as a feature 

vector descriptor to extract multi-scale spatio-temporal interest points (STIPs) from video 

volume which serve as the training patterns of self-organizing map (SOM) [68]. We then 

transform the result of SOM to string. Hence, we get string used as primitives in string 

grammar clustering. The diagram of the proposed system is given in Figure 5.11 which 

composed mainly of four steps, i.e., feature extraction using HOG3D, string 

representation using SOM, string grammar clustering and classification. Our approach 

consists of the following main steps:  

1)      Feature extraction using HOG3D features 

For each of the CPR and non-CPR training volume with the size of 40 

x 40 x12. The overview of the process for feature extraction using HOG3D [67] is 

depicted in Figure 5.12, and the detail is described as follows: 

 

Figure 5.11 The diagram of the proposed system for identification CPR 

activity frame in medical simulation videos 
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(a) (b) (c) (d) 

Figure 5.12 The overview of the process for feature extraction using HOG3D; (a)full 

descriptor of HOG3D with 3x3x3 histogram cell; (b) histogram computation over 3x3x3 

sub-blocks; (c) each gradient orientation is quantized using regular polyhedrons; (d) 

each mean gradient is computed using integral videos. 

1.1) Each volume is divided into a grid of cells with the size of M x M 

x N (here M=N=3). Thus, any given cell c = (x,y,t,w,h,l)T, where (x,y,t)T denote the 

position and w, h and l its width, height, and length, respectively. 

1.2) To construct histogram, cell is divided into S3 (here S = 3) blocks, 

(each cell is divided into 3 x 3 x 3 sub-blocks (bi)) 

1.3) Compute the mean gradient vectors of each sub-block ( igb


) using 

integral videos [69]  whose the mean gradients will be quantized by projecting them on a 

20-dimensional regular polygon with the gradient magnitude as its weight (qbi) [70]. 

1.4) The histogram hc for the region ccan be computed using the sum 

of the quantized mean gradients qbi of all sub-blocks bi : 

 
3

1

s

i
i=

=∑c bh q for i=1, 2, …, M2N (5.3) 
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1.5) These histograms are finally concatenated to one feature of the 

HOG3D descriptor of 3 x 3x 3 x 20 = 540 dimensional descriptors. We will get the 

HOG3D features are extracted from both the training and testing videos which serve as 

the training patterns of SOM. 

2)  String Representation using Self organizing Feature Map 

The self-organizing feature map (SOM) is the one of the unsupervised 

neural network that introduced by T. Kohonen [68]. SOM can project high dimensional 

data to lower dimensional lattice and can measure similarities in data as well. SOM is 

formed as neurons with two dimensional grid (here we use neuron spacing in hexagonal 

grid). Each neuron of SOM is represented by n-dimensional weight where n is the size of 

input data. The weight vectors of neurons are updated iteratively in training process. The 

best matching unit (BMU) is the winning neuron that weight vector is most similar to 

input. In this work, map size of SOM is 8×5. Transformation of HOG3D descriptor into 

a trajectory on the map is showed in Figure 5.13.  The chains of the best matching units 

(BMUs) is used as string for string grammar fuzzy clustering step.  

 

Figure 5.13 Transformation of HOG3D descriptor into a trajectory on the map. 

3)        String grammar fuzzy clustering Algorithm 

We use five string grammar clustering algorithms, i.e., sgFCMed, 

sgFPCMed, sgPFCMed, sgUPCMed and sgUPFCMed for finding multi-prototypes of 
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CPR dataset. For our five string grammar clustering algorithms which are utilized for 

finding multi-prototype of CPR, more details can be referred in Chapter 3. The parameters 

setting for identification CPR activity frame in medical simulation videos data set is 

shown in Table 5.17.  

Table 5.17 The parameter setting of our algorithms for CPR activity dataset. 

parameter sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 

m 2 2 2 2 2 
η - 2 2 - 2 
γ - - 2 - - 
a - - 1 - 1 
b - - 4 - 4 

stopping criteria 0.1 0.1 0.1 0.1 0.1 
maximum 
number of 
iterations 

100 100 100 100 100 

4)      Classification using Fuzzy K-nearest neighbor  

After we create the multi-prototypes of each class of CPR and non-CPR, 

i.e. { }1 2

1 1 2 2
1 1 1,..., , ,..., , ,...,

C

C C
N N NSC sc sc sc sc sc sc=  where j

ksc is string prototype k of class j 

for each class from sgFCMed, sgFPCMed ,sgPFCMed,sgUPCMed, and sgUPFCMed with 

5, 10, 15 and 20 clusters on each class separately to create multi-prototypes for each class 

are created. We apply FKNN [62] to classify the test dataset, more details can be referred 

in subheading 5.2.2.  

5.2.2 Results and Discussion 

We validate our algorithms on three CPR simulation video datasets which are 

provided by the (SPARC) working group at Kosair Children’s Hospital, Louisville, USA. 

The sample of frames are shown in Figure 5.14. The duration of these simulation sessions 

is roughly 30 minutes, with 29 frames per sec. Each of the frames originally had a 

resolution of 720 x 480. Since high-resolution frames are unnecessary for edge 

computation, we reduce the spatial resolution to 360 x 240. 
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video The sample of video frame 

CPR

1 

    

CPR

2 

    

CPR

3 

    

Figure 5.14 The sample of CPR video frame 

For training process, 200 frames of the hand part of the person who is 

performing the CPR activity with the size of 40×40 pixels from video CPR1 are manually 

selected.  We then selected 12 overlapping frames for volume constructions that will have 

at least 2-3 CPR cycles which are essential for capturing the rhythmic activity in the 

temporal dimension for each CPR activity sequence. For non-CPR sequences, we also 

manually select 160 blocks with the size of 40 x 40 at random spatial and temporal 

locations that do not overlap with blocks of CPR regions.  

We use a 10-fold cross validation with the training dataset for performance 

evaluation of our algorithms. The predictive performances were evaluated for accuracy 

rate (ACC). To finding the multi-prototypes of class CPR and class non-CPR, the 

sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed, and sgUPFCMed with 4, 8, and 12 

clusters are utilized. The FKNN was selected to classify the CPR activity frame with K = 

1 for 1 prototype and FKNN with K = 5 for 5, 10,15 and 20 prototypes. 
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Table 5.18 The average classification rate of the validation set from 10-fold cross 

validation. 

#prototype sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 
1 86.44 83.87 89.39 80.56 91.93 
5 87.08 89.97 92.43 83.33 94.66 
10 87.79 91.61 92.93 86.11 94.91 
15 88.30 92.60 93.59 86.11 95.08 
20 88.45 95.27 96.08 88.89 96.12 

 In Table 5.18, we compare the classification accuracy performance our string 

grammar fuzzy clustering using different number of prototypes on each class with p=1, 

5, 10, 15 and 20. The FKNN classifier using sgUPFCMed with 20-prototypes gives the 

best average accuracy of 96.12% with only 3.88% error rate. As indicated, the predictive 

performance reached 91.93% when using only single-prototypes. When we use the 

algorithms that based on only membership such as the sgFCMed, the best accuracy rate 

in this case is 88.45% with 20-prototypes. The accuracy rate cannot compete with the 

algorithms that based on both membership and possibilistic, may be because outliers are 

included in our datasets. 

For the indirect comparison, we compare our results with those from the 

HMM [71] and SVM [72], we can see that the best of our results is better than others 

methods as shown in Table 5.19. 

Table 5.19 The comparison on the validation set with other methods. 

Method classification correct rate (%)  
sgFCMed 88.45 
sgFPCMed 95.27 
sgPFCMed 96.08 
sgUPCMed 88.89 
sgUPFCMed 96.12 
HMM [71] ~80 
SVM [72] ~90 

For testing process, we sample the frames by a factor of 10 of each video. The 

details of test frames of each video are shown in Table 5.20. The video frames are divided 

into K overlapping volumes of N frames each. Let V = {V1, V2, … VK} denote the set of 

video volumes. From each volume Vi, where i = 1, 2, …K, sub-blocks {sv1, sv2 …. svl} 

are extracted with 50% overlap. Hence, each volume has 160 sub-blocks in total. We also 
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construct N overlapping frames for volume constructions. For example, if N = 12, then 

V1 will be frame1 to frame 12, V2 will be frame 2 to frame 13 and so on as shown in 

Figure 5.15. The HOG3D and SOM are computed for each sub-block using the same 

parameters used for training. Finally, the test string is assigned to a class with the closest 

prototype belongs to according to the FKNN based on Levenshtein distance with K=5 

and m=2 for all experiments. For identification any given video volume as a CPR activity 

or non-CPR activity, a filter criterion is f introduced which is that there must be at least 

four windows with a membership greater than 0.5 for the video volume to be classified 

as a CPR activity. This filtering removes the influence of most of the incorrectly classified 

sub-window volumes. In Table 5.21-5.23, we compare the classification accuracy 

performance our string grammar fuzzy clustering using different number of prototypes 

on each class with p =5, 10, 15 and 20 for videos CPR1, CPR2, and CPR3.  

 

Figure 5.15 Construction of video volume 

Table 5.20 The detail of three CPR simulation sessions video in our experiment. 

Video Length of video 
Number of test 

frame 

CPR1 19 minutes 28 second 4992 

CPR2 16 minutes 1 second 2880 

CPR3 14minutes 57 second 2772 

 

 



 

128 

Table 5.21 Classification rate on test sets of video CPR1 

#prototype sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 

5 83.21 89.43 89.75 89.68 90.66 
10 83.68 90.02 90.45 90.42 90.98 
15 87.97 92.51 93.98 93.91 94.17 
20 88.49 93 94.07 94.05 95.77 

 

From Table 5.21, The best sgUPFCMed yields 95.77%. correct classification 

on the video CPR1.  The sgFCMed, sgFPCMed, sgPFCMed and sgUPCMed yield 

88.49%, 93%, 94.07% and 94.05, respectively with 20-prototypes. 

Table 5.22 Classification rate on test sets of video CPR2 

#prototype sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 

5 71.46 82.23 83.69 83.58 86.75 
10 72.43 82.6 84.33 84.27 87.13 
15 73.75 85.15 89.05 89.03 90.66 
20 79.36 90.74 91.64 91.56 92.58 

 

From Table 5.22, The best sgUPFCMed yields 92.58% correct classification 

on the blind test data set. Whereas the sgFCMed, sgFPCMed, sgPFCMed and sgUPCMed 

give 79.36%, 90.74%, 91.64% and 91.56% correct classification, respectively, with 20-

prototypes. 

Table 5.23 Classification rate on test sets of video CPR3 

#prototype sgFCMed sgFPCMed sgPFCMed sgUPCMed sgUPFCMed 

5 74.67 77.79 81.69 85.68 84.67 
10 77.56 79.22 83.33 85.79 87.44 
15 82.48 84.72 85.62 86.47 88.65 
20 84.68 86.88 89.09 86.87 90.26 
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From Table 5.23, again, we can see that sgUPFCMed gives 90.26% correct 

classification rate on video CPR3. Whereas the sgFCMed, sgFPCMed, sgPFCMed and 

sgUPCMed provide 84.68%, 86.88%, 89.09% and 86.87% correct classification, 

respectively, with 20-prototypes. 

From all of the results from Tables 5.21 to 5.23, we can see the sgUPFCMed 

with 20-prototypes provide the best accuracy for all three videos dataset. The 

sgUPFCMed give 95.77%, 92.58%, and 90.26%, for videos CPR1, video CPR2 and CPR 

3, respectively. The video CPR1 give the highest classification rate because few frames 

of video CPR1 are included in training process, but not for video CPR2 and CPR3.  

In our work, we improved identification CPR activity in simulation in 

Medical Simulation Videos. The method of CPR action classification gets rid of the video 

shot detection and segmentation phase which is usually the first step of most common 

video classification algorithms. For CPR activity detection, we find multi-prototypes 

using the sgFCMed, sgFPCMed, sgPFCMed, sgUPCMed, and sgUPFCMed and classify 

by FKNN classifier with output string sequence from SOM with three dimensional spatio-

temporal oriented gradients to discriminate between CPR and non-CPR activity. The 

proposed method is very straight forward and easier compared to the other methods of 

activity detection in medical simulations videos. It achieves a better classification 

accuracy as compared to the HMM and SVM classifier (Table 5.19). The proposed 

approach was evaluated three video simulation sessions. We have shown that our 

purposed methods (sgUPFCMed) can correct identity of the CPR activity with 95.77%, 

92.58%, and 90.26, for videos CPR1, CPR 2 and CPR 3, respectively.  

 

Figure 5.16 Some CPR activity sequences that have anything such as people cover the 

hand part of CPR activity. 
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 However, some misclassifications have occurred in our system. It might be 

caused by movement of people in the scene or there are some CPR activity sequences that 

have anything such as people cover the hand part of CPR activity (Figure 5.16) because 

the CPR action is performed without noticeable movements of body or hands of the 

actors. Hence, the system can fail to identity CPR frame for these frames. 

Although our system has been proved to be an efficient approach to classify 

video scenes with CPR activity, there are still some issues that can improve its 

performance. For instance, feature extraction could be improved by using other features 

because the time and space complexity of HOG3D feature is very high. In addition, our 

system has been trained using only some hand part of the person who is performing the 

CPR activity from video CPR1. If we add more data from other videos in training set, it 

might increase the accuracy result of our system. Moreover, our system performs without 

any pre-processing i.e. segmentation, tracking specifics region and motion detection. The 

accuracy results might be reduced. Moreover, our algorithms use multi- prototypes of 

each class in FKNN testing process, not all string. Choosing the number of prototypes of 

CPR activity and non-CPR activity is important. We should preserve discrimination 

between classes for improving the classification accuracy rate. We suggest choosing the 

number of prototypes of each class large enough that noise in the data is minimized and 

small enough so the samples of the other classes are not included. For this dataset, 20-

prototypes provide the best accuracy for all three videos dataset. 

 

 


