CONTENTS

Ackno	wled	lgment	c
Abstra	act in	Thai	d
Abstra	ict in	English	e
List of	f Tab	English les	i
List of	f Figu	ires	m
List of	f Abb	previations	0
Statem	nents	of Originality in Thai	q
Statem	nents	of Originality in English	r
Chapte	er 1 I	ntroduction	1
_	1.1	Background and Motivation	1
]	1.2	Literature Review	4
]	1.3	Research objective	10
]	1.4	Research scope and method	10
]	1.5	Education/Application Advantages	10
]	1.6		10
]	1.7	Organization of Dissertation	11
Chart		All rights reserved	10
-		Principles and Theories of the Study	12
	2.1	Cluster Analysis	12
2	2.2	Hard Clustering Algorithm	13
		2.2.1 Hard C-Means	13
2	2.3	Fuzzy Clustering Algorithm	13
		2.3.1 Fuzzy C-Means	14
		2.3.2 Possibilistic C-Means	15

	2.3.3 Fuzzy C-Medians	16
	2.3.4 Fuzzy Possibilistic C-Means	17
	2.3.5 Possibilistic Fuzzy C-Means Algorithm	18
	2.3.6 Unsupervised Possibilistic Clustering Algorithm	19
	2.3.7 Unsupervised Possibilistic Fuzzy Clustering Algorithm	20
2	.4 String Grammar	21
	2.4.1 Formal Definitions of Grammar	21
	2.4.2 String Distance Function	22
	2.4.3 String Grammar Clustering	23
2	.5 Fuzzy Clustering Validation Techniques	24
	2.5.1 Partition coefficient	25
	2.5.2 Partition entropy	25
	2.5.3 Xie and Beni	26
2	.6 Measuring of Overlapping data	26
2	.7 The modified median string	27
Chapter	r 3 Research Designs and Methods	29
-		
3.	.1 String Grammar Fuzzy Clustering	29
	3.1.1 String Grammar Fuzzy C-Medians	30
	3.1.2 String Grammar Fuzzy Possibilistic C-Medians	35
	3.1.3 String Grammar Possibilistic Fuzzy C-Medians	38
	3.1.4 String Grammar Unsupervised Possibilistic C-Medians	42
	3.1.5 String Grammar Unsupervised Possibilistic Fuzzy C-Medians	44
3	.2 Illustration of String Grammar Fuzzy Clustering	47
Chapter	r 4 Results and Discussion	52
4	.1 Result on standard dataset	52
	4.1.1 MPEG-7 Core Experiment CE-Shape-1 Part-B Data Set	54
	4.1.2 Copenhagen Chromosomes Data Set	62
	4.1.3 MNIST Database of Handwritten Digits Data Set	71
	4.1.4 USPS Database of Handwritten Digits Data Set	78
4	2 Conclusion	86

Chapter 5 Applications		91	
5.1	Thai sign language translation	91	
	5.1.1 Dataset	92	
	5.1.2 System description	92	
	5.1.3 Result and Discussion	98	
	5.1.4 Comparison the results of string grammar fuzzy clustering	116	
	with the other methods		
5.2	Identification of Cardio-Pulmonary Resuscitation activity	119	
	in Medical Simulation Videos		
	5.2.1 System Description	120	
	5.2.2 Results and Discussion	124	
Chapter 6	Conclusion	131	
References		135	
List of Pub	olications	143	
Curriculun	n Vitae	145	
UNIVE			
ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่			

LIST OF TABLES

Table 1.1	Summary of syntactic pattern recognition applications	8
Table 3.1	Parameter setting of our algorithms for Thai printed numeric dataset	47
Table 3.2	The final membership from our algorithms for Thai printed numeric	50
	data set	
	S. ZENS	
Table 4.1	Parameter setting of our algorithms for all experiments	53
Table 4.2	MPEG-7 data	52
Table 4.2	The R-value of 4 real world data sets	53
Table 4.3	Single-prototype classification error rate on validation sets of MPEG-7 data	55
Table 4.4	Multi-prototypes classification error rate on validation sets of	56
	MPEG-7 data set	
Table 4.5	Cluster validity indices on MPEG-7 data set	60
Table 4.6	Comparison of MPEG-7 data set	61
Table 4.7	Single-prototype classification error rate (%) on validation sets for	64
	Copenhagen chromosomes data set	
Table 4.8	Single-prototype classification error rate (%) on blind test dataset for	65
	Copenhagen chromosomes data set	
Table 4.9	Multi-prototypes classification error rate (%) on validation sets for	65
	Copenhagen chromosomes data set	
Table 4.10	Multi-prototypes classification error rate (%) on blind test dataset for	66
	Copenhagen chromosomes data set	
Table 4.11	Comparison of Copenhagen chromosomes data set	69
Table 4.12	Cluster validity indices on Copenhagen chromosomes data set	70
Table 4.13	Number of samples in each digit in training and test sets of MNIST	71

Table 4.14	Single-prototype classification error rate (%) on validation sets for	72
	MNIST data set	
Table 4.15	Single-prototype classification error rate (%) on blind test dataset for	72
	MNIST data set	
Table 4.16	Multi-prototypes classification error rate (%) on validation sets for	73
	MNIST data set	
Table 4.17	Multi-prototypes classification error rate (%) on blind test dataset for	73
	MNIST data set	
Table 4.18	Cluster validity indices on MNIST data set	76
Table 4.19	Comparison of MNIST data set	77
Table 4.20	Number of samples in each digit in training and test sets of	78
	USPS data set	
Table 4.21	Single-prototype classification error rate (%) on validation sets for	79
	USPS data set	
Table 4.22	Single-prototype classification error rate (%) on blind test dataset for	80
	USPS data set	
Table 4.23	Multi-prototypes classification error rate (%) on validation sets for	80
	USPS data set	
Table 4.24	Multi-prototypes classification error rate (%) on blind test dataset for	81
	USPS data set	
Table 4.25	Cluster validity indices on USPS data set	83
Table 4.26	Comparison of USPS data set	85
	Copyright [©] by Chiang Mai University	
	Number of words in the training data set from subjects 1-15 and test	92
	data set from subject 1-25	
Table 5.2	The parameter setting of our algorithms for Thai hand sign language	96
	data set	
Table 5.3	The best classification rate (%) of the validation set from 4-fold cross	100
	validation when training with data set 1a for FKNN with $K = 1, 3, 5, 7$	
	and 9	

Table 5.4	The best classification rate (%) of the validation set from 4-fold cross	101
	validation when training with data set $1a-5a$ for FKNN with $K = 1, 3$,	
	5, 7 and 9	
Table 5.5	The best classification rate (%) of the validation set from 4-fold cross	102
	validation when training with data set $1a-15a$ for FKNN with K = 1, 3,	
	5, 7 and 9	
Table 5.6	Classification rate on test sets of signer-dependent when training	104
	with data set 1a	
Table 5.7	Classification rate on test sets of signer-semi-dependent when training	104
	with data set 1a	
Table 5.8	Classification rate on test sets of signer-independent when training	105
	with data set 1a	
Table 5.9	Classification rate on test sets of signer-dependent when training	107
	with data set 1a-5a	
Table 5.10	Classification rate on test sets of signer-independent when training	108
	with data set 1a-5a	
Table 5.11	Classification rate on test sets of signer-dependent when training	110
	with data set 1a-15a	
Table 5.12	Classification rate on test sets of signer-semi-dependent when training	111
	with data set 1a-15a	
Table 5.13	Classification rate on test sets of signer-independent when training	112
	with data set 1a-15a	
Table 5.14	Classification rate on test sets of signer-independent when training	113
	with data set 1a-15a with various complex natural backgrounds	
Table 5.15	The comparison of classification rate on test sets of our proposed	116
	method with TSL (with HMM)	
Table 5.16	The indirect comparison of classification rate on test sets of our	117
	proposed method with the other methods	
Table 5.17	The parameter setting of our algorithms for CPR activity dataset	124
Table 5.18	The average classification rate of the validation set from 10-fold	126
	cross validation	

Table 5.19	The comparison on the validation set with other methods	127
Table 5.20	The detail of three CPR simulation sessions video in our	128
	experiment	
Table 5.21	Classification rate on test sets of video CPR1	128
Table 5.22	Classification rate on test sets of video CPR2	129

Table 5.23 Classification rate on test sets of video CPR3129

LIST OF FIGURES

Figure 1.1	String representations of equilateral triangles	2
Figure 1.2	(a) Primitives (b) String representations of submedian chromosome	3
Figure 3.1	Examples of 2-class Thai printed numeric data set	47
Figure 4.1	Examples from MPEG-7 shape data sets	54
Figure 4.2	The string generation of MPEG- shape data sets	55
Figure 4.3	Termination measure of MPEG7 dataset	57
Figure 4.4	Sample of some shape in different class that are very similar	62
Figure 4.5	Sample of class device6 with is high intra-class variability	62
Figure 4.6	An example from Copenhagen Chromosome dataset	63
Figure 4.7	Termination measure of Copenhagen Chromosome dataset	67
Figure 4.8	An examples of images in the MNIST data set	71
Figure 4.9	Termination measure of MNIST data set	75
Figure 4.10	Examples of noisy data in MNIST dataset	78
Figure 4.11	An examples of images in USPS dataset	79
Figure 4.12	2 Termination measure of MNIST data set	82
Figure 4.13	Examples of noisy data in USPS dataset	86
Figure 4.14	Comparison between classification accuracies of four string grammar	88
	clustering and R-value.	
Figure 4.15	Example of three strings 'aba', 'abba', and 'abc'	90
Figure 4.16	5 String representations of equilateral triangles	90
Figure 5.1	Examples of 31 hand gestures	93
Figure 5.2	System overview of Thai sign language translation	94
Figure 5.3	Keypoints found on a keyframe	94

Figure 5.4	Keypoint descriptors found on hand gesture	95
Figure 5.5	Avg_Match of symbols "b" matched symbol is "b"	95
Figure 5.6	The hand gesture (a) "b" assigned to test image using SIFT and test	96
	images with constraint, (b) "k" is assigned to test image using SIFT	
	and test and test frames without constraint.	
Figure 5.7	Mismatched keypoints from sift process, the hand gesture "e"	115
	is assigned to test image using SIFT and test images without constraint	
Figure 5.8	The hand part of similar keyframe (a) "g" (b) "g2" (c) "k"	117
Figure 5.9	The hand part of blurred keyframe (a) "kl1" (b) "kl2" (c) "nh1"	118
Figure 5.10) The hand part of each signer is different to each other that perform	118
	the same action	
Figure 5.11	The diagram of the proposed system for identification CPR activity	121
	frame in medical simulation videos	
Figure 5.12	2 The overview of the process for feature extraction using HOG3D	122
Figure 5.13	3 Transformation of HOG3D descriptor into a trajectory on the map	123
Figure 5.14	The sample of CPR video frame	125
Figure 5.15	5 Construction of video volume	127
Figure 5.16	5 Some CPR activity sequences that have anything such as people	129
	cover the hand part of CPR activity	

CONTENTS

Ackno	wled	lgment	c
Abstra	act in	Thai	d
Abstra	ict in	English	e
List of	f Tab	English les	i
List of	f Figu	ires	m
List of	f Abb	previations	0
Statem	nents	of Originality in Thai	q
Statem	nents	of Originality in English	r
Chapte	er 1 I	ntroduction	1
_	1.1	Background and Motivation	1
]	1.2	Literature Review	4
]	1.3	Research objective	10
]	1.4	Research scope and method	10
]	1.5	Education/Application Advantages	10
]	1.6		10
]	1.7	Organization of Dissertation	11
Chart		All rights reserved	10
-		Principles and Theories of the Study	12
	2.1	Cluster Analysis	12
2	2.2	Hard Clustering Algorithm	13
		2.2.1 Hard C-Means	13
2	2.3	Fuzzy Clustering Algorithm	13
		2.3.1 Fuzzy C-Means	14
		2.3.2 Possibilistic C-Means	15

	2.3.3 Fuzzy C-Medians	16
	2.3.4 Fuzzy Possibilistic C-Means	17
	2.3.5 Possibilistic Fuzzy C-Means Algorithm	18
	2.3.6 Unsupervised Possibilistic Clustering Algorithm	19
	2.3.7 Unsupervised Possibilistic Fuzzy Clustering Algorithm	20
2	.4 String Grammar	21
	2.4.1 Formal Definitions of Grammar	21
	2.4.2 String Distance Function	22
	2.4.3 String Grammar Clustering	23
2	.5 Fuzzy Clustering Validation Techniques	24
	2.5.1 Partition coefficient	25
	2.5.2 Partition entropy	25
	2.5.3 Xie and Beni	26
2	.6 Measuring of Overlapping data	26
2	.7 The modified median string	27
Chapter	r 3 Research Designs and Methods	29
-		
3.	.1 String Grammar Fuzzy Clustering	29
	3.1.1 String Grammar Fuzzy C-Medians	30
	3.1.2 String Grammar Fuzzy Possibilistic C-Medians	35
	3.1.3 String Grammar Possibilistic Fuzzy C-Medians	38
	3.1.4 String Grammar Unsupervised Possibilistic C-Medians	42
	3.1.5 String Grammar Unsupervised Possibilistic Fuzzy C-Medians	44
3	.2 Illustration of String Grammar Fuzzy Clustering	47
Chapter	r 4 Results and Discussion	52
4	.1 Result on standard dataset	52
	4.1.1 MPEG-7 Core Experiment CE-Shape-1 Part-B Data Set	54
	4.1.2 Copenhagen Chromosomes Data Set	62
	4.1.3 MNIST Database of Handwritten Digits Data Set	71
	4.1.4 USPS Database of Handwritten Digits Data Set	78
4	.2 Conclusion	86

Chapter 5 Applications		91	
5.1	Thai sign language translation	91	
	5.1.1 Dataset	92	
	5.1.2 System description	92	
	5.1.3 Result and Discussion	98	
	5.1.4 Comparison the results of string grammar fuzzy clustering	116	
	with the other methods		
5.2	Identification of Cardio-Pulmonary Resuscitation activity	119	
	in Medical Simulation Videos		
	5.2.1 System Description	120	
	5.2.2 Results and Discussion	124	
Chapter 6	Conclusion	131	
References		135	
List of Pub	olications	143	
Curriculun	n Vitae	145	
UNIVE			
ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่			

LIST OF TABLES

Table 1.1	Summary of syntactic pattern recognition applications	8
Table 3.1	Parameter setting of our algorithms for Thai printed numeric dataset	47
Table 3.2	The final membership from our algorithms for Thai printed numeric	50
	data set	
Table 4.1	Parameter setting of our algorithms for all experiments	53
	MPEG-7 data	
Table 4.2	The R-value of 4 real world data sets	53
Table 4.3	Single-prototype classification error rate on validation sets of	55
	MPEG-7 data	
Table 4.4	Multi-prototypes classification error rate on validation sets of	56
	MPEG-7 data set	
Table 4.5	Cluster validity indices on MPEG-7 data set	60
Table 4.6	Comparison of MPEG-7 data set	61
Table 4.7	Single-prototype classification error rate (%) on validation sets for	64
	Copenhagen chromosomes data set	
Table 4.8	Single-prototype classification error rate (%) on blind test dataset for	65
	Copenhagen chromosomes data set	
Table 4.9	Multi-prototypes classification error rate (%) on validation sets for	65
	Copenhagen chromosomes data set	
Table 4.10	Multi-prototypes classification error rate (%) on blind test dataset for	66
	Copenhagen chromosomes data set	
Table 4.11	Comparison of Copenhagen chromosomes data set	69
Table 4.12	Cluster validity indices on Copenhagen chromosomes data set	70
Table 4.13	Number of samples in each digit in training and test sets of MNIST	71

Table 4.14	Single-prototype classification error rate (%) on validation sets for	72
	MNIST data set	
Table 4.15	Single-prototype classification error rate (%) on blind test dataset for	72
	MNIST data set	
Table 4.16	Multi-prototypes classification error rate (%) on validation sets for	73
	MNIST data set	
Table 4.17	Multi-prototypes classification error rate (%) on blind test dataset for	73
	MNIST data set	
Table 4.18	Cluster validity indices on MNIST data set	76
Table 4.19	Comparison of MNIST data set	77
Table 4.20	Number of samples in each digit in training and test sets of	78
	USPS data set	
Table 4.21	Single-prototype classification error rate (%) on validation sets for	79
	USPS data set	
Table 4.22	Single-prototype classification error rate (%) on blind test dataset for	80
	USPS data set	
Table 4.23	Multi-prototypes classification error rate (%) on validation sets for	80
	USPS data set	
Table 4.24	Multi-prototypes classification error rate (%) on blind test dataset for	81
	USPS data set	
Table 4.25	Cluster validity indices on USPS data set	83
Table 4.26	Comparison of USPS data set	85
	Copyright [©] by Chiang Mai University	
	Number of words in the training data set from subjects 1-15 and test	92
1	data set from subject 1-25	
Table 5.2	The parameter setting of our algorithms for Thai hand sign language	96
	data set	
Table 5.3	The best classification rate (%) of the validation set from 4-fold cross	100
	validation when training with data set 1a for FKNN with $K = 1, 3, 5, 7$	
	and 9	

Table 5.4	The best classification rate (%) of the validation set from 4-fold cross	101
	validation when training with data set $1a-5a$ for FKNN with K = 1, 3,	
	5, 7 and 9	
Table 5.5	The best classification rate (%) of the validation set from 4-fold cross	102
	validation when training with data set $1a-15a$ for FKNN with K = 1, 3,	
	5, 7 and 9	
Table 5.6	Classification rate on test sets of signer-dependent when training	104
	with data set 1a	
Table 5.7	Classification rate on test sets of signer-semi-dependent when training	104
	with data set 1a	
Table 5.8	Classification rate on test sets of signer-independent when training	105
	with data set 1a	
Table 5.9	Classification rate on test sets of signer-dependent when training	107
	with data set 1a-5a	
Table 5.10	Classification rate on test sets of signer-independent when training	108
	with data set 1a-5a	
Table 5.11	Classification rate on test sets of signer-dependent when training	110
	with data set 1a-15a	
Table 5.12	Classification rate on test sets of signer-semi-dependent when training	111
	with data set 1a-15a	
Table 5.13	Classification rate on test sets of signer-independent when training	112
	with data set 1a-15a	
Table 5.14	Classification rate on test sets of signer-independent when training	113
	with data set 1a-15a with various complex natural backgrounds	
Table 5.15	The comparison of classification rate on test sets of our proposed	116
	method with TSL (with HMM)	
Table 5.16	The indirect comparison of classification rate on test sets of our	117
	proposed method with the other methods	
Table 5.17	The parameter setting of our algorithms for CPR activity dataset	124
Table 5.18	The average classification rate of the validation set from 10-fold	126
	cross validation	

Table 5.19	The comparison on the validation set with other methods	127
Table 5.20	The detail of three CPR simulation sessions video in our	128
	experiment	
Table 5.21	Classification rate on test sets of video CPR1	128
Table 5.22	Classification rate on test sets of video CPR2	129

Table 5.23 Classification rate on test sets of video CPR3129

LIST OF FIGURES

Figure 1.1	String representations of equilateral triangles	2
Figure 1.2	(a) Primitives (b) String representations of submedian chromosome	3
Figure 3.1	Examples of 2-class Thai printed numeric data set	47
Figure 4.1	Examples from MPEG-7 shape data sets	54
Figure 4.2	The string generation of MPEG- shape data sets	55
Figure 4.3	Termination measure of MPEG7 dataset	57
Figure 4.4	Sample of some shape in different class that are very similar	62
Figure 4.5	Sample of class device6 with is high intra-class variability	62
Figure 4.6	An example from Copenhagen Chromosome dataset	63
Figure 4.7	Termination measure of Copenhagen Chromosome dataset	67
Figure 4.8	An examples of images in the MNIST data set	71
Figure 4.9	Termination measure of MNIST data set	75
Figure 4.10	Examples of noisy data in MNIST dataset	78
Figure 4.11	An examples of images in USPS dataset	79
Figure 4.12	2 Termination measure of MNIST data set	82
Figure 4.13 Examples of noisy data in USPS dataset		86
Figure 4.14	Comparison between classification accuracies of four string grammar	88
	clustering and R-value.	
Figure 4.15	Example of three strings 'aba', 'abba', and 'abc'	90
Figure 4.16	5 String representations of equilateral triangles	90
Figure 5.1	Examples of 31 hand gestures	93
Figure 5.2	System overview of Thai sign language translation	94
Figure 5.3	Keypoints found on a keyframe	94

Figure 5.4	Keypoint descriptors found on hand gesture	95
Figure 5.5	Avg_Match of symbols "b" matched symbol is "b"	95
Figure 5.6	The hand gesture (a) "b" assigned to test image using SIFT and test	96
	images with constraint, (b) "k" is assigned to test image using SIFT	
	and test and test frames without constraint.	
Figure 5.7	Mismatched keypoints from sift process, the hand gesture "e"	115
	is assigned to test image using SIFT and test images without constraint	
Figure 5.8	The hand part of similar keyframe (a) "g" (b) "g2" (c) "k"	117
Figure 5.9	The hand part of blurred keyframe (a) "kl1" (b) "kl2" (c) "nh1"	118
Figure 5.10) The hand part of each signer is different to each other that perform	118
	the same action	
Figure 5.11	The diagram of the proposed system for identification CPR activity	121
	frame in medical simulation videos	
Figure 5.12	2 The overview of the process for feature extraction using HOG3D	122
Figure 5.13	3 Transformation of HOG3D descriptor into a trajectory on the map	123
Figure 5.14	The sample of CPR video frame	125
Figure 5.15	5 Construction of video volume	127
Figure 5.16	5 Some CPR activity sequences that have anything such as people	129
	cover the hand part of CPR activity	

LIST OF ABBREVIATIONS

FCM	Fuzzy C-means
PCM	Possibilistic C-means
FCMed	Fuzzy C-medians
FPCM	Fuzzy Possibilistic C-means
PFCM	Possibilistic Fuzzy C-means
UPCM	Unsupervised Possibilistic C-means
UPFCM	Unsupervised Possibilistic Fuzzy C-means
НСМ	Hard C-means
sgHCM	String Grammar Hard C-means
SED	Shape Edit Distance
MAP	Maximum a posteriori probability
U-SURF	Upright speed-up robust feature
k-AESA	k-Approximating-Eliminating Search Algorithm
PC	Partition Coefficient
PE	Partition Entropy
XB	Xie and Beni
sgFCMed	String Grammar Fuzzy C-medians clustering
sgFPCMed	String Grammar Fuzzy Possibilistic C-medians clustering
sgPFCMed	String Grammar Possibilistic Fuzzy C-medians clustering
sgUPCMed	String Grammar Unsupervised Possibilistic C-medians clustering
sgUPFCMed	String Grammar Unsupervised Possibilistic Fuzzy C-medians
2 %. U U	clustering
TSL	Thai Sign Language
SIFT	Scale Invariant Feature Transform
FKNN	Fuzzy K-nearest neighbor
HMM	Hidden Markov Model
CPR	Cardio-pulmonary resuscitation
SPARC	Pediatric Assessment Resuscitation and Communication group

- HOG3D Spatio temporal descriptor based on three-dimensional gradients
- SOM Self-organizing feature map
- ACC Accuracy rate

ข้อความแห่งการริเริ่ม

วิทยานิพนธ์นี้ได้นำเสนอวิธีการใหม่ในการจัดกลุ่มข้อมูลพืซซีเชิงไวยากรณ์แบบสายอักขระ สำหรับข้อมูลแบบโครงสร้าง เพื่อนำไปใช้กับชุดข้อมูลสายอักขระที่สร้างขึ้น และชุดข้อมูลจริง

STATEMENTS OF ORIGINALITY

A novel string grammar fuzzy clustering method is proposed in order to cluster the structural pattern. The algorithm is applied in synthetic and real world string datasets.

