APPENDICES A

Power distribution system modeling with DIgSILENT PowerFactory

A.1 DIgSILENT PowerFactory program

DIgSILENT PowerFactory or PowerFactory program is a program used to create the model. To analyses power supply system, all models can be created in the form of pictures or writing. The program writing in the form of a Text File also has the ability to analysis power supply system. A wide variety of power flow analysis, problem analysis and short circuit. The Analysis of protection systems, power loss analysis system analysis and reliability. A system for using DIgSILENT PowerFactory program in this thesis will be used the program to Version 15.1 in DIgSILENT PowerFactory [14] modelling and analysis of the issue.

A.1.1 The structure of the program PowerFactory

The structure of the program, there are several PowerFactory sections on this topic will be discussed. The specific structure of the highlights includes a data management structure for the various electrical systems. It created and stored in the program window's components PowerFactory Main Window.

1) The management structure of data in the program PowerFactory

The information management program will be located in the Data window PowerFactory. Manager, which shows the folder structure to store data in a Database as shown in Figure A.1.

1.1 Main Library Folder contains the Types and Models of various standards programs PowerFactory.

1.2 System Folder contains the o bject used within the PowerFactory which, if you want to update in the User must Log on Edit. Only Administrator's Account

and what should be done under the guidance from DIgSILENT customer support because it will affect the operation of the program.

1.3 User Account Folders contains a folder of the Project and Setting. Normal User-defined according to various examples is the Aksacksy User.

📴 Data Manager - :			- 🗆 X	
🗈 🖻 🎽 🗙 🐇 📭 1.1	📑 🏶 🛞 💁 का 🕍 🏤 🖽 🗛 .	A 🛃 😂 🔒		
Database Ornfiguration	Name Type	Object modified	Object modified by	-
E DOD Library 1.2	Configuration	23/6/2006 4:12:25 P	Administrator	•]
🕀 🛄 System	Library	12/6/2006 9:53:11 P	Administrator	1
	System	12/6/2006 9:53:10 P	Administrator	1
1.3	🕵 aksacksy	4/7/2017 12:26:00 P	aksacksy	1
				I
			-	4
			•	·
Ln 1 4 object(s) of 4 1 of	pect(s) selected Drag & Drop			
				11

Figure A.1 Shows the Data Window Manager the data storage structure

2) The various components of the Main Window.

Components of the Main window, the Window contain the 10 key components as shown in Figure A.2.

2.1 Title Bar is the bar shows the name and Version of the program.

2.2 Menu Bar is the main command bar of the program.

2.3 A Main Tool Bar button is used instead of the main Menu Bar in command, which can be activated immediately.

2.4 Drawing Tool Bar buttons that are used to create the device, an electrical system in a different model.

2.5 Data Manager Window is a window that displays a Data structure to store all of the data.

2.6 Context Menu is the window that is displayed when you rightclick the folder in the Object Data Manager.

2.7 Output Window is a window that displays the results of calculations or display Error.

2.8 Output Tool Bar is the Tool Bar which works attributed to the Output Window.

2.9 Workspace is the area that is used to create the Single Line

Diagram.

2.10 Status Bar displays the status on the workpiece that is Active.

A.1.2 Modelling a system test 4 buses

Test system for model 4 bus to make it as a model system to test. IEEE standards information to create it as a reference by IEEE Bus Feeder 4 Test Cases [12].

1) Creating a node or a bus (Creating Terminal)

Clicking on the bus — (Terminal) or node • (Point Terminal) on the Drawing Toolbar on the right side, then placed in the Workspace by

moving areas. Mouse to where you want to create the node, or a bus, then left click 1 time to paste. Equipment (create a vertical bus, right-click, and then select the Clockwise or Counter Clockwise Rotate) bus as shown in Figure A.3. To cancel create the Drawing mode, the device, press and hold the Esc or right-click 1 time, then it will be able to choose a different image to create the device.

ile	Edit	: V	iew	In	sert	Da	ata	C	lcu	ulat	ion	C	Dut	put	Т	ools	V	Vind	low	H	lelp																																												-
Ŷ	56	â	đ		Q	Þ	5	-	Ł	ſ	2	60	L E	2	ø	N		₽:	Ę	1	0	Ē	6	2	\$	1	14		2			₹	4	۲ ۴	83 0-1	2.00	ž.	1	1	ŝ	=	•	►		1		11/0	되. e																7	
2)	þ		200	%	•	S.) [<u>}_</u>	ß	9 5	9df	4	9		2	۲l	12	1	1	2	C	5	Σ	0	Ē	5	511	1	e.	×	6	<u>k</u> 1	Þ	([110	kV	•	• /	BC	_	•	·																<u>ə</u> _		۲	Z		
																																																											対	Γ	-		•	Ш	(
																																																									<			~	1	· ·	4.	~	
																																																												⇔	÷	. 4	Ŧ		
																																																											•	-	-0-	- =	= :	8	
																																																											1	Ξ	8	-18	<u>18</u>		
																																																											1	¥	6		s	0	
																																																											1.	Ġ	â	5	ÀB.	ŵ	
																																																												, eva	۵ ش	, d	5	~	
												r		≪ 1																				Г										_															1	~	٢	19	Ŷ	9	
																																																												\$				_	
														1									1																						1															4	₩.	4	₽° I	¢?	ł
																																																												\$	2	2 -	÷∮	₫	
																																																											1	Ъ	¢	3 20	ф×	Q	
																																																												ඹ	. 9	5 4	Þ.	¢	
																																			1																								l	-Z-			۰.	Ľ.,	
																																																										1	_;	<u>ت</u>	ı.	1.5	÷.		
																																																											1	(単 の	1	1 12	ı ھ م		
																																																											'	•	Ē	0	<u>י</u> 2	Ŷ	
																																																												Ð	(2	¥,	Ħ	
																																																												¢-	-©	- 2	5		
																																																											_	1		> `	5	٦,	
÷	A III	a i b	ÍN	Ňc								_										-i	a İ																		i.																		•			j 4	ι. I		
	_	• •	1.	1.0		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-	_	_	_	_	_	_	_	=	_	_	_	_	_	_	_	_	_	_								 						_			<u> </u>	-	_	_	_	_	_	
																																																												•	2		<u>a</u> 4	M 1	`
																																																											_	•		B	٤.	A '	-
			_	_	-																																																						•						
	(×																									(Grid	i I	Free	ze	1	Orth	0	S	nap)	X=	21	2.73	2,Y:	-	83.2	95		D	B 98	80	7,	2/2	106	i 1:2	28:1	5 PI	м	E	E 4 F	Bus '	Test	Fee	e

Figure A.3 Create the Drawing the bus on the Workspace

Input data bus can do so by double-clicking the bus appears Dialog Box of a loud bus as shown in Figure A.4. Each window of analysis will provide different input. In this case study, data input as shown in Table A.1.

> Copyright[©] by Chiang Mai University All rights reserved

Load Flow	Name IBUS A		
VDE /IEC Sheet Cir	Terr Lal		
			Cancel
Complete Short-Cire	Area		Jump to
ANSI Short-Circuit			Cubicles
IEC 61363	Out of Service		
DC Short-Circuit	System Type AC	✓ Usage Busbar	-
BMS-Simulation	Phase Technology ABC-N		_
EMT-Simulation	Nominal Voltage	_	
Harmonics/Power	Quality Line-Line 12.47	kV	
Protection	Line-Ground 7.19955	8 kV	
Optimal Power Flow	N		
Reliability	Earthed		
Generation Adequa	асу		
Tie Open Point Op	t.		
Description			
			-
	······································		
	Figure A.4 The	e input data bus or node	
	Figure A.4 The	e input data bus or node	
	Figure A.4 The	e input data bus or node	***
	Figure A.4 The Table A.	e input data bus or node 1 Data on that bus	
Jame	Figure A.4 The Table A. Phase Technology	e input data bus or node 1 Data on that bus Line to Line Voltage	Voltage Typ
Jame	Figure A.4 The Table A. Phase Technology	e input data bus or node 1 Data on that bus Line to Line Voltage	Voltage Typ
Jame US_A	Figure A.4 The Table A.1 Phase Technology ABC-N	e input data bus or node 1 Data on that bus Line to Line Voltage 12.47 kV	Voltage Typ
Jame US_A	Figure A.4 The Table A. Phase Technology ABC-N	e input data bus or node 1 Data on that bus Line to Line Voltage 12.47 kV	Voltage Typ
Jame US_A US_B	Figure A.4 The Table A. Phase Technology ABC-N ABC-N	e input data bus or node 1 Data on that bus Line to Line Voltage 12.47 kV 12.47 kV	Voltage Typ
Jame US_A US_B	Figure A.4 The Table A. Phase Technology ABC-N ABC-N	e input data bus or node 1 Data on that bus Line to Line Voltage 12.47 kV 12.47 kV	Voltage Typ
Name US_A US_B US_C	Figure A.4 The Table A. Phase Technology ABC-N ABC-N ABC	e input data bus or node 1 Data on that bus Line to Line Voltage 12.47 kV 12.47 kV 4.16 kV	Voltage Typ
Jame US_A US_B US_C	Figure A.4 The Table A. Phase Technology ABC-N ABC-N ABC-N ABC	e input data bus or node 1 Data on that bus Line to Line Voltage 12.47 kV 12.47 kV 4.16 kV	Voltage Typ

2) To build the transmission line (Line)

Select a device line r_1 (Line) from the Drawing Toolbar on the right side, then placed in the Workspace area by clicking on one of the bus first and then come. Click on another bus that you want to connect to the transmission line will be the link between the two, such as a bus. Create a link between the bus line 1 and 2 by selecting the line from the Drawing Toolbar and then click on the bus 1 first and then click on the bus 2 as shown in Figure A.5.

	766	â	ā.	3	ሞ	٤.,	M.	2	172 44	. 🛛		I N		15	R	٩	Đ	Ω	G		珸	22		=	ş	ŗġ	i i	1	l N		•	►			100	<u>و</u>														
<u>.</u> 1	o '	3	30	0%	•	1 @	2	کی ا		e) E:	3 🏹	- 1	21	E)	2	0	Σ		臣			2)	K. a	<u>ж</u> Е	6 C	8	110 kV	-	AB	c	Ŧ]		_										8	Ĩ.				
						_																																						-	1-	-	•)
																																													~	1	-4		-	
																																													0	Ţ	Ē	_	_	
					1																																								_	-0		8		E
					×.												0											O ₁											(.≊ 	38			
					2												20											n n											-	$\tilde{\mathbf{D}}$					۲ ۲	(5)		ÌĊ)	В
																_																						_							ی جما	9 9 1	ee ش			9
																																														l @	Ŷ	/ ~		9
				· .	-							_				·	-										-	-																	1 1 2	MS	сц.	一兩		
										Lin	e_A	-B·		ſ		i.														-		1	Line	_C-	D		Ē	j							Т Д	⊽ ⊿	1	四	6	2
					ŧ٩	H	1							-		H	H.											† ≡	Η	-							-		-	t.					Ľ	á		× à	6	5
														L																								_								8	த்	Ó	=	Ĺ
																																													Z	ł		Ŧ		
																																													¥	•	应	0	Z	2
																																													٢	Ē	Ċ.) 🤹)	
																																													Ť	\$	ţ	╞	[
																																													¢	-0		ı —	•	
																																															1	, Γ,	. 1	1
⇒ ∓		4 Þ		Grid /	_												1																											١			4		8	F
																																														*	Ba	44	<u>ار</u>	Á
																																													•		8	A	`8	
٥			\times															Γ				G	irid	Free	eze [Or	tho	Sna	p		X=	182.	.126,	Y=	132.4	418		DE	1000	7	/2/21	06 1:	28:1	5 PM	-	EE 4 8	Bus Ti	est Fe	ede	r Ca
	£		2			-		w		J		v	8	6			1	1																								~ 1			D) E	NG	14	1:25		E,

Figure A.5 Create the building transmission line

Input data transmissions made by double-clicking on a line will appear on the Dialog Box on the line as shown in Figure A.6. Then the input data of the transmission line as shown in Table A.2.

	5		1 1-1	N/	~ 11		
Line - Grid\Line_A-B.ElmLne						?	×
Basic Data	Name	Line_A-B				C	Ж
Load Flow	Туре	▼ →				Ca	ncel
VDE/IEC Short-Circuit	Terminal i	▼ → Grid\BUS_A\Cub_1		BUS_A			
Complete Short-Circuit	Terminal j	▼ → Grid\BUS_B\Cub_1		BUS_B		Figu	ire >>
ANSI Short-Circuit	Zone	Terminal i 🔹 🔹	•			Jump	o to
IEC 61363	Area	Teminal i 💌 🔹	•				
DC Short-Circuit	Out of Service						
RMS-Simulation	Number of			Resulting Values			
EMT-Simulation	parallel Lines	1		Rated Current (act.)	0. kA		
Harmonics/Power Quality	Parameters			Pos. Seq. Impedance, 21 Pos. Seq. Impedance, Angle	0. deg		
Optimal Power Flow	Thermal Rating	▼ +		Pos. Seq. Resistance, R1	0. Ohm		
Reliability	Length of Line	0.6096 km		Zero Seq. Resistance, R0	0. Ohm		
Generation Adequacy	Derating Factor	1.		Zero Seq. Reactance, X0 Farth-Fault Current Ice	0. Ohm 0. A		
Tie Open Point Opt.	Laying	Ground		Earth Factor, Magnitude			
Cable Sizing				Earth Factor, Angle			
Description	Line Model C Lumped Para Distributed P Sections/I	ameter (PI) arameter Line Loads					

Figure A.6 The input data of transmission line

Name	Terminal Con	nect to BUS	Type of Line	Length (km)
	Ι	j		5 ()
Line A-B	А	В	Line A-B Type	0.6096
Line C-D	С	D	Line C-D Type	0.762

Table A.2 Data on the transmission line

Then determine the type of transmission line for the case study, this will create a kind of new Type Tower cables by selecting New Project Type => Tower Type as shown in Figure A.7.

	11/ 1				
Line - Grid\Line_A-B.ElmLne	•				? ×
Basic Data	Name	Line_A-B			ок
Load Flow	Туре				Cancel
VDE/IEC Short-Circuit	Terminal i	Select Global Type		BUS_A	
Complete Short-Circuit	Terminal j	Select Project Type	>	BUS_B	Figure >>
ANSI Short-Circuit	Zone	New Project Type	>	Line Type (TypLne)	Jump to
IEC 61363	Area	Paste Type		Tower Type (TypTow)	
DC Short-Circuit	Out of Service	Remove Type		Tower Geometry Type (TypGeo)	
RMS-Simulation	Number of			Cable Definition (TypCabsys)	
EMT-Simulation	parallel Lines	1		Rated Current (act.) 0. kA Pos Sea Impedance 71 0. Ohm	
Harmonics/Power Quality	Parameters			Pos. Seq. Impedance, Angle 0. deg	
Optimal Power Flow	Thermal Rating	▼ →		Pos. Seq. Resistance, R1 0. Ohm Pos. Seq. Reactance, X1 0. Ohm	
Reliability	Length of Line	0.6096 km		Zero Seq. Resistance, R0 0. Ohm	
Generation Adequacy	Derating Factor	1.		Zero Seq. Reactance, X0 0. Ohm Earth-Fault Current, Ice 0. A	
Tie Open Point Opt.	Laying	Ground		Earth Factor, Magnitude	
Cable Sizing				Earth Factor, Angle	
Description	Line Model C Lumped Para C Distributed Pa Sections/L	meter (PI) srameter ine Loads			
	Figure A.	7 The input da	ata c	of transmission line	e d

A Dialog Box will appear in the input data of transmission line. Tower

model Type, as shown in Figure A.8.

Tower Type - Equipment Typ	e Library\Line_A-B Tower Type.Ty	rpTow *	? ×
Basic Data	General Geometry		ОК
Load Flow	Name	Line_A-B Tower Type	Cancel
VDE/IEC Short-Circuit	Nominal Frequency	50. Hz	
Complete Short-Circuit	Number of Earth Wires	1 *	Calculate
ANSI Short-Circuit	Number of Line Circuits	1 Transposition none	
IEC 61363	Input Mode		
DC Short-Circuit	Geometrical Parameter	Earth Conductivity 100.	
RMS-Simulation	C Electrical Parameter		
EMT-Simulation	Types of Earth Conductors:		
Harmonics/Power Quality		Conductor Types TwoCon	
Optimal Power Flow	Earth Conductor 1		
Reliability			
Generation Adequacy			
Description			
	Conductor Types of Line Circuits:	Types Num. of Phases Transposition	
	TypCo		
		3.	
	•		
		1 ma	11
Figu	e A 8 To create	a data transmission of a Tower Type	_
11501	e mo no ereau	a data transmission of a rower ryp	

To choose a Mode Input Electrical Parameter and then creating the replica of the phase line by double-clicking on a space in the first column of the first row. Type of Conductor Line Circuits as shown in Figure A.9.

					111.
Tower Type - Equipment Typ	e Library\Line_A-B Tower Type.Typ	Tow *			? ×
Basic Data	General Geometry				ОК
Load Flow	Name	Line_A-B Tower Type			Cancel
VDE/IEC Short-Circuit	Nominal Frequency	50. Hz			
Complete Short-Circuit	Number of Earth Wires	1 📫			Lalculate
ANSI Short-Circuit	Number of Line Circuits	1 📫			
IEC 61363	Input Mode				
DC Short-Circuit	C Geometrical Parameter				
RMS-Simulation	 Electrical Parameter 				
EMT-Simulation					
Harmonics/Power Quality					
Optimal Power Flow					
Reliability					
Generation Adequacy					
Description	Conductor Tunco of Line Circuite:				
	Conductor Types of Elife Circuits.	pes Num. of Phases	Transposition		
	►Circuit 1	3.		•	
	<u> </u>			<u>▼</u>	
1					

Figure A.9 Setting conductors of the phase line

Appears next to the Data Manager for the select or create the Guide, click on the Menu Bar, 👔 as shown in Figure A.10, to make the line a new phase.

Please Select 'Conductor Type' - Library\Equipment Type Library :	? ×
Image: Study Cases Image:	OK Cancel Filter
Ln 1 0 object(s) of 1 0 object(s) selected	///

Figure A.10 Modelling conductors of the phase line.

A Dialog Box window appears, as shown in Figure A.11 for data input as conductor. Phase wiring for in this case study, the data input as shown in Table A.3, when input data is finished, press OK.

onductor Type - Equipmer	nt Type Library\Phase_12.47_kV 	.TypCon			? ×
Basic Data 📥	Name	Phase_12.47	_kV		ОК
Load Flow	Nominal Voltage	12.47	kV		Cancel
VDE/IEC Short-Circuit	Nominal Current	0.53	kA		
Complete Short-Circuit	Number of Subconductors	1 ÷			
ANSI Short-Circuit					
IEC 61363	Conductor Model				
DC Short-Circuit	Solid Conductor Tubular Conductor				
RMS-Simulation					
EMT-Simulation	(Sub-)Conductor		_	⇒	
Harmonics/Power Quality	DC-Resistance (20?C)	0.1901448	Ohm/km		
Optimal Power Flow	GMR (Equivalent Radius)	7.43712	mm		
Reliability	Outer Diameter	18.3134	mm		
Generation Adequacy					
Description	Skin effect				

Figure A.11 To input data, a leading cable system test phase 4 buses

	Nomi	nal	DC Resistance	GMR	Outer Diameter
Name	Voltage (kV)	Current (kA)	(20C) (Ohm/km)	(mm)	(mm)
Phase_12.47_kV	12.47	0.53	0.190139585	7.43712	18.3134
Neutral_12.47 kV	12.47	0.34	0.36786180326	2.481072	14.3002
Phase_4.16 kV	4.16	0.53	0.190139585	7.43712	18.3134

Table A.3 Data transmission line conductor

Then came a Load Flow Resistance and Reactance values for input of

the transmission line and then input the values as shown in Table A.4, as shown in Figure 23.21

1 ~ She

A.12.

lasic Data	Impedances	Admittances					ОК
oad Flow						→	Cancel
DE/IEC Short-Circuit	Matrix of F	Resistances R_i	[Ohm/km]:				
omplete Short-Circuit		1	2	3	•		Calculat
NCI Sheet Course	2	0.0966703	0.2901722	0.0979555			
Not onon-circuit	3	0.09512069	0.0979555	0.286934			
C Short-Circuit							
MS-Simulation							
MT-Simulation					•		
amonics/Power Quality					•		
ntinual Danuar Danu	Matrix of F	Reactances X_ij	[Ohm/km]:				
pumai Fower Flow		1	2	3			
eliability		0.6705416	0.3121856	0.2397339	 ^		
ieneration Adequacy	2	0.3121836	0.6519041	0.6624669	 		
escription		0.2337333	0.2037033	0.0024003			
					•		
				1	•		

Figure A.12 Input Resistance and Reactance values of line test system 4 bus

Table A.4 The Resistance and Reactance data of	f transmission line
--	---------------------

Name	e	Matrix of R	esistances R_i	j (Ohm/km)	Matrix of R	eactance X_i	j (Ohm/km)
of Lin	es	1	2	3	1	2	3
Lino	1	0.284482	0.0966703	0.09512069	0.6705416	0.3121856	0.2397339
A-B	2	0.0966703	0.2901722	0.0979555	0.3121856	0.6519041	0.2637839
	3	0.09512069	0.0979555	0.286934	0.2397339	0.2637839	0.6624669

Name	e	Matrix of R	esistances R_i	j (Ohm/km)	Matrix of R	eactance X_i	j (Ohm/km)
of Line	es	1	2	3	1	2	3
Line	1	0.2485279	0.0579578	0.05795723	0.8794718	0.5304363	0.452805
C-D	2	0.0579578	0.2485279	0.05795761	0.5304363	0.8794718	0.4861183
	3	0.05795723	0.05795761	0.2485279	0.452805	0.4861183	0.8794718

Table A.4 The Resistance and Reactance data of transmission line (Continued)

Then, back to the Basic window, select the Data Input Mode is a Geometrical Parameter, then it will make the modelling of conductor neutral by double Click on the gap in the first row of the first column of Type Earth Conductor as shown in Figure A.13.

	NI JUN VAI	
Tower Type - Equipment Typ	pe Library\Line_A-B Type.TypTow *	? ×
Basic Data	General Geometry	ОК
Load Flow	Name Line_A-B Type	Cancel
VDE/IEC Short-Circuit	Nominal Frequency 50. Hz	
Complete Short-Circuit	Number of Earth Wires	Calculate
ANSI Short-Circuit	Number of Line Circuits 1 Transposition none	
IEC 61363	Input Mode	
DC Short-Circuit	Geometrical Parameter Earth Conductivity 100. uS/cm	
RMS-Simulation	C Electrical Parameter	
EMT-Simulation	Types of Earth Conductors:	
Harmonics/Power Quality	Conductor Types TwnCon	
Optimal Power Flow	Eath Conductor 1	
Reliability		
Generation Adequacy		
Description		
	Conductor Types Num. of Phases Transposition	
	TypCon ▶Circuit 1 Phase 12.47 kV 3.	
Copy	right [®] by Chiang Mai Univers	sity
Ei	gure A 13 Modelling line conductor of the Neutral	1
ATT	gure A.15 Wodening the conductor of the Neutral	e d

Data appears next to the Data Manager for the select or create the leading neutral, click. (2) On the Menu Bar to create a new line neutral, guide will appear. Window, Dialog Box, for data input line neutral, for in this case study, the data input as shown in Table A.5, as shown in Figure A.14 when the input data is finished, press OK.

onductor Type - Equipmen	t Type Library\Neutral_12.47 k	:V.TypCon		? >
Basic Data 🔺	Name	Neutral_12.47 kV		ок
Load Flow	Nominal Voltage	12.27 kV		Cancel
VDE/IEC Short-Circuit	Nominal Current	0.34 kA		
Complete Short-Circuit	Number of Subconductors	1 🕂		
ANSI Short-Circuit				
IEC 61363	Conductor Model			
DC Short-Circuit	Solid Conductor			
RMS-Simulation	U Tubular Conductor			
EMT-Simulation	(Sub-)Conductor		•	
Harmonics/Power Quality	DC-Resistance (20?C)	0.3678618 Ohm/km		
Optimal Power Flow	GMR (Equivalent Radius)	2.481072 mm		
Reliability	Outer Diameter	14.3002 mm		
Generation Adequacy				
Description	✓ Skin effect			
-				

Figure A.14 Data input of line neutral for test system 4 bus

Then, click on the symbol to define the values of the transmission line Pole Configuration, as shown in Figure A.15 and then input the values in Pole Configuration case study, this input value is Pole Configuration as shown in Table A.5, as shown in Figure A.16.

asic Data	General Geometry		ОК
ad Flow	Name	Line_A-B Type	Cancel
DE/IEC Short-Circuit	Nominal Frequency	50. Hz	
mplete Short-Circuit	Number of Earth Wires	1 *	Calculat
ISI Short-Circuit	Number of Line Circuits	1 Transposition none 💌	
C 61363	Input Mode		
C Short-Circuit	Geometrical Parameter	Earth Conductivity 100.	
MS-Simulation	C Electrical Parameter		
MT-Simulation	Types of Earth Conductors:		
monics/Power Quality		Conductor Types	
timal Power Flow	Earth Conductor 1 Neutral_12	147 kV	
liability			
eneration Adequacy			
escription		۶.	
	Conductor Types of Line Circuits:	Num of Discours Transcowing	
	TypCon	ypes Num. or Phases Transposition	
	Circuit 1 Phase_12.47_kV	3.	

Figure A.15 The input of Pole Configuration value

Nome	Coordinat Conduc	e of Earth ctor [m]		Coordi	nate of L	ine Circu	its [m]	
Iname	Х	Y		Х			Y	
	1	2	1	2	3	1	2	3
Line A-B	0.1524	7.3152	1.0668	0.3048	1.0668	8.5344	8.5344	8.5344
Line C-D	-		1.0668	0.3048	1.0668	8.5344	8.5344	8.5344

Table A.5 The data pole configuration

Figure A.16 The input Pole Configuration for test system 4 bus

When the value data input Pole Configuration, click on the symbol shown in Figure A.17 will be returned to the window for input data Basic Data again, as shown in Figure A.18, do as shown in Table A.6 data inputs.

	LI NI ADT									2	~
Tower Type - Equipment Ty	pe Library\Line_A-B_lyp	e. Typ Tow ^								?	×
Basic Data	General Geometry									ОК	
Load Flow	Coordinate of Earth C	onductors [m]:								Cancel	. 1
VDE/IEC Short-Circuit	Farth Conductor 1	X 0 1524	Y 7 3152								<u> </u>
Complete Short-Circuit		0.1024	7.0102							Calculat	te
ANSI Short-Circuit											
IEC 61363							-				
DC Short-Circuit		•									
RMS-Simulation	Coordinate of Line Cir	cuits [m]:									
EMT-Simulation	X1	X2	X3	Y1	Y2	Y3					
Harmonics/Power Quality	Circuit 1 -1.0688	-0.3048	1.0688	8.5344	8.5344	8.5344	^				
Optimal Power Flow											
Reliability											
Generation Adequacy											
Description											
							-				
	•										
1											
	11 I.		1					1	1.11	-	

Figure A.17 The window Basic Data to input data, the type of transmission line Kust 1 205

ι.

Tower Type - Equipment Type Library\Line_A-B Type.TypTow	? ×
Basic Data General Geometry	ОК
Load Flow Name Line_A-B Type	Cancel
VDE/IEC Short-Circuit Nominal Frequency 60. Hz	
Complete Short-Circuit Number of Earth Wires 1	Calculate
ANSI Short-Circuit Number of Line Circuits 1 🕂 Transposition none 💌	
IEC 61363	
DC Short-Circuit © Geometrical Parameter Earth Conductivity 100. uS/cm	
RMS-Simulation	
EMT-Simulation Types of Earth Conductors:	
Hamonics/Power Quality Conductor Types TypCon	
Optimal Power Flow	
Reliability \aksacksy\IEEE 4 Bus Test Feeder Cases\Library\Equipment Type Library\Neutral_12.47	[·] kV
Generation Adequacy	
Description	
Conductor Types Num. of Phases Transposition	
TypCon Circuit 1 Phase 12.47 kV 3.	

Figure A.18 Window of Basic Data to input data, the type of transmission line

	Nun	nber	Co	onductor Typ	bes	Nominal
Name	Earth Wires	Line Circuits	Phases	Neutral	NUM. of Phases	(Hz)
Line A-B Type	1	1	Phase 12.47 kV	Neutral 12.47 kV	3	60
Line C-D Type	0	1	Phase 4.16 kV	-	3	60

Table A.6 Type of data transmission

When building a transmission line A-B successfully, creating a cable line C-D, using the same methods to create the cable line A-B.

3) To create the transformers

To create a transformer made by selected symbols \ominus transformers. On the Drawing Toolbar Placed in the Workspace area, click Mouse at any bus. One of the first, and then come and click on the bus to make a connection to the transformer model. As shown in Figure A.19 then the input data transformer by Double click that Dialog Box will contain a transformer of transformer appears. Then create the type of transformer. By selecting the check box, Type-a New Project => Type, as shown in Figure A.20.

Figure A.19 To create the transformers

Basic Data	General Grour	iding/Neutral Conductor		ОК
Load Flow	Name	2-Winding Transformer		Cancel
VDE/IEC Short-Circuit	Туре	➡ →		
Complete Short-Circuit	HV-Side	Select Global Type	BUS_B	Figure >>
ANSI Short-Circuit	LV-Side	Select Project Type	BUS_C	Jump to
IEC 61363	Zone	New Project Type		
DC Short-Circuit	Area	Paste Type		
RMS-Simulation	Out of Serv	Remove Type	-	
EMT-Simulation	Number of -		Flip Connections	
Harmonics/Power Quality	parallel Trans	formers 1		
Protection	Thermal Rating	▼ →		
Optimal Power Flow	Rating Factor	1. F	Rated Power (act.) 0. MVA	
State Estimation	Auto Trans	fomer		
Reliability	Supplied Eler	nents		
Generation Adequacy		Mark Elements in Graphic	Edit Elements	
Tie Open Point Opt				
no open i one ope.	-			
Description	-			
Description				
Description	_			
Description				
Description				

Dialog Box will appear for the data input of the transformer. For the transformers in case studies, this Technology is a Three Phase Transformer which means. A three-phase transformer and then click on the Positive Sequence Impedance check box is selected in Resistance and Reactance p.u. in p.u. as shown in Figure A.21, then press OK, and configure other parameters the Table A.7 will get parameter values, as shown in Figure A.22 and when the configuration parameters until you hit OK.

		INGINE	2-winding transformer type			
Load Flow		Technology	Three Phase Transformer	•		Cancel
VDE/IEC S	hort-Circuit	Rated Power	1. MVA			
Complete S	hort-Circuit	Nominal Frequency	50. Hz			
ANSI Short	-Circuit	Rated Voltage		Vector Group		
IEC 61363		HV-Side	6. kV	HV-Side YN 💌		
DC Short-C	ircuit	LV-Side	6. kV	LV-Side YN 💌		
RMS-Simula	ation	- Positive Sequence Imper	lance	Internal Delta Winding		
EMT-Simula	ation	Reactance x1	0.03 p.u.	Phase Shift 0.	*30deg	
Harmonics/	/Power Quali Sett	ings 2-Winding Transform	er\Input Options\Settings 2-	Winding Transformer.OptTyp	? ×	
Protection		os Segu Representation	- Input		ОК	
Optimal Pov	wer Flow	ero Serui Representation	C Short-Circuit Voltage uk and	Copper Losses		
Reliability	6	ero dega. Representation	C Short-Circuit Voltage uk and	SHC-Voltage Re(uk)	Cancel	
Generation	Adequacy		C Short-Circuit Voltage uk and	X/R Ratio		
Description			 Reactance in p.u. and Resis 	ance in p.u.		
Dobonption						

Figure A.21 Select Reactance in p u and Resistance in p u

Rated	Rated Vol	ltage (kV)	Positive S Impedar	Sequence ice (p u)	Vector	Nominal	
Power (MVA)	High Voltage	Low Voltage	Resistance	Reactance	High Voltage	Low Voltage	Frequency (Hz)
	Side	Side	r1	x1	Side	Side	
6	12.47	4.16	0.01	0.06	YN	D	60

Table A.7 Data of transformers

-Winding Transformer Type	- Equipment Type Library\12.	47/4.16 kV.Ty	pTr2				?	
Basic Data	Name	12.47/4.16	κV				(ЭК
Load Flow	Technology	Three Phase	e Transformer	•			Ca	ncel
VDE/IEC Short-Circuit	Rated Power	6.	MVA	_				
Complete Short-Circuit	Nominal Frequency	60.	Hz					
ANSI Short-Circuit	Rated Voltage	,		Vector Group				
IEC 61363	HV-Side	12.47	kV	HV-Side	YN 💌			
DC Short-Circuit	LV-Side	4.16	kV	LV-Side	D 💌			
RMS-Simulation	Positive Sequence Impedan	ce -						
EMT-Simulation	Reactance x1	0.06	●	Phase Shift	0.	*30deg		
Harmonics/Power Quality	Resistance r1	0.01	p.u.	Name	YNd0			
Protection		1						
Optimal Power Flow	Zero Sequence Impedance					⇒		
Reliability	Short-Circuit Voltage uk0	3.	- %					
Generation Adequacy	SHC-Voltage (Re(uk0)) uk0r	 0.	%					
Description								
Description								

Figure A.22 Input data of the transformer

4) To create supply

To create supply (External Grid) is by clicking to select the device on the Drawing window supply Toolbar, then select the desired bus connection. Such a device would be a model as shown in Figure A.23 supply in this case studies. To make a connection to the supply into the bus at 1, and then double-click the device supply. The Dialog Box has been created will appear as shown in Figure A.24. Then go to the window, Load Flow. As shown in Figure A.25, and define the Type as SL Bus, which refers to the. Slack Bus Voltage in this case study will define the Set point is equal to 1 when the input parameter values window p.u. Load Flow and the VDE/IEC.Short-Circuit as shown in Figure A.26 and then configure a Power Short-Circuit Short-Circuit Power Sk max and "Ik" min. in the study assigned Short-Circuit Current max Ik ", which equal to 100 MVA and Short-Circuit Power Sk" min. Equal to 100 MVA, then press OK.

	tout Tools Window Help	- E X
** 🐱 🔕 💩 🗟 🕈 🕴 🔊 🖗	,	
🖹 🔎 🎾 🗆 200% 💽 🧶 🙀 🖉	≝ H ¥ 12 📽 🚱 Σ 💷 🖾 🖾 × ½ 🗞 🛍 110kV . JABC	
		⇔ ‡ ₽
		\$ <u>₹</u> ≏
	ຊີຊີ	
·····		5 B B B B B B B B B B B B B B B B B B B
		↓ vậ∧ r∱∧ @3
	╊╋ <u>╎</u> ┝╼═┈┈┥╎┲┞╋╎┝╼╲╝╌┥╎┫╊┫╎┝╼═╸┈┈┥╎┲┥	···· 全 2 ± 空 峰 凾 - · · · 下 点 艸 ~) め
		愈食 ? 单 輕
		······································
		⊕ \$ \$ ¥ ¥
		· · · · · · · · · · · · · · · · · · ·
⇔⇒ ↓↓↓) \Grid	4	
		- 🕫 🖬 🖌 🍗 🖨
•		, ⁻ 🖬 🗟 A 🦢
💷 o 🔿 🖿 🛱 🖬 🚺	Grid Freeze Ortho Snap X= 117,419,Y= 73,043 DB 1050 7/2/21	06 1:28:15 PM EE 4 Bus Test Feeder Cases
		Jin Esta
	Figure A 22 To prosto supply	
	Figure A.25 To create suppry	
-35	the Protection Latter	
External Grid - Grid\External G	Grid.ElmXnet	? × ·
Basic Data	General Grounding/Neutral Conductor	ОК
Load Flow	Name External Grid	Cancel
VDE/IEC Short-Circuit	Terminal	
Complete Short-Circuit	Zone 🔸	
ANCI Chart Circuit		Figure >>
ANSI SHOR-GICUL	Area 📥 (Parameter Name: cpZone)	Figure >> Jump to
IEC 61363	Area (Parameter Name: cpZone)	Figure >> Jump to
IEC 61363 DC Short-Circuit	Area (Parameter Name: cpZone)	Figure >>
IEC 61363 DC Short-Circuit RMS-Simulation	Area	Figure >>
IEC 61363 DC Short-Circuit RMS-Simulation EMT-Simulation	Area (Parameter Name: cpZone)	Figure >>
IEC 61363 DC Short-Grout RMS-Simulation EMT-Simulation Harmonics/Power Quality Optimal Power Flow	Area (Parameter Name: cpZone)	Figure >>
IEC 61363 DC Short-Grout RMS-Simulation EMT-Simulation Hamonics/Power Quality Optimal Power Row Reliability	Area <u>(Parameter Name: cpZone)</u> Out of Service	Figure >>
IEC 61363 DC Short-Grouit RMS-Simulation EMT-Simulation Harmonics/Power Quality Optimal Power Flow Reliability Generation Adequacy	Area (Parameter Name: cpZone)	Figure >>
IEC 61363 DC Short-Grouit RMS-Simulation EMT-Simulation Harmonics/Power Quality Optimal Power Flow Reliability Generation Adequacy Description	Area	Figure >>
IEC 61363 DC Short-Grouit RMS-Simulation EMT-Simulation Harmonics/Power Quality Optimal Power Row Reliability Generation Adequacy Description	Area	Figure >>
IEC 61363 DC Short-Circuit RMS-Simulation EMT-Simulation Harmonics/Power Quality Optimal Power Row Reliability Generation Adequacy Description	Area	Figure >>
IEC 61363 DC Short-Circuit RMS-Simulation EMT-Simulation Harmonics/Power Quality Optimal Power Row Reliability Generation Adequacy Description	Area → (Parameter Name: cpZone) → Out of Service -	Figure >>
IEC 61363 DC Short-Circuit RMS-Simulation EMT-Simulation Harmonics/Power Quality Optimal Power Row Reliability Generation Adequacy Description	Area → (Parameter Name: cpZone) Out of Service	Figure >>
IEC 61363 DC Short-Circuit RMS-Simulation EMT-Simulation Harmonica/Power Quality Optimal Power Row Reliability Generation Adequacy Description	Area (Parameter Name: cpZone)	Figure >>
IEC 61363 DC Short-Circuit RMS-Simulation EMT-Simulation Hamonica/Power Quality Optimal Power Row Reliability Generation Adequacy Description	Area (Parameter Name: cpZone)	Figure >> Jump to
IEC 6163 IC Shot-Grout RMS-Simulation EMT-Simulation Hamonics/Power Quality Optimal Power Row Reliability Generation Adequacy Description	Area (Parameter Name: cpZone)	Figure >> Jump to
IEC 6163 IC Shot-Circuit RMS-Simulation EMT-Simulation Harmonics/Power Quality Optimal Power Row Reliability Generation Adequacy Description	Area (Parameter Name: cpZone)	Figure >> Jump to

Figure A.24 Input Data Basic of Supply

E	xternal Grid - Grid\External Grid.ElmXnet *	? ×
ſ	Basic Data Bus Type	ОК
	Load Row Setopirt logal	
	VDE/IEC Short-Circuit	Cancel
	Complete Short-Circuit Angle 0. deg	Figure >>
	ANSI Short-Circuit Voltage Setpoint 1. p.u.	Jump to
	IFC 61363 Reference Busbar ▼ ↓	
	DC Shot-Grouit	
lŀ	RMS-Simulation	
	FMT-Simulation	
	Control Rower Rower Operational Limits	
	Reliability Min 0000 Mune Caption Easter (ein) 100 %	
	Generation Adenuacy Mare Gooling Factor (min.) 100. %	
ŀ	Description	
	Desciption	
_		
	6 6 1 3	
	Figure A 25 Input data Load Flow of supply	
	Figure A.25 Input data Load Flow of supply	
	Figure A.25 Input data Load Flow of supply	
E	Figure A.25 Input data Load Flow of supply	7 X
E	Figure A.25 Input data Load Flow of supply	? ×
E	Kternal Grid - Grid/External Grid.ElmXnet Basic Data Max. Values Shot Cricel Reuror String	? ×
E	Aternal Grid - Grid/External Grid.ElmXnet	? × OK Cancel
E	Kernal Grid - Grid/External Grid.ElmXnet Basic Data Load Row VDE/IEC Short-Circuit	? X OK Cancel Figure >>
E	Resc Data Max. Values Short-Circuit Short-Circuit Current Ik'max VDE/IEC: Short-Circuit Max. Values Short-Circuit Short-Circuit Current Ik'max Complete Short-Circuit Image Internation (max) Load Row Image Internation (max) VDE/IEC: Short-Circuit Image Internation (max) Complete Short-Circuit Image Internation (max) Image Internation (max) Image Internation (max) Image Internation (max) Image Internation (max) Image Internation (max) Image Internation (max)	? × OK Cancel Figure >>
E	Active Max. Values Short-Circuit Short-Circuit Current Ik/max Complete Short-Circuit Max. Values Min. Values Short-Circuit Current Ik/max	? × OK Cancel Figure >> Jump to
E	Basic Data Max. Values Load Row Short-Grout VDE/IEC Short-Grout Max. Values Complete Short-Grout Max. Values Max. Values MVA Short-Grout Max. Values Max. Values MVA Short-Grout Model (max) Model Short-Grout Model (max) Max. Values MVA Short-Grout MVA More Crout MVA More Crout MVA Model Short-Grout MVA Max. Values MVA Short-Grout MVA Model Short-Grout MVA Model Short-Grout Model (max) Model (max) Model (max) Model (max) Model (max) <td>? × OK Cancel Figure >> Jump to</td>	? × OK Cancel Figure >> Jump to
E	Basic Data Max. Values Load Row Short-Grout Curcuit VDE/EC Short-Grout Max. 0056665 Complete Short-Grout Impedance Ratio Min. Values Min. Values Short-Grout Impedance Ratio Cost Gasa 0.56665 C. Short-Grout 0.56665 D. Short-Grout 0.56665 D. Short-Grout 0.56665	? X OK Cancel Figure >> Jump to
E	Basic Data Max. Values Load Row Short-Grout Curcent Ik/max VDE/IEC Short-Grout Max. 00.68618 Complete Short-Grout Impedance Ratio ANSI Short-Grout Impedance Ratio Z2/21 max. 0.56665 X0/X1 max. 0.5 R0/X0 max. 0.56618	? X OK Cancel Figure >> Jump to
E	Basic Data Load Row Max. Values VDE/EC Short-Circuit Complete Short-Circuit ANSI Short-Circuit EC 61363 DC Short-Circuit RMS-Simulation Max. Values RMS-Simulation EMT-Simulation VDE/EC Short-Circuit Short-Circuit Power Sk'max MVA Short-Circuit Power Sk'max	? × OK Cancel Figure >> Jump to
E	Basic Data Laad Row Max. Values Max. Values Max. Values VDE/IES Nont-Grout Complete Short-Grout EC 61363 EC Short-Grout EC 61363 ES Short-Grout EMS-Simulation EMT-Simulation Hamonics/Power Quality Max. Values Max. Values Max. Values Max. Values 0.68618 MVA Stot-Grout Current Ik max. Values Max. Values Max. Values Max. Values 0.68618 MVA Stot-Grout Current Ik max. Values Max. Values Max. Values Max. Values 0.56665 Max. Values Max. Values Max. Values Max. Values Max. Values 0.56665 Max. Values Max. Values Max. Values Max. Values Max. Values 0.56665 Max. Values Max.	? X OK Cancel Figure >> Jump to
E	Baic Data Impedance Ratio Lead Row Short-Circuit Power Sk*max VDE/IcS Noot-Circuit Max. Values Short-Circuit Max. Values Inc. Gata Impedance Ratio 22 Short-Circuit 0.56665 Complete Short-Circuit 0.56665 Ext Simulation 0.566618 Eministion Impedance Ratio Hamonics/Power Quality 0.68618 Optimal Power Flow 0.1	? X OK Cancel Figure >> Jump to
	Baic Data Image: Short-Great Complete Short-Great Sort-Great MS-Smudation Image: Discore Ratio EXT-Smudation Image: Discore Ratio EMT-Smudation Fix-Smudation Min-Smudation Fix-Smudation Mamorice/Power Ratio Discore Ratio Extramadation Discore Ratio <tr< td=""><td>? X OK Cancel Figure >> Jump to</td></tr<>	? X OK Cancel Figure >> Jump to
E	Account of a constraint of a co	? X OK Cancel Figure >> Jump to
	Baic Data Load Row VDE/EC Short Circuit Short Circuit RMS-Smulation EMS-Smulation Hamonics/Power Quality Optimal Power Row Relability Relability <td>? X OK Cancel Figure >> Jump to</td>	? X OK Cancel Figure >> Jump to
	Image: Space Ac25 Input data Load Flow of supply Image: Space Ac25 Input data Load Flow of supply Image: Space Ac26 Information Space Ac20 Image: Space Ac26 Information Space Ac20 Image: Space Ac20	? X OK Cancel Figure >> Jump to
	sectors Sectors <td< th=""><th>? × OK Cancel Figure >> Jump to</th></td<>	? × OK Cancel Figure >> Jump to
E	scalar Nava Nava Nava Nava <td>? × OK Cancel Figure >> Jump to</td>	? × OK Cancel Figure >> Jump to
E	scalar	? X OK Cancel Figure >> Jump to
	screate of a constrained o	? X OK Cancel Figure >> Jump to
E	secretor Secretor Name Name <td>? X OK Cancel Figure >> Jump to</td>	? X OK Cancel Figure >> Jump to
	scalar	? X OK Cancel Figure >> Jump to
	Signe A.25 Input data Load Flow of supply state State <td>? X OK Cancel Figure >> Jump to</td>	? X OK Cancel Figure >> Jump to
		? × OK Cancel Figure >> Jump to

Figure A.26 Input data Short-Circuit of Supply

5) To create load

Creating the load (Load General) 🔄 start to build by selecting the model of your load on the Drawing Toolbar, and then select the bus that you want to connect to a replica. In this case study will make a connection where data input 4 bus

makes your load by. Double-click the load will be a replica of the load, as shown in Figure A.27 will appear. Dialog Box of the load, then creates the type of load. By selecting the Project Type New-Type => General Load Type, as shown in Figure A.28. A Dialog Box will appear, determine the type of Technology, as shown in Figure A.29, 3PH-D then press OK.

Figure A.27 Modeling of the load

1a

General Load - Grid\General	Load.ElmLod				? ×
Basic Data	Name Ge	neral Load			ОК
Load Flow	Туре 💌	➡			Cancel
VDE/IEC Short-Circuit	Terminal	Select Global Type	1	BUS_D	
Complete Short-Circuit	Zone	Select Project Type	>		Figure >>
ANSI Short-Circuit	Area	New Project Type	>	General Load Type (TypLod) Jump to
IEC 61363	Out of :	Paste Type		Complex Load (TypLodind)	
DC Short-Circuit	Technolog	Remove Type			
RMS-Simulation	Consider	Load Transformer			
EMT-Simulation					
Harmonics/Power Quality					
Optimal Power Flow					
State Estimation	L				
Reliability					
Generation Adequacy					
Description					

Figure A.28 Input data of the load

General Load Type - Equipm	ent Type Library\General Load Type(1).TypLod *	? ×
Basic Data	Name General Load Type	ОК
Load Flow	,	Cancel
VDE/IEC Short-Circuit	System Type AC 💌	
Complete Short-Circuit	Technology 3PH-'D'	
ANSI Short-Circuit		
IEC 61363		
DC Short-Circuit		
RMS-Simulation		
EMT-Simulation		
Harmonics/Power Quality		
Optimal Power Flow		
Reliability		
Generation Adequacy		
Description		
	Munuly V	
		11
L CR	Figure A.29 Select the type of load	
Carlo		11

Then go to the window, Load Flow, make the data input as shown in Table A.8. Because the system test 4 test system is used for transformer tests. So, a very large load size, therefore, to test the transformer in case of overload. When analyzing health system. Parties may need to reduce the size of the load. In this case it drops just 50 percent of the reloading of all defined spaces direct Scaling Factor equal to 0.5 shown at in Figure A.30.

	Sagni	Та	able A.8 Da	ta of load	าเรีย	ิ่งให	1
	Balanced/Un balanced	Pha	ise A	Pha	ise B	Phase C	
Input Model		Active Power (MW)	Reactive Power (Mvar)	Active Power (MW)	Reactive Power (Mvar)	Active Power (MW)	Reactive Power (Mvar)
Default	Balanced	1.8	0.8717	1.8	0.8717	1.8	0.8717
Default	Unbalanced	1.275	0.79017	1.8	0.87178	2.375	0.78052

144

Basic Data	General Advanced				ОК
Load Flow	Input Mode	Defau	t		Cance
VDE/IEC Short-Circuit	Balanced/Unbalance	d Unbala	anced 👻		
Complete Short-Circuit	Operating Point	1		Actual Values	Figure
ANSI Short-Circuit	Active Power	5.45	MW	2.725 MW	Jump to
IEC 61363	Reactive Power	2.44247	Mvar	1.221235 Mvar	
DC Short-Circuit	Voltage	1.	p.u.		
RMS-Simulation	Scaling Factor	0.5	_	0.5	
EMT-Simulation	Adjusted by Loa	ad Scaling	Zone Scaling Factor:	1.	
Harmonics/Power Quality	Phase 1			Actual Values	
Optimal Power Flow	Active Power	1.275	MW	0.6375 MW	
State Estimation	Reactive Power	0.79017	Mvar	0.395085 Mvar	
Reliability		7			
Generation Adequacy	Phase 2	1.0	MM	Actual Values	
Description	- Active Power	0.07170	Mar	0.3 MW	
	Reactive Power	JU.87178	Mvar	0.43589 Mvar	
	Phase 3			Actual Values	
	Active Power	2.375	MW	1.1875 MW	
	Reactive Power	0.78052	Mvar	0.39026 Mvar	

When finished, the system will be tested the system 4 bus, as shown in

Figure A.31.

Figure A.31 Circuit tested the system 4 bus

A.2 To create the replica of the relay

A.2.1 Selecting the use relay.

Selecting the use, a relay which has a step is used, as shown in Figure A.32.

2) The maximum load flow analysis, then adjusts the flow starts, set higher than the maximum load current 2 x.

3) Analysis, find the minimum short-circuit current by making an analysis, three-phase short circuit current at the position the installation end of relay, and then adjusts the flow setting, work during the minimum short circuit current.

4) Analysis, find the maximum short-circuit current by making an analysis, three-phase short circuit current at the position the load end of the cable, and then adjusts the flow setting, work during the maximum short circuit current.

A.2.2 To create the replica of the relay

To create the replica, the relay will be built on the grounds of origin, transmission line, right-click the area of the source line and then choose New Devices=> Relay Model. As in the picture Dialog Box in Figure A.33 window appears, as shown in Figure A.34.

Figure A.33 To create the replica of the relay.

Relay Model - Grid\BUS_A\Cu	b_1\Relay Model.ElmRelay ?	×
Basic Data	Category: OK	
Current/Voltage Transformer	Name Relay Model Cance	
Max./Min. Fault Currents	Relay Type 💌 🔸	
Description	Application Main Protection Device Number	ts
	Location Reference Busbar Grid\BUS_A Remote End Grid\Line_A-B Grid\BUS_B (Parameter Name: cn_rembus) Out of Service Slot Definition:	
2752		

Figure A.34 Dialog box for data input relays

Then select the type of relay by clicking the Select Project Type-Relay => Type, as shown in Figure A.35 and then press OK.

MAI UNIVER

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Relay Model - Grid\BUS_A\Cu	b_1\Relay Model.E	ImRelay	? ×
Basic Data	Category:		ок
Current/Voltage Transformer	Name	Relay Model	Cancel
Max./Min. Fault Currents	Relay Type	★	
Description	Application	Select Global Type mber 1 🕂	Contents
		Select Project Type	
	Reference	New Project Type	
	Busbar	Paste Type	
	Remote End	Remove Type	
	Connected Brar	nch 🔸 Grid\Line_A-B	
	=		
	Out of Service	e	
	Slot Definition:	Net Flements	
	Re	I*,Elm*,Sta*,IntRef	
	2		
		,•	
	Slot Upda	ate	
1902	1	90.51 190	21

Figure A.35 Selecting the type of relay

Data Manager Window appears for the selected type of the relay. For a case study, this will select the Inverse Time Overcurrent relay from the Main Library of the Program by clicking on the Library-> Relays-Overcurrent Relays => General Electric-IAC >=> 60Hz => Series-Long-Time Inverse => IAC66B51A => as shown in Figure A.36.

) 🔁 🏷 🕺 🖻 🖬 🛍 🗹 🏶 🛞	ø	60° ¥	ž 🏤 📶 🛤	; 🖬		ОК
IÚÚÍ Generic IÚÚÍ Relays			Name	Туре	Object modified O	Cancel
Directional Relays		Ē	IAC66A51A	Toc + loc Ph & Earth	12/6/2006 9:53:25 P 🔺	Cancer
Distance Relays			IAC66A52A	Toc Ph & Earth	12/6/2006 9:53:25 P	Global Type
Covercurrent Relays			IAC66A53A	Toc Ph & Earth	12/6/2006 9:53:25 P	Giobal Type
DID ABB/Westinghouse			IAC66B51A	Toc + loc Ph & Earth	12/6/2006 9:53:25 P	Project Type
			IAC66B52A	Toc + loc Ph & Earth	12/6/2006 9:53:25 P	110/000 17/20
			IAC66B53A	Toc + loc Ph & Earth	12/6/2006 9:53:25 P	
			IAC66B54A	Toc + loc Ph & Earth	12/6/2006 9:53:25 P	
		F	IAC66B55A	Toc + loc Ph & Earth	12/6/2006 9:53:25 P	
TIT Extremely Inverse			IAC66B56A	Toc + loc Ph & Earth	12/6/2006 9:53:25 P	
1 TII Inverse			IAC66B57A	Toc + loc Ph & Earth	12/6/2006 9:53:25 P	
🕀 📶 Long Time Inverse			IAC66C51A	Toc + loc Ph & Earth	12/6/2006 9:53:25 P	
			IAC66C52A	Toc + loc Ph & Farth	12/6/2006 9:53:25 P	
Tery Inverse			LACCCCE2A	Tee Lee Die 8 Feetle	12/0/2000 0-52-25 0	

Figure A.36 Selecting the type of relay from the Library

Then it will be created by clicking the Create CT current transformer, as shown in Figure A.37.

Relay Model - Grid\BUS_A\Cu	b_1\Relay Model.E	ImRelay *	? ×
Basic Data	Category:	Overcurrent	ОК
Current/Voltage Transformer	Name	Relay Model	Canad
Max./Min. Fault Currents	Relay Type	▼ → z\Long Time Inverse\IAC66B51A	Caricer
Description	Application	Main Protection Device Number	Contents
	Location		
	Reference	▼ ◆ …	
	Busbar	➡ Grid\BUS_A	
	Remote End	➡ Grid\BUS_B	
	Connected Brar	nch → Grid\Line A-B	
	Out of Service	3	
	Slot Definition:		
		Net Elements	
	Ct 20 /2-10	Rel",Elm",Sta",IntRef	
	Meas 3ph/310	Meas 3ph/310	
	Toc	✓ Toc	
	loc	✓ loc	
	Toc Earth	V Toc Earth	
	Logic Ph		
	Logic Earth	✓ Logic Earth	
		▼	
	Slot Upda	te Create CT	

Figure A.37 To select of current transformer

Dialog box window appears for the input data, current transformer, then

select it by clicking on the current transformer. Type-Select Project Type => as shown in

Figure A.38.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Basic Data	Name Cu	rrent Transformer	OK
Additional Data	Туре	→	Canc
Description	Out of Serv	Select Global Type	
	Cubicle	Select Project Type	
	Location	New Project Type	
	Busbar	Paste Type	
	Branch	Remove Type	
	Orientation		
	Primary	Secondary	
	Тар	1. 💌 A Tap 1. 💌 A	
	Set	Connection Y -	
	Ratio: 1	A/1A Complete Ratio: 1A/1A	
	No. Phases	3 Phase Rotation a-b-c	
177 /			

Data Manager for window appears, select the type of current transformer for this case study will select type current transformer CT 120-1000/1A from the Main Library of the. Program by clicking on the Library => Relays => CTs-120 CT-1000/1A => shown in Figure A.39.

YA.

Please Select 'Current Transformer Type' - \Library\	Relays\CTs :			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	?	×
🗈 🕞 🏷 🕺 🖻 🖬 🛍 🗹 🎙	🖕 🛞 💁 6	w 💀 🏤 🖽 🛤 🖻	; 🖬		ОК	_
DID Library DID Characteristics DID Characteristics		Name	Туре	Object modified O	Cancel	
LILLI Composite Model Frames LILLI Conductors LILLI General Composite Folder		ф- СТ 120-1000/1А ф- СТ 120-1000/5А		12/6/2006 9:53:16 P	Global Typ	bes
DIDID Harmonics DIDID IEC Standard Cable DIDID Induction Machines					Project Typ	pes
IDI Induction Machines (old version) IDI Motor Driven Machines						
DDD PV Panels DDD PV Panels DDD Relays Thin CTs						
DID Fuses DID Generic						
E DDD Relays	-			<u> </u>		
Ln 1 2 object(s) of 2 1 object(s) se	lected					1

Figure A.39 To select the type of current transformer from the Library

Then set the tap flows of current transformer for a case study, this will set up the primary-side current tap kept at 1000 A. Secondary and therefore 1A as shown in Figure A.40.

Current Transformer - G	Grid\BUS_A\Cub	b_1\Current Transformer.StaCt *	? ×
Basic Data	Name	Current Transformer	ОК
Additional Data	Туре	▼ → \Library\Relays\CTs\CT 120-1000/1A	Cancel
Additional Data Description	Type Out of Set Cubicle Location Busbar Branch Orientation Primary Tap Se Ratio: No. Phases	✓ ↓ Library\Relays\CTs\CT 120-1000/1A rvice ✓ ✓ Grid\BUS_A ♦ Grid\Line_A-B -> Branch 1000. A 120. 300. 500. Connection Y 1000. Complete Ratio: 1000A/1A 3 Y Phase Rotation	Cancel

Figure A.40 To settings tap current of current transformer

After creating the replica, the relay and current transformer, it will set the stream starts. And the value of the multiplier value is set at the time of the relay for convenience. User can settings the time current curve (TCC) graph Curve with a set by the source, right-click the area of the line creating the replica relay. Then choose Create Time-Overcurrent Plot (TOP) as shown in Figure A.41. TOP window appears as shown in Figure A.42.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Figure A.42 Shows the TCC

Then double-click the graph area that resembles a curve Dialog box window appears. For a start, and the currents set up the multiplier relay timing type Inverse Overcurrent Relays. Dialog box without Shows that curves that make doubleclicking away it is a relay which type curves (number 51 is the Inverse Overcurrent Relays). And are used to protect phase or ground, as shown in Figure A.43.

DIgSILENT PowerFactory 15.1 - [Graphic : Study Cases\Study Ca	ase\Graphics Board\Time-Overcurrent Plot]		
File Edit View Insert Data Calculation Output To	ools Window Help		
🔄 😼 🏟 🟟 🗟 🕂 💈 💆 🗟		🖻 🛛 🗢 🤮 🎇 🚔 🖃 🖿	
P D 100% ▼ ∰ ₩ 월 ⊞ 21 100% ▼ ₩	🛍 🐟 🔒 🛄 💷 🐭 🔛 🗸	니 🗀 📫 🚦 📈 🛵 🖓 🛲 Default	-
	Time Overcurrent - Grid\BUS_A\Cub_1\Relay N Basic Data Tripping Times Blocking Description	Aodel\Toc.RelToc Jot ANSI Symbol: 51 Phase Current (1ph) 51 Tide:	? X OK Cancel Relay Calculate
Grid Time-Overcurrent Plot			

Figure A.43 Dialog box set a multiplier to adjust Inverse Overcurrent Relays type

If you double-click the graph area that resembles a straight-line Dialog box window appears. For setting the stream start relay-type Instantaneous Overcurrent. Dialog box without Relays will indicate whether the curves that make double-clicking away it is a relay which type curves (number 50 is the Instantaneous Overcurrent. Relays) and anti-phase or ground, as shown in Figure A.44.

Copyright[©] by Chiang Mai University All rights reserved

DIgSILENT PowerFactory 15.1 - [Graphic : Study Case\Study Case\Graphics Board\Time-Overcurrent Plot] File Edit View Insert Data Calculation Output Tools Window Help	
<u> </u>	
Image: Second	? × × OK ze Xancel Relay
Ln 1 2 object(s) of 2 1 object(s) selected	li

Figure A.44 Dialog box for setting Instantaneous Overcurrent Relays type

In case of need to use the Inverse Type Overcurrent relays only one type, make a click in the Relay as shown in the picture Dialog box window appears of relay as shown in Figure A.45.

	121		
Time Overcurrent - Grid\BU	JS_A\Cub_1\Relay M	odel\Toc.RelToc	? ×
Basic Data H Tripping Times N Blocking N Description T T C O C	EC Symbol: Measure Type: Name Type Out of Service Tripping Direction Characteristic Current Setting Time Dial	Ix ANSI Symbol: 51 Phase Current (1ph) Image: State	OK Cancel Relay Calculate

Figure A.45 To access the Dialog box window of the relay

Then double-click on the Ioc in the Slot Definition, as shown in Figure A.46 Dialog box window appears of Instantaneous Overcurrent Relays.

Relay Model - Grid\BUS_A\Cu	b_1\Relay Model.E	ImRelay	? ×
Basic Data	Category:	Overcurrent	ОК
Current/Voltage Transformer	Name	Relay Model	Cancel
Max./Min. Fault Currents	Relay Type	▼ → z\Long Time Inverse\IAC66B51A	
Description	Application	Main Protection Device Number 1	Contents
	Location Reference Busbar Remote End Connected Bran	 ✓ + → Grid\BUS_A → Grid\BUS_B → Grid\Line_A-B 	
	Out of Service	e	
	Slot Definition:		
		Net Elements Rel*,Elm*,Sta*,IntRef	
	Ct-3P/3xI0	✓ Current Transformer	
	Meas 3ph/310	Meas 3ph/310	
	Toc		
	Noc		
	Toc Earth	✓ Toc Earth	
	loc Earth	Y loc Earth	
	Logic Fath		
	Logic Earth		
	Slot Upda	ite	
		MAI	

Figure A.46 Dialog box window of the Instantaneous Overcurrent Relays type

Make click on Out of Service as shown in Figure A.47 then click then OK change the double-clicking working Definition Earth in Ioc Slot, click the Out of Service. Similarly, and for the consideration in this case is only a short-circuit style phase (Phase Fault). So, do double-click in Toc Earth Slot Definition. Make click on Out of Service as well.

Relay Model - Grid\BUS_A\Cu	ıb_1\Relay Model.	ElmRelay		? ×
Basic Data Current/Voltage Transformer Max./Min. Fault Currents Description	Category: Name Relay Type Application	Overcurrent Relay Model	C66B51A vice Number 1 +	OK Cancel Contents
	- Location			
Basic Data Tripping Times Blocking Description	IEC Symbol: Measure Type: Name Type I Out of Service Tripping Direction Pickup Current Total Time	ub_trkelay Model(loc.kelloc* l>> ANSI Symbol: 50 Phase Current (1ph) loc ie\60Hz\Long Time Inverse\L None 6. sec.A 6. p.u. 0.04 s	AC66B51A\loc 6000. pri.A	Cancel Relay
	Toc Earth loc Earth Logic Ph Logic Earth Slot Upc	Toc Earth Yoc Earth Yoc Earth Yoc Earth Yogic Ph Yogic Earth 4 A		

Figure A.47 Working out of Service with Instantaneous Overcurrent Relays type

Then adjusts the flow setting start relay, start relay without work is higher than the maximum load current coordinates. And relays must be active during the short circuit current and maximum flow. The minimum short circuit in the area of the scope of health. Parties of the relay, which maximum load current can be obtained from the analysis of power flow. By clicking on the symbols on the Main Tool Bar will appear the window Load Flow Calculation, **P** as shown in Figure A.48, select the set-up parameters that are used in the calculation. If the system is used as a load balancing load (Load Balanced), select the Calculation Method as an AC Load. Flow, Balanced, positive sequence, but if the system is used to load a load balancing (Unbalanced Load), select the Calculation Method as the Unbalanced Load Flow, AC, 3-phase (ABC), and then click the Execute button. To have the program calculate as configured.

Basic Options Calculation Method Execute Active Power Control Advanced Options Calculation Method Cose Advanced Options C Load Flow, unbalanced, 3phase (ABC) Consider Availability Factors Cancel Outputs Code Flow (linear) Consider Availability Factors Cancel Load/Generation Scaling Automatic Tap Adjust of Transformers Cancel Low Voltage Analysis Consider Reactive Power Limits Consider Reactive Power Limits Consider Reactive Power Limits Scaling Factor Temperature Dependency: Line/Cable Resistances C	Load Flow Calculation - Study (Cases\Study Case\Load Flow Calculation.ComLdf	? ×
	Load Flow Calculation - Study C Basic Options Active Power Control Advanced Options Iteration Control Outputs Load/Generation Scaling Low Voltage Analysis Advanced Simulation Options	Cases\Study Case\Load Flow Calculation.ComLdf Calculation Method AC Load Row, balanced, positive sequence AC Load Row, unbalanced, 3-phase (ABC) DC Load Row (linear) Consider Availability Factors Reactive Power Control Automatic Tap Adjust of Transformers Automatic Shunt Adjustment Consider Reactive Power Limits Consider Reactive Power Limits Scaling Factor Temperature Dependency: Line/Cable Resistances Cat 20?C Cat Maximum Operational Temperature Load Options Consider Voltage Dependency of Loads Feeder Load Scaling Consider Coincidence of Low-Voltage Loads Scaling Factor for Night Storage Heaters 100. %	? × Execute Close Cancel

Figure A.48 In the configuration window, Load Flow Calculation in order to analyze, find the maximum load current

Notice that the graph Curve if TCC during the relay, maximum load current, as shown in Figure A.49, adjust settings, stream relay starts up by double-clicking away. Graph line, then adjust the Current Setting to a higher value, as shown in Figure A.50.

Copyright[©] by Chiang Mai University All rights reserved DigSILENT Powerfactory 15.1 - [Graphic : Study Case\Study Ca

Figure A.49 The relay operates during the peak load currents

		1 24	
Time Overcurrent - Gri	d\BUS_A\Cub_1\Relay	Model\Toc.RelToc *	? ×
Basic Data Tripping Times Blocking Description	IEC Symbol: Measure Type: Name Type Out of Service Tripping Direction Characteristic Current Setting Time Dial	Ix ANSI Symbol: 51 Phase Current (1ph) Toc Toc ie\60Hz\Long Time Inverse\IAC66B51A\Toc None ▼ IAC Long Time Inverse GES7004B ▼ IAC Long Time Inverse GES7004B ▼ 1.8 sec.A 1.8 p.u. 540. pri.A 0.6 0.8 1. 1.2 1.4 1.6 1.8 ■	OK Cancel Relay Calculate

Figure A.50 Configuring the current setting starts

When setting is complete, try to analyze the flow of electro. Again, if relay is not working during high load current. Curve graphs will be shown in Figure A.51.

Figure A.51 Relay is not working in the current maximum load after setting the current starts

For the minimum short-circuit current can be obtained from the analysis of short circuit if the current position is a bus node connected load ends. The cable sent by bus or position. The node is attached to the load area. It is outside the scope Pro. Parties of the relay by right-clicking the node or the bus. Select the Calculate => Short-Circuit, as shown in Figure A.52.

as shown in Figure A.52. **Add Burnon State Stat**

4		<i>.</i>	icer i i i i i i i i i i i i i i i i i i i		ar r 2 - Ju	• 6	L L	culati F	a 🖻	a e	ut i	NE	86			R	0		1	1 🖂	1	-	5	د م	è.s	52	×	_ +	•	N.C.	- 173		
	~	N R 0-	- sa	ES ES	2 F	 		- 🔛	ه د	5 KO	8 29		= /	40 ***		1100 1100		**	00023 F				1 15	के तन्ह	125	+===	+==	=	-		Edit Data		
	ρ.	$\boldsymbol{\rho}$		211%	-	6	2 4	⊐ r¢≶) Al	€	9 EE	+	12	Έ	2	٢	Σ		<u>R</u>	22	Ξ¥	×	<u>ж</u> в		III	UKV	-	ABC	-		Edit and Browse Data	1000	
																															Jump to next page		
																															Show Detailed Graphic of Node		~ ~
																															Switch Off	₽Ţ	1 1
																															Isolate (with Earthing)		= 8]
											<u>s</u> .							1.1						9						ç	Define >	= = =	
										. 8	ŝ.,						. SING							SN8						- a	Add to >	201	ត 🔿
										_							_												· .	_	Show >		
																			Т	ansfor	mer 6 M	ŃA .									Path >		99 09 0 0 0 1
						- 2			È	i	Ē		-Lin	e A-B		È.	i	-	- "	12.47	(4.16 kV	Ē		Short-	Circu	üt				-	Calculate		\$) ≈ €
						. 8	٠Ř	ğ−-	-	┝╾┨	•	-				-	₽	•	\vdash	-(-	Q.)-	-		Multir	ole Fa	ults					Quitout Data	3	
						· 3		- ·		1											-	- 7		Short-	Circu	uit Trac					Evecute Script		Y 🖻
										1							1							Arc-El	ash A	nalvsi	s				Execute Table Report	22,	1 🕑 🖗
																														-	Feeder Tools	ι Ļά»	₩ ð 6
																								Contil	ngeno	cy Ana	ilysis .				C		・ チ ー
																								Contil	ngeno	:y Cor	npari	ion		_	Create Additional Result Box		r y -
																								Reliab	ility A	ssessi	ment				Create Text Laber		
																								Optim	nal Po	wer R	estora	tion			Disconnect All	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	判響目
																								Optim	nal RC	S Plac	emer	ıt			Cut	9 🕀 🤇	D (D)
																								Optim	nal Ma	anual	Resto	ration			Сору	🕀 🤁 י	‡ ≒
																								Voltar	ie san	table					Delete	+ -(> ₌	5 C
	. · .	÷.,	1			-							-											Backh	one (alcula	ation				Delete Graphical Object only		
₹				Grie	1/1	îme-	Overc	urrent	Plot	/														bucho	one e	- arcan				_	Shift to Layer >		
																								Load	Flow S	Sensiti	vities				Hide Result Boxes	1 - P	
																								Cable	Sizing	g					Define template		3 848 6
																								Motor	r Start	ing					Change Symbol		k A a
																															Push to Back		
Ī			;	× 1	E	80	-		>												Grid	Fre	eze	Orth	0	Snap		X=	198	266 \	Edit Graphic Object	PM FF 4 Bue	Test Feede
							0		_				-								ond	pre		ondi		anab			100			, cc + bus	11.25

Figure A.52 Analysis of short circuit, if the current position is a minimum bus node connected to the load line ends

Short-Circuit Calculation window appears, set the Calculate a Min. Short-Circuit Currents, which refers to the analysis if the minimum short-circuits current, then click on Execute As shown in the Figure A.53.

MAI UNIV

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Short-Circuit Calculatio	on - Study Cases\Study Case\Short-Circuit Calculation.ComShc *	? ×
Basic Options	Method IEC 60909 Published 2001	Execute
Advanced Options	Fault Type 3-Phase Short-Circuit	Close
Verification	Calculate Min. Short-Circuit Currents	Creat
	Max. Voltage Tolerance for LV-Systems 6 🗸	Cancei
	Short-Circuit Duration	Contents
	Break Time 0.1 s Used Break Time global 💌	
	Fault Clearing Time (Ith) 1. s	
	Fault Impedance	
	Enhanced Fault Impedance Definition	
	Resistance, Rf 0. Ohm	
	Reactance, Xf 0. Ohm	
	Fault Location	
	At User Selection	
	User Selection	
	Show Output	
	Command Study Cases\Study Case\Output of Results	
	Shows Fault Locations with Feeders	
	Short-Circuit at Branch/Line	
	Fault Distance from Length of line: 0.6096 km	
	Terminal i: etwork Data\Grid\BUS_A Absolute: 0. km G Terminal i: etwork Data\Grid\BUS_B	
	C Terminal J: etwork Data \Gind \BUS_B Relative: 0. %	
I		

Figure A.53 In the configuration window to Short-Circuit Calculation. For analysis find the maximum short circuit current

Notice that the graph Curve if TCC relay does not work in the minimum short-circuit current, as shown in Figure A.54, adjust settings, stream relay starts up by double. Click on the graph line, then make adjustments to higher Current Setting as shown in Figure A.55, when tuning is complete, try to do the analysis. Find the short circuit current again. If the relay is working on the maximum short circuit current. The graph will be shown in Figure A.56.

DIgSILENT PowerFactory 15.1 - [Graphic : Study Cases\Study Case\Graphics Board\Time-Overcurrent Plot] I File Edit View Insert Data Calculation Output Tools Window Help

Figure A.54 Relay will not working during short circuit current low Nr 11 4 / 1

Time Overcurrent - Grid\BUS_A\Cub_1\Relay Model\Toc.RelToc * ? X			
Basic Data Tripping Times Blocking Description	IEC Symbol: Measure Type: Name Type Out of Service Tripping Direction Characteristic Current Setting Time Dial	Ix ANSI Symbol: 51 Phase Current (1ph) Toc Toc ie\60Hz\Long Time Inverse\IAC66B51A\Toc None ▼ IAC Long Time Inverse GES7004B ▼ I.2 sec.A 1.2 p.u. 360. pri.A 0.6 0.8 1.2 1.2 1.2 I.2 Image: Sec.A 1.2 p.u. 360. pri.A	OK Cancel Relay Calculate

Figure A.55 Setting the current starts

Figure A.56 The relay will be work during the relay of current low, after setting the current setting starts

When setting relay in the circuit minimum, analyze, find the short circuit current Max. Maximum flow was mostly short circuit can be obtained from the. Short circuit current for transmission line position area to create a source replica relay to remove them. By right-clicking the line creating the replica relay to remove them. Select the Calculate => Short-Circuit, as shown in Figure A.57.

ลิขสิทธิมหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

Figure A.57 Analysis area, find the maximum short-circuit current source of transmission line

Short-Circuit Calculation window appears, set the Calculate a Max. Short-Circuit Currents, which refers to the analysis, finding the maximum short-circuit current assigned relative 0 to 100%, which means for Short circuit current at the beginning of the line area, and then click Execute, as shown in Figure A.58.

10

Short-Circuit Calculation	n - Study Cases\Study Case\Short-Circuit Calculation.ComShc *	? ×
Basic Options	Method IEC 60909 Published 2001	Execute
Advanced Options	Fault Type 3-Phase Short-Circuit	Close
Verification	Calculate Max. Short-Circuit Currents	Cancel
	Max. Voltage Tolerance for LV-Systems 6 💌 %	
	Short-Circuit Duration	Contents
	Break Time 0.1 s Used Break Time global 💌	
	Fault Clearing Time (Ith) 1. s	
	Fault Impedance	
	Resistance, Rf 0. Ohm	
	Reactance, Xf 0. Ohm	
	Fault Location	
	At User Selection	
	User Selection Grid\Line_A-B	
	Show Output	
	Command Study Cases\Study Case\Output of Results	
	Shows Fault Locations with Feeders	
	Short-Circuit at Branch/Line	
	Fault Distance from Length of line: 0.6096 km	
	Terminal i: etwork Data\Grid\BUS_A Absolute: 0. km	
	C Terminal j: etwork Data \Gnd \BUS_B Relative: 0. %	

Figure A.58 In the configuration window to Short-Circuit Calculation.For analysis find the maximum short circuit current

Notice that the graph TCC Curve if the relay works in the maximum circuit shown in Figure A.59 then it is not necessary to adjust the flow setting start relay. If relay is not working at the maximum short-circuit current range, adjust the set flow relay starts up. But it must not exceed the minimum short-circuit current range.

Figure A.59 Relay will be work the during the short circuit current max

A case study for this test system bus 4, adjust the relay as shown in Table A.9.

Table A.7 Data of setting the relay				
Relay Name	Relay Type	Curve Name	Current Setting (sec.A)	^e Time Dial
Relay Model	IAC66B51A	Toc	0.5	5

Table A.9 Data of setting the relay

A.3 Modelling of contingency analysis

A.3.1 Contingency analysis

In general terms, an emergency analysis can be defined an evaluation of the electrical systems and security levels as shown in Figure A.60.

Contingency definition is selected by passing the condition, according to the following as creation of contingencies and network component as shown in Figure A.61.

Image: Second and the second and th	0 × _ = = ×
Image: Second Contingency Definitiony(1)(Contingency Definition ComNin ? Image: Second Contingency Definition	
Contingency Definition	•□○司 ☆ ^ •
Image: Second Part Part Part Part Part Part Part Part	₽ ■₽₽₽ ≈
Outage Level Contents IF in Cases Contents IF in Cases Contents In A cases Add In A cases of mutually coupled lines/cables Add Network Components Sign of the system IF Lines/cables If the system If Unes/cables If the system IF Lines/cables If Series Reactors IF Generators Sign of the system If Generators Sign of the system	5 () = @• @ & @ () © @ A
Network Components Create Cases for Whole system ・ ビロールscholles マ Series Capacitors マ Transformen マ Series Reactors ロ Generators ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	∱©⊈®
Image: Construction of the second	** ∂ ¢ ↑ ↓ + ₪
	■ ■ ■ 2 ② ② ↓ =
PoweFactory 151.7 ProveFactory 1	□ A → 4 ∩ ₪

Figure A.61 Contingency definition

After, click on the symbols on the Main Tool Bar will appear the window Contingency definition, as shown in Figure A.61, select the set-up parameters that are used in the calculation. If the system is used as N-1 Cases, select the Calculation Method as Generate Contingency Cases for Analysis, Create Cases for whole system, Lines/Cables, and then click the Execute button. To have the program calculate as configured.

2) Contingency analysis

A contingency analysis can be defined as the evaluation of the. The level of security of the power system .Contingency analysis generally involves Analysis of abnormal system condition is a major problem both in planning by calculation method and limits for recording as shown in Figure A.62.

Figure A.62 Contingency analysis

After, click on the symbols is on the Main Tool Bar will appear the window Contingency analysis, as shown in Figure A.62, select the set-up parameters that are used in the calculation. If the system is used calculation method as alternating current (AC) Load Flow, direct current (DC) Load Flow, and DC Load Flow+ AC Load Flow for Critical Cases, select the Calculation Method as AC Load Flow, select the Show button for add cases, and then click the Execute button. To have the program calculate max loading of line as shown in Figure A.63.

Figure A.63 The program calculate max loading of line

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

APPENDICES B

DIgSILENT Programming Language (DPL) function

2102,273

B.1 DPL Command (Script)

B.1.1 Script DPL of contingency analysis

- 1. object o_con,o_Lines,o_conN;
- 2. set set_Lines;
- 3. int iCol,iRow;
- 4. double a,b,min,max,dValue;
- 5. string sName;
- 6. EchoOff ();
- 7. ClearOutput();
- 8. xlStart();

9. xlSetVisible(1);

- 10. xlNewWorkbook();
- 11. o_conN=GetCaseObject('ComNmink');
 - 12. o_con=GetCaseObject('ComSimoutage');
 - 13. o_con:loadmax=LoadingMax;
 - 14. o_con:vlmin=LowerVoltage;
 - 15. o_con:vlmax=UpperVoltage;
 - 16. o_con:vmax_step=StepVoltage;

- 17. o_con.Execute();
- 18. set_Lines = SEL.GetAll('ElmLne');
- 19. set_Lines.SortToVar(0,'c:maxLoading');
- 20. iRow=5;
- 21. iCol=6;
- 22. sName='Name of Line';

23. xlSetValue(iCol,iRow,sName);

- 24. iRow=5;
- 25. iCol=7;
- 26. sName='Overloading (N-1)(%)';
- 27. xlSetValue(iCol,iRow,sName);
- 28. iRow=6;
- 29. for(o_Lines=set_Lines.First();o_Lines;o_Lines=set_Lines.Next()){

40

2102,273

%6f

- 30. printf('Contingency of %s%%',o_Lines:loc_name,o_Lines:c:maxLoading);
- 31. iCol=6;
 - 32. sName=o_Lines:loc_name;
 - 33. xlSetValue(iCol,iRow,sName);
 - 34. iCol=iCol+1;
 - 35. dValue=o_Lines:c:maxLoading;
 - 36. xlSetValue(iCol,iRow,dValue);
 - 37. iRow=iRow+1;

- 38. }
- 39. iRow=5;
- 40. iCol=8;
- 41. sName='I (kA)';
- 42. xlSetValue(iCol,iRow,sName);
- 43. iRow=6;
- 44. for(o_Lines=set_Lines.First();o_Lines;o_Lines=set_Lines.Next()){

ามยนต

- 45. printf('Contingency of %s %6f %%',o_Lines:loc_name,o_Lines:c:Imax);
- 46. dValue=o_Lines:c:Imax;
- 47. xlSetValue(iCol,iRow,dValue);
- 48. iRow=iRow+1;
- 49.
- 50. xlTerminate();
- 51. EchoOn ();

52. TD_zone_1.Execute();
53. TD_zone_2.Execute();
54. TD_zone_3.Execute();

- 55. TD_zone_4.Execute();
- 56. TD_zone_5.Execute();
- 57. TD_zone_6.Execute();
- 58. TD_zone_7.Execute();

- 59. TD_zone_8.Execute();
- 60. TD_zone_9.Execute();

B.1.2 Script DPL of coordination time (3 phase and 1 phase fault)

- **♦** TD_zone_1, 2, 3, 4, 5, 6, 7, 8, and 9.
- 1. set SCom, Sbus, srelay, SRelay, SRelayCont;
- object
 OCom,Obus,OSC,ORelayMain,ORelay_Br,ORelay_Bus,ORelay_BB;
- 3. object OToc_set,Obusa,Obusb,OLdf;
- 4. double Fault,DRuT,DRuT_old;
- 5. int I, IRelay, INRelay, Name, Ih;
- 6. string Value;
- 7. ClearOutput();
- 8. !!!!!!Point short circuit at the bus!!!!!!!
- 9. Sbus= SetBus_Zone1.GetAll('ElmTerm');
- 10. I = Sbus.Count();

11. if (I=0) { UN1910101010101010101

12. Info('No busbars or terminals selected : nothing to do');

13. exit(); rights reserved

- 14. }
- 15. !!!!!!!!!Max Short circuit!!!!!!!!!!
- 16. Obus= Sbus.First();
- 17. OSC = GetCaseObject('ComShc');

- 18. EchoOff();
- 19. OSC:iopt_shc = '3psc';
- 20. OSC:iopt_mde=1;
- 21. OSC:iopt_cur = 0;
- 22. OSC:iopt_allbus = 0;
- 23. OSC:shcobj = Obus ;
- 24. OSC.Execute();
- 25. Fault = Obus:m:Ikss;
- 26. printf('Fault current at end of Protection Zone = %f kA',Fault);

20

21024 23

- 27. 111111111111111111Relay!!!!!!!!!!!!!!!
- 28. SRelay=SetRelays_Zone.GetAll('ElmRelay');
- 29. IRelay = SRelay.Count();
- 30. OCom=GetActiveProject();
- 31. SCom=OCom.GetContents('TD_zone');
- 32. OCom=SCom.FirstFilt('TD_zone');
- 33. for (INRelay=0;INRelay<IRelay;INRelay=INRelay+1){
- 34. OCom.GetVal(Value,'IntExpr',INRelay);
- 35. sscanf(Value,'%d',Name);
- 36. printf('% f',Name);
- 37. }
- 38. I=0;
- 39. for (INRelay=0;INRelay<IRelay;INRelay=INRelay+1){

40.	OCom.GetVal(Value,'IntName',INRelay);
41.	ORelayMain = SRelay.FirstFilt(Value);
42.	<pre>printf('%s',ORelayMain:loc_name);</pre>
43.	!!!!!!!!!!!!!!!Relay trip time!!!!!!!!!!!!
44.	SRelayCont = ORelayMain.GetContents();
45.	ORelay_Br = ORelayMain:cbranch ;
46.	ORelay_BB = ORelayMain:cn_bus ;
47.	Ih = ORelay_Br.VarExists ('r:bus1:r:cpRelays:0:c:yout');
48.	if(lh = 1)
49.	
50.	DRuT = ORelay_Br:r:bus1:r:cpRelays:0:c:yout;
51.	EL MARAS
52.	if(Ih = 0)
53.	{ AIAI UNIVERS
54.	DRuT = ORelay_Br:r:bus2:r:cpRelays:0:c:yout;
55.	
56.	if(Ih=1){
57.	Obusa=ORelay_Br.GetNode(0);
58.	Obusb=ORelay_Br.GetNode(1);
59.	if(ORelay_BB=Obusa){
60.	DRuT = ORelay_Br:r:bus1:r:cpRelays:0:c:yout;
61.	}

- 62. if(ORelay_BB=Obusb){
- 63. DRuT = ORelay_Br:r:bus2:r:cpRelays:0:c:yout ;
- 64. }
- 65. }
- 66. printf('%s','Operating Time of Relay');
- 67. printf('%f s',DRuT) ;
- 68. printf('%s',' ');
- 69. if(I>0){
- 70. if(DRuT>DRuT_old*0.9){
- 71. while(DRuT>DRuT_old*0.9){
- 72. if(I=2){
- 73. break;

}

- 74.
- 75. OToc_set = SRelayCont.FirstFilt('51PL');
- 76. OToc_set:Tpset = OToc_set:Tpset 0.01;
 77. OLdf = GetCaseObject('ComLdf');
 78. OLdf:iopt_net = 0;

2152,273

- 79. ResetCalculation();
- 80. EchoOff();
- 81. OLdf.Execute();
- 82. OSC.Execute();

- 84. Ih = ORelay_Br.VarExists ('r:bus1:r:cpRelays:0:c:yout');
- 85. if(Ih = 1)
- 86. {
- 87. DRuT = ORelay_Br:r:bus1:r:cpRelays:0:c:yout ;
- 88. }
- 89. if(Ih = 0)
- 90. {
- 91. DRuT = ORelay_Br:r:bus2:r:cpRelays:0:c:yout ;

งมยนต

- 92.
- 93. if(Ih=1){

} (a

- 94. Obusa=ORelay_Br.GetNode(0);
- 95. Obusb=ORelay_Br.GetNode(1);
- 96. if(ORelay_BB=Obusa){
- 97. DRuT = ORelay_Br:r:bus1:r:cpRelays:0:c:yout ;
- 98.
- 99. if(ORelay_BB=Obusb){
- 100. DRuT = ORelay_Br:r:bus2:r:cpRelays:0:c:yout ;
- 101. }
- 102. }
- 103. printf('%s','New Operating Time of Relay');
- 104. printf('%f s',DRuT);
- 105. printf('%s','>>>>>>');

- 107. break;
- 108. }
- 109. }
- 110. }
- 111. }
- 112. DRuT_old = DRuT;
- 113. I=I+1;
- 114. }
- 115. ResetCalculation();

ANAI UNI ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

2182.23

CURRICULUM VITAE

Author's Name	Mr. Aksacksy Ph	nilavong
Date/ Year of Birth	18 January 1987	
Place of Birth	Vientiane capital	, Lao PDR
Education	2004 to 2008	Studied in National University of Lao at
	20-	Faculty of Engineering for a Higher Diploma's
	5/0	degree of Electrical Engineering.
	2008 to 2010	Studied in National University of Lao at
	1-13	Faculty of Engineering for a Bachelor's degree
SA	Z	of Electrical Engineering.
1500	2015 to 2017	Studied at Chiang Mai University (CMU),
	1	Thailand, under the Technical and Academic
13	15	Collaboration Project between Electricity
	Mr.	Generating Authority of Thailand (EGAT),
	MA	Electricité Du Laos (EDL), and Electricité Du
	AI	Laos -Generation Public Company, and
		between Electricité Du Laos -Generation Public
âชสิท	າຮົ່ນหາງ	Company and Chiang Mai University,
Convei	abt [©] by (respectively.
Employment History 2012 to 2015		Word at Safety Office, Electricité Du Laos
AII	right	(EDL). Teserved

