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CHAPTER 2 

Relevant Background 

This chapter provides relevant backgrounds which form the bases for the proposed 

works in Chapter 3. First, we describe some notations in Section 2.1 which will also be 

used later throughout this thesis. In order to use hyperellipsoids in the hypothesis set of 

learning machines, we explain the representation of an ellipsoid and the formulation of 

the minimum volume covering ellipsoid (MVCE) in Section 2.2 and 2.3. Section 2.4 is 

particularly devoted to support vector based classifiers which use hyperplanes in their 

hypothesis set, while Section 2.5 focuses on the ones which use hyperspheres. 

2.1 Notation 

In this thesis, all column vectors are denoted using boldfaced lowercase letters, while 

matrices are in boldfaced capital letters. Given m training examples, 1x , 2x , …, 

n
m ∈x  , we also define the corresponding matrix n m×∈X   as 1 2[ ]m=X x x x . 

e  is a column vector of ones whose dimension is determined from the context. We 

always denote iα  as the i-th Lagrange multiplier. m∈α   is the column vector whose 

element consists of iα  for i = 1, 2, …, m. We also denote m m×∈A   to represent the 

diagonal matrix whose main diagonal is composed of the elements of α , i.e. 
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In some cases, we also separate training data into classes. For p classes, we use 1I , 2I , 

…, pI  to represent class 1 to class p, respectively. The label of each class is iy  for i = 1, 

2, …, p. The data in each class are also written in the matrix form iX  where each 

column of iX  represents one example in class i.  
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2.2 Representations of an Ellipsoid 

A general representation of an ellipsoid in n-dimensional space whose center is at point 

d and its orientation is defined by a positive definite matrix F can be defined as follows. 

Definition 2.1: Given n
++∈F S , and n∈d  , an arbitrarily oriented ellipsoid ,EF d  in n  

is represented as  

 , { : ( ) ( ) 1}n TE = ∈ − − ≤F d x x d F x d . (2.1) 

Alternatively, suppose T=F E E  and 1−=d E c , ones can rewrite ,EF d  with another 

representation, 

 , { : 1}n= ∈ − ≤E c x Ex cE .  (2.2) 

According to [71], the volume of an ellipsoid can be represented in terms of the volume 

of the unit ball in n . Suppose the volume of the unit ball is nV  and let Γ  be the 

gamma function, the volume of ,EF d  is equal to 1/2 ( )detnV −F  or,  in term of E, 

1det( ) nV −E . For the exact formulation of the unit ball’s volume, the reader is kindly 

referred to [71]. However, for this thesis, it suffices to consider the volume of the unit 

ball as a scaling factor, since we are not interested in computing the actual volume of 

the ellipsoid. 

2.3 Minimum Volume Covering Ellipsoid 

Given a set of m examples 1x , 2x , …, mx  where n
i ∈x  . A fundamental question is to 

find the minimal ellipsoid covering all the given points as illustrated in Figure 2.1.  

Although there are many possible criteria in defining an ellipsoid to be minimal, such as 

using the trace or determinant of the ellipsoid’s matrix E, this thesis specifically focuses 

on using the determinant since it represents the volume of the ellipsoid, and using 

 
Figure 2.1 Minimal ellipsoid covering a set of examples 
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volumes is rather intuitive to control the size of an ellipsoid.  

Since, for a given set of examples, it is possible that examples are not adequately 

distributed in all dimensions of n . We consider the following assumption prior to the 

construction of the minimum volume covering ellipsoid in order to avoid the so-called 

degenerate case where a particular dimension has no example causing the covering 

ellipsoid to have zero volume or become deflated in that dimension. 

Assumption 2.1: The affine hull of the m given examples 1 2, ,..., span n
mx x x  . 

Definition 2.2: Given 1{ }m
i iS == x , the minimum volume covering ellipsoid 

,

*
E c

E  is the 

smallest ellipsoid with the minimum volume to cover S. It is the solution to the following 

optimization problem, 

 

1

,
min 2 log det( )

 s.t. 1, 1, ,
0.

i i m

−

− ≤ = …
E c

E

Ex c
E 

  (2.3) 

The dual formulation of (2.3) is 

  log det( )

 s.t.

m x

0

a
T T

T T
T− −

≥
α

Xαα XXAX e α
e α

α
 (2.4) 

which can be derived using the standard Lagrange multiplier technique. That is from 

(2.3), the Lagrangian is 

 ( )2

1
( , , ) 2 log det( ) 1

m

i i
i

L α
=

= − + − −∑E c α E Ex c  (2.5) 

where the Lagrange multiplier 0iα ≥  for i = 1, 2, …, m. 

Since 

 
2

2( )
∂ −

= − −
∂

Ex c
Ex c

c
 (2.6) 

 
2

( ) ( )T T∂ −
= − + −

∂
Ex c

Ex c x x Ex c
E

 (2.7) 

 1log det( ) −∂
=

∂
E E

E
,  (2.8) 
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the first-order derivatives are 

 
1 1

2
m m

i i i
i i

L α α
= =

∂  
= − ∂  

∑ ∑c E x
c

 (2.9) 

 1

1
2 ( ) ( )

m
T T

i i i i i
i

L α−

=

∂  = − + − + − ∂ ∑E Ex c x x Ex c
E

. (2.10) 

In this thesis, we prefer using matrix representation when applicable for conciseness. 

Therefore, it is worth noting some useful relations for later uses. 
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=

=∑ x XAXx   (2.11) 

From (2.9),  the optimal c of the MVCE is  

 1

1

m

i i
i
m T

i
i

α

α

=

=

= =
∑

∑

E x
EXαc
e α

. (2.12) 

With (2.10) and (2.12), under the first-order necessary condition of optimality, (2.10) 

can be rewritten as 

 1 1 ( )
2

− = +E ES SE  (2.13) 

where 

 
T T

T
T= −

Xαα XS XAX
e α

. (2.14) 

According to Zhang & Gao [72], for n
++∈S S , the unique solution to (2.13) is  

 
1
2

−
=E S . (2.15) 

At optimality, it can be shown that 2

1

m

i i
i

nα
=

− =∑ Ex c  (See Lemma A.1 in Appendix A), 

Thus, the Lagrangian (2.5) can be reduced to 

 ( ) log det( ) .
T T

T T
TL n= − − +

Xαα Xα XAX e α
e α

 (2.16) 
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As a result, we reach the dual formulation (2.4). 

The dual formulation of MVCE can be more succinct when we also try to minimize the 

Mahalanobis distance in the primal problem (2.3). That is, suppose we rewrite (2.3) to 

 

2 1

, ,
min 2 log det( )

 s.t. , 1, ,
0.

r

i

nr

r i m

−+

− ≤ = …
E c

E

Ex c
E 

 (2.17) 

Then, instead of the Lagrangian in (2.5) , the Lagrangian of  (2.17) is  

 ( )22 2

1
( , , , ) 2 log det( )

m

i i
i

L r nr rα
=

= − + − −∑E c α E Ex c .   (2.18) 

The first order derivative of the Lagrangian (2.18) with respect to r is 

 
1

2 2 ( )
m

T
i

i

L r n r n
r

α
=

∂  
= − = − ∂  

∑ e α . (2.19) 

Hence, under the first order optimality condition, either 0r =  or T n=e α . However, r 

cannot be zero due to the positive definiteness of E imposed by the log-determinant 

term in the objective function. Therefore, from (2.19), we have the constraint T n=e α . 

Since L∂
∂c

 and L∂
∂E

of (2.18) are also equal to (2.9) and (2.10), respectively, the 

Lagrangian (2.18) is reduced to 

 ( ) log det( ).
T T

T
TL = −

Xαα Xα XAX
e α

 (2.20) 

Thus, the corresponding dual formulation of (2.17) becomes   

 

 log det( )

 s.t.
0.

max
T T

T
T

T n

−

=
≥

α

Xαα XXAX
e α

e α
α

 (2.21) 

It can be seen that the dual problem (2.4) and (2.21) differ only on the constraint 
T n=e α  . 
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It is also possible to further succinctly rewrite the objective function (2.21). Since 
T T

T
T−

Xαα XXAX
e α

 is a Schur complement of  
T

T T T

 
 
 

XAX Xα
α X e α

, and by using the fact that 

=α Ae  and T=A A , then we have 

 
T T

T T
TT T T T T T T

       = = =           

XXAX Xα XAX XAe
A X e XAX

eα X e α e A X e Ae
   (2.22) 

where T

 
=  
 

X
X

e
  . 

As a result, instead of solving (2.21) for a given X, we can lift all examples ix  to  

[ ]1 T
i i=x x  for all i , and solve 

 

 log det( )

 s.t.
0.

max T

T n=
≥

α
XAX

e α
α

 

 (2.23) 

2.4 Support Vector based Classifiers 

Support vector classifiers have a distinctive feature in that no assumption are made on 

the distribution of the data. They are normally formulated as a convex optimization 

problem and then transformed into their corresponding dual form to implement the 

kernel trick [15]. The reason why they are collectively called support vector based 

classifiers is that all of them embrace the notion of “support vectors”. We primarily 

focus on linear SVM and linear TWSVM in this section. Support vector based 

classifiers which are based on hypersurfaces are introduced in Section 2.5 

2.4.1 Support vector machine 

Given a set of tuples of training data 1{( , )}m
i i iy =x  where n

i ∈x  and 

{ 1, 1}iy ∈ + − , the pre-defined set of feasible decision functions that SVM 

implements is  

 0T b+ =w x . (2.24) 
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The goal of SVM is to minimize Tw w  which is reciprocal to the margin 

between two convex hulls [73] of two classes, 1iy =  and  1iy = − . 

 , , 1

1min
2

s.t. ( ,   ) 1 0,        1,..., 

T
ib i

T
i i i i

m

C

y b i m
ξ

ξ ξ

ξ
=

+

+ − ≥ =≥

∑w
w w

w x
 (2.25) 

In (2.25), iξ  is a slack variable representing the empirical loss from the 

misclassification of example ix . Hence, the term 
1

i
i

m

ξ
=
∑ corresponds to 

empirical risk which is also another objective of minimization. The scalar 

0C ≥  is the hyperparameter controlling the trade-off between the 

misclassification and the margin’s width.  

By Karush–Kuhn–Tucker (KKT) conditions, Lagrange’s duality can be 

obtained as in (2.26), 
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1
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2
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0
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.
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T
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y i m

C

α α α

α

α

= = =

=

−

=

≤

=

≤

∑ ∑∑

∑

α
x x

 (2.26) 

Solving this optimization yields the Lagrange’s multiplier m∈α  where the 

optimal weight vector w  can be found by 

 
1

m

i i i
i

yα
=

=∑w x  (2.27) 

Therefore, w is a linear combination of the training examples. Generally, α  

is sparse i.e. most of its elements are zero. Consequently, only the non-zero 

ones contribute to w . The training examples ix  whose iα  are non-zero are 

so-called “support vectors”, and they construct the optimal hyperplane 

separating two classes of examples. 

The optimal value of b in (2.24) which defines the optimal decision 

hyperplane can be obtained by the complementary slackness condition, 

( ) 1T
i iy b+ =w x , using any examples whose iα  satisfies  0 < iα  < C. It can 
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be observed that the hyperparameter C defines the so-called “box 

constraints” on the Lagrange multipliers α  in the dual problem (2.26). Since 

α  defines w in (2.27), it implies that C also controls the size of the 

hypothesis set of SVM. A sketch of SVM’s decision boundary can be 

depicted in Figure 2.2 where ○ and ● represent the examples from two 

different classes. The solid line and the two dash lines show the decision 

boundary and its maximum margin, respectively. 

2.4.2 Twin support vector machine 

The idea of TWSVM entirely differs from SVM, although it also has the 

notion of support vectors. Therefore, some authors refer the family of 

TWSVM-like classifiers as the nonparallel plane classifiers [27] or the best 

fitting hyperplanes [28]. In fact, each hyperplane of TWSVM can be viewed 

as a data descriptor for one class of data. For binary classification, TWSVM 

solves two quadratic programming problems (QPP) where each problem 

tries to find the optimal hyperplane closest to one class but far from the 

other class with the distance at least one. Suppose the training data 

1{( , )}m
i i iy =x  are separated into two classes, class 1I  and 2I , according to 

their labels, with 1 1| |m = I  and 2 2| |m = I .  Two QPPs of TWSVM can be 

formulated as shown in (2.28) and (2.29), 
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 (2.28) 

 
Figure 2.2 Rough sketch of SVM’s decision boundary. 
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 (2.29) 

where 1C  and 2C  are the hyperparameters. 1
1

m∈ξ   and  2
2

m∈ξ   are the 

vectors of slack variables. 1 1 1( 0) Tf b == +x w x  and 22 2( 0) Tf b == +x w x   

are the hyperplanes for class 1I  and 2I , respectively, with 1 2, n∈w w   and 

1 2,b b ∈ . The examples in class 1I  are supposed to be closest to the 

hyperplane 1( )f x  while the examples in class 2I  are closest to 2 ( )f x  with 

the distance more than 1.  

Suppose 1X  and 2X  are the matrices composed of the column vectors of the 

training data from class 1I  and 2I , respectively. The matrix forms of (2.28) 

and (2.29) thus become 

 1 2

2
1 1 1 1 1 2 2, ,

2 1 2 1 2 2 2

1min
2

s ,     .t  . ( ) 0

T T

b

T

b C

b
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− + ≥ ≥−
1w ξ

X w e

X w e e ξ

ξ

ξ

e 
 (2.30) 

 2 1

2
2 2 2 2 2 1 1, ,

111 2 1 2 1

1mi

,       

n
2

s  .t. 0

T T

b

T

b C

b

+

−

+

+ ≥ ≥
2w ξ

X w e

X

e ξ

w e e ξ ξ

 
 (2.31) 

where 1e  and 2e  are the vectors of ones with appropriate dimensions. 

The dual formulations of (2.30) and (2.31) are, respectively, as follows, 
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2 2 1 1 2

1 2

1max ( )
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−−

≤ ≤
α

X X Xe α α α

0 α
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e

   
 (2.32) 

 1 1 2 1
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T T T T
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α

X X Xe α α α

0 α
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where 1X  and 2X  are the augmented matrices with 1 1 1[ , ]T T=X X e  and 

2 2 2[ , ]T T=X X e . Since 1 1
TX X   and 2 2

TX X   are generally singular, it is 

important to add a small identity matrix to avoid the ill-conditioned 

situation, i.e. we replace 1 1
TX X   with 1 1

T +X IX  ò  and 2 2
TX X   with 2 2

T +X IX  ò  

where I  is an identity matrix of appropriate dimensions and 0>ò  is a 

rather small scalar. 

After solving (2.32), the optimal hyperplane for class 1I  is obtained from  

 1
1 1 1 1 2[ , ] ( )T T Tb −= − +X X I αXw   ò . (2.34) 

Similarly, solving (2.33) and computing 

 2 2 2
1

2 1[ , ] ( )T T Tb −= − +X X I αXw   ò  (2.35) 

yield the optimal hyperplane for class 2I . 

The classification rule for a testing example x is simply 

 
1,2

| |Class arg min
T
k k

k
k

bi
=

+
=

w x
w

 (2.36) 

which is the shortest distance from a test example to the closest hyperplane. 

Each minimization of TWSVM is quite different from SVM in that the 

number of its constraints is equal to the number of examples in just one 

class as can be seen in (2.32) and (2.33). Thus, TWSVM requires solving 

smaller QPPs and is claimed to run approximately four time faster than 

SVM [10]. 

   

     (a) Separable data                                 (b) Cross-plane data 

Figure 2.3 Rough sketch of TWSVM’s decision boundary 
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Two naïve illustrations of the TWSVM’s hyperplanes are shown in Figure 

2.3. Figure 2.3(a) and 2.3(b) display two different sets of examples which 

are a simple separable case and a cross-plane case [24] of data. The 

examples from class 1I  and 2I  are denoted using ○ and ●, respectively. 

The dash lines and dot-dash lines illustrate the descriptive hyperplanes for 

class 1I  and 2I , and the solid line shows the decision boundary. According 

to Figure 2.3(b), it can be easily observed that linear TWSVM has a natural 

ability over linear SVM in classifying the cross-plane dataset. 

2.5 Support Vector based Classifiers with Hypersurface 

In the previous section, we introduce the supervised classifiers which construct the 

decision boundary using hyperplanes. To create more sophisticated decision rules while 

still not being overly-complicated, a hypersurface is considered one step further for the 

candidacy. Therefore, in this section, support vector based classifiers based on 

hyperspheres which include SVDD and THSVM are introduced. 

2.5.1 Support vector data description 

The idea of SVDD is to find the best hypersphere which covers a given set 

of examples. The area covered by the hypersphere can be interpreted as the 

domain which best describes the data. However, finding the hypersphere 

which exactly fits the entire set of examples is not a good option since some 

examples are possibly mere outliers. Therefore, the formulation of SVDD 

also allows some errors in the training examples. Given a set of examples 

1{ }m
i i=x  without labels, the simplest form of SVDD is simply the minimum 

enclosing hypersphere whose radius is r and center is at c, formulated with 

soft margins. That is  

 

2

, , 1
2 2

min
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i i
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i m

ξ

ξ
ξ
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− ≤ +
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∑c ξ
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where C is the hyperparameter. r is the radius of the hypersphere to be 

minimized with the constraints to enclose all the examples with some 

tolerable errors defined using the slack variables iξ . 

Since SVDD uses the minimal hypersphere for data description, its solution 

is always a closed spherical boundary. Therefore, it is inherently suitable for 

one-class classification. The formulation of SVDD in (2.37) is the initial 

form of SVDD [12], and it is later extended to incorporate examples with 

labels as either targets or outliers [31]. In fact, the later version of SVDD is 

called SVDD with negative examples (nSVDD). Hence, it becomes a binary 

classifier where one class has abundant examples while examples in the 

other class, or also called outliers/novelties or negative examples, are so 

scarce or hard to be collected. 

Given a set of m examples, 1{ }m
i i=x , where each example is labeled with 

1iy =  for the target class and 1iy = −  for the outlier class, the formulation 

of nSVDD is to find a hypersphere whose radius is 0r >  and center is at 
n∈c   is as follows. 
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,
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i i i i
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y y r
i m

ξ

ξ
ξ
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+

− ≤ +

≥ =

∑c ξ

x c
 (2.38) 

The use of slack variables m∈ξ   is again to form the so-called “soft 

margins”. The hyperparameter C > 0 is also to control the trade-off between 

the volume of the hypersphere and the misclassification.  

The dual formulation of (2.38) can be obtained as 

 

1 1 1
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m m m
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=
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=
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 (2.39) 



 

30 
 

by following the method of Lagrange multipliers where m∈α   is the 

vector of Lagrange multipliers. The support vectors of nSVDD are also 

defined by any example whose value of Lagrange multiplier is in the set 

(0, ]C
m

. 

For a test example n∈x  , the classification rule of nSVDD is 

 
1

( ) sign 2
m

T T
i i i

i
f y hα

=

 
= − + 

 
∑x x x x x  (2.40) 

where 2

1 1

m m
T

i j i j i j
i j

h r y yα α
= =

= −∑∑ x x  with r being the distance from the center 

c to any support vector whose iα  is in the set 0 /i C mα< < . It is worth 

noting that, in order to obtain r, the actual value of c of the optimal 

hypersphere is not required to be computed. Let kx  be a support vector with 

/k C mα < , then we can obtain r2 by 

 2

1 1 1
2

m m m
T T T
k k i i i k i j i j i j

i i j
r y y yα α α

= = =

= − +∑ ∑∑x x x x x x . (2.41) 

The dual formulation of nSVDD in (2.39) has similar form as the dual 

formulation of SVM. That is, it includes the box constraints and also the 

inner products between examples. The illustration of nSVDD is shown in 

Figure 2.4 where the circle depicts the descriptive boundary. ○ and ● are 

targets and outliers, respectively. 

As a remark, in some works, instead of formulating SVDD as in (2.38), the 

distinction between allowing outliers to be inside the hypersphere and 

 
Figure 2.4 Rough sketch of nSVDD’s descriptive boundary 
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targets to be outside the hypersphere is also made by using separate 

hyperparameters as in (2.42). 
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Here, 1C  and 2C  are two hyperparameters.  The first and second constraints 

are defined so as to allow misclassification on the targets and outliers, 

respectively. ξ  and ξ  are two separate slack variables for each constraint. 

A simple multiclass classification scheme using SVDD is accomplished by 

performing SVDD defined in (2.38) on every class and the classification 

rule is based on the proximity to the closest hypersphere [33]. Some authors 

[32] even combine two SVDD formulations of (2.42) into one in order to 

solve general binary classification problems. That is, they simultaneously 

try to find two hyperspheres by using the following formulation,  
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 (2.43) 

where 1 1( , )rc and 2 2( , )rc  denote the tuples of the center and radius of the 

two hyperspheres. 1C , 2C , 3C , and 4C  are hyperparameters. 

2.5.2 Twin-hypersphere support vector machine 

Developed by Peng and Xu [19], THSVM borrows the same concept from 

TWSVM. Instead of using two nonparallel hyperplanes, it implements two 

hyperspheres centered at c1 and c2 with radius r1 and r2, respectively. 

Although the formulation of THSVM is also closely related to the 
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formulation of SVDD as both methods use a hypersphere to represent a 

class of data, it is specifically designed for binary classification. In fact, its 

idea was initiated differently from the formulation (2.43) of SVDD. In 

TWSVM, a hyperplane is used as a class descriptor. However, in THSVM, 

the hyperplane is replaced or reformulated with a hypersphere. One 

hypersphere of THSVM, therefore, not only fits one class, but also is as far 

as possible from the other class.  

Given a set of m examples, 1{ }m
i i=x , where each example is a member of 

either class 1I  or 2I . Let the numbers of examples in each class be 1m  and 

2m , respectively. The formulation of THSVM is to find two hyperspheres in 

n  by solving a pair of quadratic programs. One hypersphere of THSVM to 

describe class 1I  can be formulated as 
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where 1r  and 1c  are the radius and center of the hypersphere. 1 0C >  and 

1 0ν >  are the hyperparameters. Like other support vector based classifiers, 

THSVM also uses slack variables ξ  to create the soft margins in addition to 

minimizing the hypersphere’s radius. The constraints in (2.44) is defined 

such that feasible hyperspheres enclose the examples from class 1I  with 

some tolerable errors allowing some examples to stay outside the 

hypersphere. In fact, the formulation (2.44) of THSVM is more or less 

modified from the formulation (2.38) of SVDD by entirely changing the 

excluding constraints for negative examples, or class 2I , into the  

optimization objective in (2.44). In other words, in addition to find a 

hypersphere around class 1I , it also tries to place the hypersphere as far as 

possible from class 2I  controlled by the hyperparameter 1ν . 
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Suppose 1m∈α   is the vector of Lagrange multipliers. The dual form of 

THSVM is as follows. 
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when 1ν  is set to zero, the formulation of THSVM will become SVDD with 

only positive examples (or class 1I ). That is, all negative examples (or class 

2I ) are completely ignored. The optimal center c1 can be computed from 
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and the optimal radius r1 is 

 11 pr = −x c  (2.47) 

i.e. the distance from c1 to a support vector px whose pα  is the member of 

1

1

0 p
C
m

α< < . 

After the optimal hypersphere describing class 1I  is obtained, the optimal 

hypersphere the other class can also be similarly found by switching the role 

of 1I  and 2I . That is 
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As a result, given a testing example n∈x  , the decision rule of THSVM is 

defined as 
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1,2

Class arg min k

k
k

k
r=

−
=

x c
. (2.49) 

It is worth nothing that, although the decision rule (2.49) requires the 

calculation of ck and rk which can be obtained from (2.46) and (2.47), 

respectively, we can entirely avoid the direct computations by substituting 

(2.46) and (2.47) into (2.49) and rewriting them in terms of inner products 

between examples. The two hyperspheres of THSVM can be roughly 

illustrated as in Figure 2.5 where ○ and ● are the examples from class 1I  

and 2I , respectively. The dash line is the descriptive boundary for class 1I  

and the dot-dash line is the boundary for class 2I . The decision boundary is 

shown in the solid line. 

 
Figure 2.5 Rough sketch of THSVM’s decision boundary 
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