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CHAPTER 3 

Support Vector Classifiers based on Hyperellipsoids 

This chapter is divided into three sections arranged by three main contributions of this 

thesis. The first section particularly focuses on one-class classification using a novel 

hyperellipsoid-based method as a data description tool. The proposed method is called 

“ellipsoidal support vector data description” (eSVDD) since it constructs an optimal 

soft-margin hyperellipsoid around the data, like in SVDD. The formulation of eSVDD 

is built upon the idea of MVCE introduced in the previous chapter with some additional 

features, especially the inclusion of negative examples. 

In the second section, another support vector based classifier named the “twin hyper-

ellipsoidal support vector machine” (TESVM) is proposed. The formulation is 

specifically designed for binary classification with the idea inspired by MVCE, SVDD, 

and THSVM. The formulations presented in the first two sections are in fact the basis of 

the proposed methods. In the last section, we further propose that, by using an empirical 

feature mapping technique, the proposed formulations can be extended to work in the 

feature space, allowing the formation of more complex decision boundary to deal with 

real-world data. 

3.1 Ellipsoidal Support Vector Data Description 

A soft-margin MVCE is directly inspired by other popular learning machines like SVM 

and SVDD. For a given set of m training examples, 1{ }m
i i=x , the general idea of MVCE 

with soft margins, based on the MVCE formulation (2.17), can be formulated as  
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where the hyperellipsoid ,E cE  is the solution to (3.1) whose center is at E-1c. 
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Again, iξ  is a slack variable to allow possible misclassification. C > 0 is the 

hyperparameter 

Since the examples in the formulation (3.1) have no label, the formulation is also called 

“eSVDD with only positive examples” or simply eSVDD and can be illustrated as in 

Figure 3.1. It is worth noting that the formulation (3.1) already exists in the literature, 

such as in the works by Dolia et al. [58] and Wei et al. [60]. 

Among m training examples, it is also possible that few of them are erroneous or 

undesired examples. It is intuitively plausible to include the knowledge of the outliers to 

help improve the domain description of the data. Therefore, we are going to reformulate 

(3.1) to handle two possible labels, i.e. “target” and “outlier”. The result is still a one-

class classification problem under the assumption that the outlier class has very few 

number of examples. 

Suppose each example has a label either 1iy =  or 1−  for target and outlier, respectively. 

We call (3.1) when reformulated with two possible labels as “eSVDD with negative 

examples” (neSVDD). The illustration of neSVDD is shown in Figure 3.2 where ○ and 

● represent the target and outlier classes. When no outlier is presented, neSVDD is 

simply an eSVDD problem. It is natural to formulate the problem such that outliers are 

kept outside while targets are kept inside the hyperellipsoid. Some outliers and targets 

are minimally allowed to be inside and outside the descriptive boundary, respectively. 

Thus, the formulation of neSVDD can be formulated as 
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Figure 3.1 Rough sketch of eSVDD’s descriptive boundary 
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Although the formulation of eSVDD as in (3.1) has no novelty in the literature, very 

few works have considered the inclusion of negative examples into the formulation. To 

the best of our knowledge, one formulation of MVCE without soft margins exists in the 

literature [74] where it is given to demonstrate an application of semidefinite 

programming. In fact, their formulation differs from our formulation (3.2) and has no 

soft margins. Another found literature on this subject is by Wei et al. [60] where they 

briefly mention the formulation of MVCE with negative examples. However, their 

formulation is also slightly different from our neSVDD in (3.2). Furthermore, their 

experimental results are reported based only on one dataset, i.e. from the iris dataset. In 

fact, they provide only the classification accuracy between Versicolor and Virginica 

classes, which is unlikely adequate to substantiate the efficiency of their method. 

The derivation of the corresponding dual problem from (3.2) follows closely with the 

flow presented in the previous chapter for MVCE. That is from (3.2) the Lagrangian is 
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where the Lagrange multiplier , 0iiα β ≥  for i = 1, 2, …, m. Hence, we have 
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Suppose 1 2[ , ,..., ]my y y=y  and diag( )=Y y  with {1, 1}iy ∈ −  for i = 1, 2, ..., m. The 

first-order derivatives are 

 
Figure 3.2 Rough sketch of neSVDD’s descriptive boundary 
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Under the first-order necessary condition of optimality, we have 0 /i C mα≤ ≤  from 

(3.5) and the condition , 0iiα β ≥ . The optimal c can be obtained from (3.6) as 

 T=
EXYαc

y α
. (3.8) 

Substituting (3.8) into (3.7) and, (3.7) can be rewritten as 

 1 1 ( )
2

− = +E ES SE  (3.9) 

where 
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It is possible that E is not unique since S is not positive definite, however, we will 

assume that 1/2−=E S , similar to the solution in (2.15) and let the logarithm term in the 

objective of (3.2) act as a natural barrier function to drive the solution E to be positive 

definite. After further rewriting the Lagrangian (3.4) with 2
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In addition, by letting T
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  as in (2.22), we have the dual problem of neSVDD as 
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Furthermore, for more succinct dual formulation, we set T n=y α  so that the dual and 

primal problems have the same objective functions. Thus, we have 
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The optimal ,E cE  can be computed from 
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The slack variables in the primal problem provides the box constraints on Lagrange 

multipliers in the dual problem (3.12). c is a linear combination of all training examples 

and each example is weighted by a Lagrange multiplier. The shape of hyperellipsoid E 

is a linear combination of outer products of training examples weighted by the same 

Lagrange multipliers. For the examples which have 0iα >  are the “support vectors” 

since they affect the shape and center of the hyperellipsoid. 

For the classification rule of neSVDD for the solution ,E cE , although the ellipsoid is 

defined as 1=−Ex c , it is incorrect to define the classification rule, for a given 

testing example n∈x  , as  
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due to the effect of setting T n=y α  in the dual formulation (3.13). Since the 

corresponding primal problem of (3.13) is  
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as shown in Lemma A.2 of Appendix A. The correct decision rule of neSVDD is 
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where r can be obtained from the complementary slackness conditions, according to 

(A.2). Precisely, those conditions are 

 0 i iβ ξ=   (3.16)

 2 20 i i i i iy y rα ξ = − − − Ex c  (3.17) 

for i = 1, 2, ...m. By selecting an example with 0 i
C
m

α< < , i.e. 0iβ ≠ , we obtain 0iξ =  

from (3.16). Therefore, r can be computed from (3.17). 

3.2 Twin Hyper-ellipsoidal Support Vector Machine 

For a given set of m training examples, 1{ }m
i i=x , where each example is a member of 

either class 1I  or class 2I , and also let 1 1| |m = I  and 2 2| |m = I , TESVM solves the 

following pair of optimization problems to find two minimum volume hyperellipsoids, 

1 1,E cE and 
2 2,E cE , where each hyperellipsoid is closest to one class, but also as far as 

possible from the other class.  
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where 1ν , 1C , 2ν , and 2C  are hyperparameters. 1r  and 2r  are the Mahalanobis distance 

from the center of 
1 1,E cE and 

2 2,E cE , respectively. 

The illustration of TESVM’s decision boundary can be illustrated in Figure 3.3 where ○ 

and ● are the examples from class 1I  and 2I , respectively. The dash line is the 
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descriptive boundary for class 1I  and the dot-dash line is the boundary for class 2I . 

The decision boundary is shown in the solid line. 

The optimization (3.18) and (3.19) are almost exactly the same where their 

minimizations are to find a hyperellipsoid around class 1I  and 2I , respectively.  

Therefore, we only focus on (3.18) for brevity.  

The first two terms of (3.18) represent the volume of 
1 1,E cE  to be minimized. We include 

2
1r  (also 2

2r ) into the formulation to make it like THSVM as well as the formulation of 

MVCE in (2.17). The constraints of (3.18) define that 
1 1,E cE  must cover class 1I  while 

some examples are allowed to stay outside by the slack variables. The third term of 

(3.18) sets the objective that the optimal hyperellipsoid should be placed as far as 

possible from class 2I . 

From (3.18), the Lagrangian can be obtained as 
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where 0iα ≥  and 0iβ ≥  for 11, 2,...,i m=  are Lagrange multipliers. α  and 1m∈β   are 

their corresponding column vectors, respectively. 

The formulation can be more compact by assigning the index for each example in class 

1I  to be from 1 to 1m  and class 2I  to be from m1+1 to m. We extend α  from 1m  to 

m  with  

 
Figure 3.3 Rough sketch of TESVM’s decision boundary 
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Therefore, (3.20) can be rewritten as 
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The first-order derivatives of (3.22) are 
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α≤ ≤  for 11, 2,...,i m= . Since we prefer the representation of the 

problem in a matrix form, let 1 2diag( , ,..., )mα α α=A  and [ ]1 2, ,..., m=X x x x . Hence, 

from (3.25), we obtain 

 1 1=c E Xα . (3.27) 

By substituting (3.27) into (3.26), we also have 

 1
1 1 1

1 (
2

)− = +E E S SE  (3.28) 

where T T T= −S XAX Xαα X . The solution to (3.28) is 1/2
1

−=E S , following (2.15). 

Despite the fact that 1E  may not be unique since S may not be positive definite, the log-
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determinant term in the objective of (3.18) is, in fact, a natural barrier function to force 

1E  to a positive definite solution. 

By rewriting (3.22) with KKT conditions, the dual formulation of (3.18) can be 

obtained as 
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The optimization (3.29) is a standard semidefinite program and can be solved with a 

standard solver such as [69] which supports log-determinant in the objective function. 

The complementary slackness conditions can also be derived, for i = 1, 2, ...m1, 

 0 i iβ ξ=   (3.30) 

 2 2
1 1 10 i i irα ξ = − − − E x c  (3.31) 

By selecting an example with 1

1

0 i
C
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α< < , we obtain 0iξ =  from (3.30). Therefore, r 

can later be computed from (3.31). 

After 
1 1,E cE  is found, 

2 2,E cE  also can be obtained from solving (3.19). Finally, the 

decision rule for the TESVM is defined by 
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where n∈x   is a given testing example. 

3.2.1 Connection to MVCE with negative examples 

TESVM is the direct extension of THSVM. Its formulation is also related to 

the eSVDD with negative examples (3.2) proposed in Section 3.1. It is the 

same idea that THSVM can be viewed as double SVDDs with negative 

examples. In general, given 1I  and 2I  to be the positive and negative 

classes, respectively, a soft-margin MVCE problem with negative classes 

can be formulated as 
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where 1iy =  for 1i∈ I  and 1iy = −  for 2i∈ I . The solution to (3.33) is the 

minimum volume covering hyperellipsoid ,E cE  which covers the positive 

class and excludes the negative class. Therefore, (3.33) differs from (3.18) 

only in that the excluding constraints of in (3.33) are moved into the 

objective of (3.18).  

The dual formulation of (3.33) is 
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and it has the same form as (3.29) but with some modifications. That is the 

Lagrange multipliers belonging to the negative class are the optimization 

variables. They are not simply a constant as in (3.21). The sum of m 

Lagrange multipliers of (3.34) also must be one and the box constraints 

0 /i C mα≤ ≤  also confine the Lagrange multipliers. It is worth nothing that 

one subproblem of TESVM in the dual formulation requires to solve smaller 

numbers of optimization variables than one MVCE problem with negative 

examples. 

3.3 Ellipsoids with Kernel Methods 

In the previous sections, we directly formulate the minimal hyperellipsoids as a 

classification tool for both one-class and two-class classification problems. Even though 

hyperellipsoids provide less conservative boundary than hyperspheres, they are in some 

cases not adequate to describe complex patterns.  

In general, learning machines utilize kernel methods to enhance more classification 

ability by replacing all inner product terms T
i jx x  in their formulation with a kernel 

function ( , )i jk x x . Because an inner product is a measurement of similarity between 
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two examples, by replacing it with a kernel function, we also obtain an alternative 

similarity measurement and hope that the training examples are mapped into a space 

with better class separability [75]. 

Generally, a kernel is a positive definite function ( , ) : n nk ⋅ ⋅ ×     satisfying 

Mercer’s conditions. These conditions guarantee the explicit ability to factorize a kernel 

to be an inner product between two vectors, i.e.,  ( , ) ( ) ( )T
i j i jk =x x φ x φ x , where 

( ) : n
iφ x   H , and H  is the feature space. Therefore, a kernel also defines an inner 

product in H , alternatively to the inner product in the input space n . The mapping 

( )φ x  is generally unknown and the dimension of space H  is usually much higher than 

n. In fact, for some kernel functions, it is possible that the dimension of feature space is 

infinite.  

Given an m training examples 1{ }m
i i=x , we want to map all examples into the feature 

space using an unknown mapping function ( )φ x . Let’s also denote 

 1 2[ ( ), ( ),..., ( )]m=Φ φ x φ x φ x  (3.35) 

and define the so-called the kernel matrix m
+∈K S  to be T=K Φ Φ . The kernel matrix is 

simply the composition of ( , )i jk x x  for all i and j, i.e.  
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. (3.36) 

Since most if not all learning machines in the family of support vector classifiers are 

compatible with kernel methods, it is also interesting to see the construction of the 

MVCE in the feature space using kernel methods. However, applying kernel tricks to 

MVCE is not a straightforward task since the formulation of MVCE consists of outer 

products, instead of inner products. In the following subsections, we will first review 

the current state of the art in kernelizing the MVCE, followed by our proposed method 

which is a simpler framework to construct the MVCE in the feature space.  
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3.3.1 Existing literature on kernelizing MVCE 

To the best of our knowledge, there are very few research studies working 

on kernelizing the MVCE. More specifically, those publications are by 

Dolia et al. [57-58] and Wei et al. [59-60] where they try to rewrite the 

MVCE formulation in the form of inner products with the help of some 

matrix factorizations. In fact, both methods from Dolia et al. and Wei et al. 

are conceptually the same and can be summarized as follows.   

First, rewrite the objective of (2.20) i.e. the objective of 
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by mapping X to Φ  where Φ  represents the matrix of training examples in 

the feature space. As [ ]T T=X X e , we also denote [ ]T T=Φ Φ e  as the 

image of X  in the feature space. Hence, we have 
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However, Φ  is normally unknown. By utilizing the fact that, for any 

matrices M and N, MN and NM have the same nonzero eigenvalues. In 

addition, together with using the Cholesky decomposition of the kernel 

matrix in the augmented feature space, we have 
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Hence, (3.37) becomes 
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As a result, directly solving (3.37) can be avoid by using the formulation 

(3.39) with the fact that C can be obtained by factorizing T+K ee .  

After the objective of MVCE can be rewritten as a function of the kernel 

matrix, Dolia et al. and Wei et al. then also try to rewrite the weighted norm 

in the augmented feature space without explicitly using the function φ . For 

a given n∈x  , the weighted norm weighted by E  of appropriated 

dimensions is defined as ( ) Tf =x x Ex  . In the feature space, the norm 

becomes ( ) Tf =x φ Eφ  . However, in fact, E  comes in the form of an 

inverse matrix, i.e. 1 T− =E ΦAΦ   . Dolia et al. and Wei et al. utilize the 

singular value decomposition (SVD) of 1/2ΦA as  

 1/2 T=ΦA UΣV   (3.40) 

where U, V, and Σ  are the eigenvector matrix of 1/2 1/2( )TΦA ΦA  , the 

eigenvector matrix of 1/2 1/2( )TΦA ΦA  , and singular values of 1/2ΦA , 

respectively. It follows that 

 1/2 1/2 1( )T T T T −= = =ΦA ΦA ΦAΦ UΣΣ U E       (3.41) 

and  

 1/2 1/2 1/2 1/2 1/2 1/2( )T T T T= = =ΦA ΦA A Φ ΦA A KA VΣ ΣV     . (3.42) 

Therefore, (3.41) and (3.42) imply that 1−E  and 1/2 1/2A KA  share the same 

set of non-zero eigenvalues. Since K  is known from the training examples 

and A  is also known from the solution of (3.39), we can easily 

compute 1/2 1/2A KA . As a result, the eigendecomposition of 1/2 1/2A KA  yields 

the matrices V and TΣ Σ .  
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Since, from (3.41), we have 1( )T T−=E U ΣΣ U ,  the weight norm can be 

rewritten as  

 ( ) 1
( ) T T Tf

−
=x φ U ΣΣ U φ  .  (3.43) 

Also from (3.40), 1/2 ( )T +=U ΦA ΣV , where ( )+⋅  is a pseudoinverse operator. 

Therefore, it is possible to entirely eliminate the unknown function φ  from 

the weighted norm, ( ) Tf =x φ Eφ  , by simply replacing any multiplication 

pairs between the term φ  in ( )f x  and the term Φ  in U with the vector of 

kernel functions. 

3.3.2 Constructing MVCE in the feature space via empirical feature mapping  

Although Dolia et al. [57-58] and Wei et al. [59-60] successfully proposed a 

method to kernelize MVCE as described in Section 3.3.1, it is important to 

emphasize that their works rely on the factorization of 1/2 1/2A KA . Although 

we believe that the factorization is an indispensable step toward kernelizing 

the MVCE, their methods are over-complicated. Its formulation relies on the 

factorization of the constituent of the kernel matrix K and the Lagrange 

multiplier’s matrix A. Precisely, the fact that their approach must factorize 

the matrix 1/2 1/2A KA  makes it rely on the structure of the problem.  

As a result, in this section, we propose an alternative solution based on the 

empirical feature mapping, or the kernel principle component analysis 

(kernel PCA) mapping which is a more elegant but simple answer to 

kernelizing the MVCE.  The empirical feature mapping in fact is not a new 

concept in the literature. It has been studied by many researchers, including 

[75-76]; however, its use in the MVCE problem is still unexplored. 

For a given set of m training examples 1{ }m
i i=x , we would like to define a 

map from the input space n  to a space called “empirical feature space EH ” 

such that the inner product in EH  is equal to the one in H . 
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Definition 3.1: Given the training examples 1 2, ,..., n
m ∈x x x  . The kernel 

PCA map from n  to EH  is defined as  

 : ( ) ( )T
E

+φ x Ω k x  

where Ω  satisfies  T=K Ω Ω  and 1 2( ) [ ( , ), ( , ),..., ( , )] .T
mk k k=k x x x x x x x  

Corollary 3.1: The empirical feature space EH  and the feature space H  

have the same inner product and Euclidean distance. 

Proof: Let ( )i i=k k x , ( )i i=φ φ x , and ( )
iE E i=φ φ x . It follows that 

( ) ( ) ( , )
i j

T T T T T T T T
E E i j i j i j i j i jk+ + + += = = = =φ φ k Ω Ω k k K k φ Φ Φ Φ Φ φ φ φ x x . 

The Euclidean distance in both space is also the same according to  
2

( , ) 2 ( , ) ( , )i j i i i j j jk k k− = − +φ φ x x x x x x .  □ 

From the definition, kernel PCA mapping explicitly defines a map from the 

input space to an empirical feature space EH . The term “empirical” indicate 

that the map is created from the given empirical measures. The space EH  is 

a Euclidean space with a finite dimension and it is different from the feature 

space H  which can possibly have infinite dimensions such as in the case of 

the RBF kernel. 

Even though the dimension of H  may be infinite, learning machines usually 

perform only in a subspace of H  spanned by the images of the training 

examples 1{ ( )}m
i i=φ x . Since the inner product and the Euclidean distance in 

EH  are the same as in H  as in Corollary 3.1, the separability between 

examples is preserved between both spaces. Mathematically, we say that H  

is isomorphic with EH  [75].  

As a result, in this thesis, we suggest that the MVCE in the kernel-defined 

feature space should be constructed via the use of the empirical feature map, 

avoiding the need in trying to reformulate the MVCE problem in terms of 

inner products. That is, from a given set of training examples 1{ }m
i i=x , we 
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first compute the kernel matrix K. Then, factorize it so that we obtain Ω . 

After that, follow the mapping defined in Definition 3.1. Hence, the image 

of an example in the empirical feature space can be obtained. 

One benefit of the empirical feature map is that it allows the existing 

formulations to seamlessly work in the feature space. Hence, the 

formulations of the proposed eSVDD with negative examples (3.12) and 

TESVM (3.34) can now readily be equipped with the kernel methods.  

Furthermore, with the empirical feature map, an example in the input space 

can be visualized in the feature space. The center and boundary of the 

hyperellipsoid ,E cE  can also be computed.  

It is worth noting that, although a kernel matrix K which satisfies Mercer's 

condition can always be factorized as T=K Ω Ω , the decomposed matrix Ω  

is not unique for one K. There is more than one approach in factorizing K, 

such as eigenvalue decomposition and LDL decomposition, and each 

method results in different .Ω  In eigendecomposition, suppose T=K VΛV , 

then, we have  1/2( )T=Ω VΛ , where Λ  is the diagonal eigenvalue matrix 

corresponding to the eigenvector matrix V. For LDL decomposition,  
T=K LDL , we have 1/2( )T=Ω LD  where L is the lower triangular matrix 

whose diagonal elements are ones and D is a diagonal matrix. In general, 

both Λ  and D are not full-rank because K is positive semidefinite. In this 

thesis, therefore, it is necessary to use a reduced or truncated version of the 

decomposition. 


	CHAPTER 3  Support Vector Classifiers based on Hyperellipsoids
	3.1 Ellipsoidal Support Vector Data Description
	3.2 Twin Hyper-ellipsoidal Support Vector Machine
	3.2.1 Connection to MVCE with negative examples

	3.3 Ellipsoids with Kernel Methods
	3.3.1 Existing literature on kernelizing MVCE
	3.3.2 Constructing MVCE in the feature space via empirical feature mapping



