

35

CHAPTER 3

Support Vector Classifiers based on Hyperellipsoids

This chapter is divided into three sections arranged by three main contributions of this

thesis. The first section particularly focuses on one-class classification using a novel

hyperellipsoid-based method as a data description tool. The proposed method is called

“ellipsoidal support vector data description” (eSVDD) since it constructs an optimal

soft-margin hyperellipsoid around the data, like in SVDD. The formulation of eSVDD

is built upon the idea of MVCE introduced in the previous chapter with some additional

features, especially the inclusion of negative examples.

In the second section, another support vector based classifier named the “twin hyper-

ellipsoidal support vector machine” (TESVM) is proposed. The formulation is

specifically designed for binary classification with the idea inspired by MVCE, SVDD,

and THSVM. The formulations presented in the first two sections are in fact the basis of

the proposed methods. In the last section, we further propose that, by using an empirical

feature mapping technique, the proposed formulations can be extended to work in the

feature space, allowing the formation of more complex decision boundary to deal with

real-world data.

3.1 Ellipsoidal Support Vector Data Description

A soft-margin MVCE is directly inspired by other popular learning machines like SVM

and SVDD. For a given set of m training examples, 1{ }m
i i=x , the general idea of MVCE

with soft margins, based on the MVCE formulation (2.17), can be formulated as

1

, , 1
2s.t.

min 2log det()

1 0, 1 , ,,

m

i
i

i i i

C
m

i m

ξ

ξ ξ

−

=

+

− ≤ + ≥ = …

∑E c ξ
E

Ex c
 (3.1)

where the hyperellipsoid ,E cE is the solution to (3.1) whose center is at E-1c.

36

Again, iξ is a slack variable to allow possible misclassification. C > 0 is the

hyperparameter

Since the examples in the formulation (3.1) have no label, the formulation is also called

“eSVDD with only positive examples” or simply eSVDD and can be illustrated as in

Figure 3.1. It is worth noting that the formulation (3.1) already exists in the literature,

such as in the works by Dolia et al. [58] and Wei et al. [60].

Among m training examples, it is also possible that few of them are erroneous or

undesired examples. It is intuitively plausible to include the knowledge of the outliers to

help improve the domain description of the data. Therefore, we are going to reformulate

(3.1) to handle two possible labels, i.e. “target” and “outlier”. The result is still a one-

class classification problem under the assumption that the outlier class has very few

number of examples.

Suppose each example has a label either 1iy = or 1− for target and outlier, respectively.

We call (3.1) when reformulated with two possible labels as “eSVDD with negative

examples” (neSVDD). The illustration of neSVDD is shown in Figure 3.2 where ○ and

● represent the target and outlier classes. When no outlier is presented, neSVDD is

simply an eSVDD problem. It is natural to formulate the problem such that outliers are

kept outside while targets are kept inside the hyperellipsoid. Some outliers and targets

are minimally allowed to be inside and outside the descriptive boundary, respectively.

Thus, the formulation of neSVDD can be formulated as

1

2

, , 1

s.t

min 2log det()

0, 1. , , , .

m

i
i

i i i i i

C
m

y y i m

ξ

ξ ξ

−

=

+

− ≤ + ≥ = …

∑E c ξ
E

Ex c
 (3.2)

Figure 3.1 Rough sketch of eSVDD’s descriptive boundary

37

Although the formulation of eSVDD as in (3.1) has no novelty in the literature, very

few works have considered the inclusion of negative examples into the formulation. To

the best of our knowledge, one formulation of MVCE without soft margins exists in the

literature [74] where it is given to demonstrate an application of semidefinite

programming. In fact, their formulation differs from our formulation (3.2) and has no

soft margins. Another found literature on this subject is by Wei et al. [60] where they

briefly mention the formulation of MVCE with negative examples. However, their

formulation is also slightly different from our neSVDD in (3.2). Furthermore, their

experimental results are reported based only on one dataset, i.e. from the iris dataset. In

fact, they provide only the classification accuracy between Versicolor and Virginica

classes, which is unlikely adequate to substantiate the efficiency of their method.

The derivation of the corresponding dual problem from (3.2) follows closely with the

flow presented in the previous chapter for MVCE. That is from (3.2) the Lagrangian is

()

1

1

2

1 1

(, , , , ,) 2 log det()
m

i
i

m m

i i i i i i i
i i

CL r
m

y y

ξ

α ξ β ξ

−

=

= =

= +

+ − − − −

∑

∑ ∑

E c ξ α β E

Ex c
 (3.3)

where the Lagrange multiplier , 0iiα β ≥ for i = 1, 2, …, m. Hence, we have

 ()2

1 1

(, , , , ,) 2 log det()

1 .
m m

i i i i i i
i i

L r
C y
m

α β ξ α
= =

= −

 + − − + − − 
 

∑ ∑

E c ξ α β E

Ex c
 (3.4)

Suppose 1 2[, ,...,]my y y=y and diag()=Y y with {1, 1}iy ∈ − for i = 1, 2, ..., m. The

first-order derivatives are

Figure 3.2 Rough sketch of neSVDD’s descriptive boundary

Allow some targets
to be outside

Allow some outliers
to be inside

38

 i i
i

L C
m

α β
ξ
∂

= − −
∂

 (3.5)

 ()
1 1

2 2
m m

T
i i i i

i i
iyL yα α

= =

∂  
= − = − ∂  

∑ ∑c E x cy α EXYα
c

 (3.6)

 1

1
2 () ()

m
T T

i i i i i
i

i
L yα−

=

∂  = − + − + − ∂ ∑E Ex c x x Ex c
E

. (3.7)

Under the first-order necessary condition of optimality, we have 0 /i C mα≤ ≤ from

(3.5) and the condition , 0iiα β ≥ . The optimal c can be obtained from (3.6) as

 T=
EXYαc

y α
. (3.8)

Substituting (3.8) into (3.7) and, (3.7) can be rewritten as

 1 1 ()
2

− = +E ES SE (3.9)

where

T T

T
T= −

XYαα YXS XAYX
y α

. (3.10)

It is possible that E is not unique since S is not positive definite, however, we will

assume that 1/2−=E S , similar to the solution in (2.15) and let the logarithm term in the

objective of (3.2) act as a natural barrier function to drive the solution E to be positive

definite. After further rewriting the Lagrangian (3.4) with 2

1

m

i i i
i

y nα
=

− =∑ Ex c , we

obtain

 () log det().
T T

T
TL = −

XYαα YXα XAYX
y α

 (3.11)

In addition, by letting T

 
=  
 

X
X

e
 as in (2.22), we have the dual problem of neSVDD as

max log det

s.t. .

T T n

C
m

−

≤

+

≤

α
XAYX y

0

α

α

 

 (3.12)

39

Furthermore, for more succinct dual formulation, we set T n=y α so that the dual and

primal problems have the same objective functions. Thus, we have

max log det

s.t.

.

T

T n
C
m

=

≤ ≤

α
XAYX

y

0

α

α

 

 (3.13)

The optimal ,E cE can be computed from

1/2

T

T
T

−
  

= −     

ααXY AY YE X
y α

and T=
EXYαc

y α
.

The slack variables in the primal problem provides the box constraints on Lagrange

multipliers in the dual problem (3.12). c is a linear combination of all training examples

and each example is weighted by a Lagrange multiplier. The shape of hyperellipsoid E

is a linear combination of outer products of training examples weighted by the same

Lagrange multipliers. For the examples which have 0iα > are the “support vectors”

since they affect the shape and center of the hyperellipsoid.

For the classification rule of neSVDD for the solution ,E cE , although the ellipsoid is

defined as 1=−Ex c , it is incorrect to define the classification rule, for a given

testing example n∈x  , as

1, for 1

()
1, for 1i

f
 − ≤= − −

Ex c
x

Ex c >
 (3.14)

due to the effect of setting T n=y α in the dual formulation (3.13). Since the

corresponding primal problem of (3.13) is

 ,

2 2

2 1

, , 1

s

min 2log det()

.t. 0, 1, , ,

m

ir i

i i i i i

Cnr
m

y ry i m

ξ

ξ ξ

−

=

+ +

− ≤ + ≥ = …

∑E c ξ
E

Ex c

as shown in Lemma A.2 of Appendix A. The correct decision rule of neSVDD is

40

1, for

()
1, for i

r
f

r
 − ≤= − − >

Ex c
x

Ex c
 (3.15)

where r can be obtained from the complementary slackness conditions, according to

(A.2). Precisely, those conditions are

 0 i iβ ξ= (3.16)

 2 20 i i i i iy y rα ξ = − − − Ex c (3.17)

for i = 1, 2, ...m. By selecting an example with 0 i
C
m

α< < , i.e. 0iβ ≠ , we obtain 0iξ =

from (3.16). Therefore, r can be computed from (3.17).

3.2 Twin Hyper-ellipsoidal Support Vector Machine

For a given set of m training examples, 1{ }m
i i=x , where each example is a member of

either class 1I or class 2I , and also let 1 1| |m = I and 2 2| |m = I , TESVM solves the

following pair of optimization problems to find two minimum volume hyperellipsoids,

1 1,E cE and
2 2,E cE , where each hyperellipsoid is closest to one class, but also as far as

possible from the other class.

1 1 1
2 1

22 1 1
1 1 1 1, , ,

2 1

2 2
1 1 1

1

1

min 2log det()

s.t.
0,

j ir j i

i i

i

Cr
m m

r
i

ν ξ

ξ
ξ

∈

−

∈

+ − − +

− ≤ +
≥ ∈

∑ ∑E c ξ
E E x c

E x c

I I

I
 (3.18)

2 2 2
1 2

22 1 2 2
2 2 2 2, , ,

1 2

2 2
2 2 2

2

min 2log det()

s.t.

0,

i jr i j

j j

j

Cr
m m

r

j

ν ξ

ξ

ξ

−

∈ ∈

+ − − +

− ≤ +

≥ ∈

∑ ∑E c ξ
E E x c

E x c

I I

I

 (3.19)

where 1ν , 1C , 2ν , and 2C are hyperparameters. 1r and 2r are the Mahalanobis distance

from the center of
1 1,E cE and

2 2,E cE , respectively.

The illustration of TESVM’s decision boundary can be illustrated in Figure 3.3 where ○

and ● are the examples from class 1I and 2I , respectively. The dash line is the

41

descriptive boundary for class 1I and the dot-dash line is the boundary for class 2I .

The decision boundary is shown in the solid line.

The optimization (3.18) and (3.19) are almost exactly the same where their

minimizations are to find a hyperellipsoid around class 1I and 2I , respectively.

Therefore, we only focus on (3.18) for brevity.

The first two terms of (3.18) represent the volume of
1 1,E cE to be minimized. We include

2
1r (also 2

2r) into the formulation to make it like THSVM as well as the formulation of

MVCE in (2.17). The constraints of (3.18) define that
1 1,E cE must cover class 1I while

some examples are allowed to stay outside by the slack variables. The third term of

(3.18) sets the objective that the optimal hyperellipsoid should be placed as far as

possible from class 2I .

From (3.18), the Lagrangian can be obtained as

2

1 1 1

22 1
1 1 1 1 1 1 1

2

2 21
1 1 1

1

(, , , , ,) 2 log det() j
j

i i i i i i
i i i

L r r
m

C r
m

ν

ξ α ξ β ξ

∈

∈ ∈ ∈

− − −

 + + − − − − 

= ∑

∑ ∑ ∑

E c ξ α β E E x c

E x c

I

I I I
 (3.20)

where 0iα ≥ and 0iβ ≥ for 11, 2,...,i m= are Lagrange multipliers. α and 1m∈β  are

their corresponding column vectors, respectively.

The formulation can be more compact by assigning the index for each example in class

1I to be from 1 to 1m and class 2I to be from m1+1 to m. We extend α from 1m to

m with

Figure 3.3 Rough sketch of TESVM’s decision boundary

42

1 1

1
1 2

2

...m m m m
να α α+ += = = = − . (3.21)

Therefore, (3.20) can be rewritten as

1 1

2
1 1 1 1 1 1

1

2 1
1

1 1 1

(, , , , ,) 2 log det()

1

m

i i
i

m m

i i i i
i i

L r

Cr
m

α

α α β ξ

=

= =

= − + −

  
+ − + − −  

   

∑

∑ ∑

E c ξ α β E E x c

 (3.22)

The first-order derivatives of (3.22) are

1

1
11

2 1
m

i
i

L r
r

α
=

 ∂
= − ∂  

∑ (3.23)

 1
1

1

, 1, 2,...,i i
i

CL i m
m

α β
ξ
∂

= − − =
∂

 (3.24)

 1 1
1 11

2
m m

i i i
i i

L α α
= =

∂  
= − ∂  

∑ ∑c E x
c

 (3.25)

 1
1 1 1 1 1

11

2 () ()
m

T T
i i i i i

i

L α−

=

∂  = − + − + − ∂ ∑E E x c x x E x c
E

 (3.26)

 Under the first-order necessary condition of optimality, (3.23) yields
1

1
1

m

i
i
α

=

=∑ , and

(3.24) yields 1

1

0 i
C
m

α≤ ≤ for 11, 2,...,i m= . Since we prefer the representation of the

problem in a matrix form, let 1 2diag(, ,...,)mα α α=A and []1 2, ,..., m=X x x x . Hence,

from (3.25), we obtain

 1 1=c E Xα . (3.27)

By substituting (3.27) into (3.26), we also have

 1
1 1 1

1 (
2

)− = +E E S SE (3.28)

where T T T= −S XAX Xαα X . The solution to (3.28) is 1/2
1

−=E S , following (2.15).

Despite the fact that 1E may not be unique since S may not be positive definite, the log-

43

determinant term in the objective of (3.18) is, in fact, a natural barrier function to force

1E to a positive definite solution.

By rewriting (3.22) with KKT conditions, the dual formulation of (3.18) can be

obtained as

()

1 1

1

,....,

1
1

1 1

max log det

s.t. 1, 0 , 1, 2,...,

m

T T T

m

i i
i

C i m
m

α α

α α
=

−

= ≤ ≤ =∑

XAX Xαα X

 (3.29)

The optimization (3.29) is a standard semidefinite program and can be solved with a

standard solver such as [69] which supports log-determinant in the objective function.

The complementary slackness conditions can also be derived, for i = 1, 2, ...m1,

 0 i iβ ξ= (3.30)

 2 2
1 1 10 i i irα ξ = − − − E x c (3.31)

By selecting an example with 1

1

0 i
C
m

α< < , we obtain 0iξ = from (3.30). Therefore, r

can later be computed from (3.31).

After
1 1,E cE is found,

2 2,E cE also can be obtained from solving (3.19). Finally, the

decision rule for the TESVM is defined by

1,2

Class arg min k k

k
k

k
r=

−
=

E x c
 (3.32)

where n∈x  is a given testing example.

3.2.1 Connection to MVCE with negative examples

TESVM is the direct extension of THSVM. Its formulation is also related to

the eSVDD with negative examples (3.2) proposed in Section 3.1. It is the

same idea that THSVM can be viewed as double SVDDs with negative

examples. In general, given 1I and 2I to be the positive and negative

classes, respectively, a soft-margin MVCE problem with negative classes

can be formulated as

44

1 2

2 1

, , ,

2 2
1

1 2

min log det()

s.t.
0,

ir i

i i i i

i

Cr
m

y y r
i

ξ

ξ
ξ

−

∈ ∪

+ +

− ≤ +
≥ ∈ ∪

∑E c ξ
E

Ex c

I I

I I
 (3.33)

where 1iy = for 1i∈ I and 1iy = − for 2i∈ I . The solution to (3.33) is the

minimum volume covering hyperellipsoid ,E cE which covers the positive

class and excludes the negative class. Therefore, (3.33) differs from (3.18)

only in that the excluding constraints of in (3.33) are moved into the

objective of (3.18).

The dual formulation of (3.33) is

()

1

1 2

,....,

1 2

max log det

s.t. 1, 0 ,

m

T T T

i i i
i

Cy i
m

α α

α α
∈ ∪

−

= ≤ ≤ ∈ ∪∑

XAYX XYαα XY

I I
I I

 (3.34)

and it has the same form as (3.29) but with some modifications. That is the

Lagrange multipliers belonging to the negative class are the optimization

variables. They are not simply a constant as in (3.21). The sum of m

Lagrange multipliers of (3.34) also must be one and the box constraints

0 /i C mα≤ ≤ also confine the Lagrange multipliers. It is worth nothing that

one subproblem of TESVM in the dual formulation requires to solve smaller

numbers of optimization variables than one MVCE problem with negative

examples.

3.3 Ellipsoids with Kernel Methods

In the previous sections, we directly formulate the minimal hyperellipsoids as a

classification tool for both one-class and two-class classification problems. Even though

hyperellipsoids provide less conservative boundary than hyperspheres, they are in some

cases not adequate to describe complex patterns.

In general, learning machines utilize kernel methods to enhance more classification

ability by replacing all inner product terms T
i jx x in their formulation with a kernel

function (,)i jk x x . Because an inner product is a measurement of similarity between

45

two examples, by replacing it with a kernel function, we also obtain an alternative

similarity measurement and hope that the training examples are mapped into a space

with better class separability [75].

Generally, a kernel is a positive definite function (,) : n nk ⋅ ⋅ ×    satisfying

Mercer’s conditions. These conditions guarantee the explicit ability to factorize a kernel

to be an inner product between two vectors, i.e., (,) () ()T
i j i jk =x x φ x φ x , where

() : n
iφ x   H , and H is the feature space. Therefore, a kernel also defines an inner

product in H , alternatively to the inner product in the input space n . The mapping

()φ x is generally unknown and the dimension of space H is usually much higher than

n. In fact, for some kernel functions, it is possible that the dimension of feature space is

infinite.

Given an m training examples 1{ }m
i i=x , we want to map all examples into the feature

space using an unknown mapping function ()φ x . Let’s also denote

 1 2[(), (),..., ()]m=Φ φ x φ x φ x (3.35)

and define the so-called the kernel matrix m
+∈K S to be T=K Φ Φ . The kernel matrix is

simply the composition of (,)i jk x x for all i and j, i.e.

1 1 1 2 1

2 1 2 2 2

1 2

(,) (,) (,)
(,) (,) (,)

(,) (,) (,)

m

m

m m m m

k k k
k k k

k k k

 
 
 =
 
 
 

x x x x x x
x x x x x x

K

x x x x x x





   



. (3.36)

Since most if not all learning machines in the family of support vector classifiers are

compatible with kernel methods, it is also interesting to see the construction of the

MVCE in the feature space using kernel methods. However, applying kernel tricks to

MVCE is not a straightforward task since the formulation of MVCE consists of outer

products, instead of inner products. In the following subsections, we will first review

the current state of the art in kernelizing the MVCE, followed by our proposed method

which is a simpler framework to construct the MVCE in the feature space.

46

3.3.1 Existing literature on kernelizing MVCE

To the best of our knowledge, there are very few research studies working

on kernelizing the MVCE. More specifically, those publications are by

Dolia et al. [57-58] and Wei et al. [59-60] where they try to rewrite the

MVCE formulation in the form of inner products with the help of some

matrix factorizations. In fact, both methods from Dolia et al. and Wei et al.

are conceptually the same and can be summarized as follows.

First, rewrite the objective of (2.20) i.e. the objective of

 log det()

 s.t. 1
0.

max T

T =
≥

α
XAX

e α
α

 

 (2.20)

by mapping X to Φ where Φ represents the matrix of training examples in

the feature space. As []T T=X X e , we also denote []T T=Φ Φ e as the

image of X in the feature space. Hence, we have

 log det()

 s.t. 1
0.

max T

T =
≥

α
ΦAΦ

e α
α

 

 (3.37)

However, Φ is normally unknown. By utilizing the fact that, for any

matrices M and N, MN and NM have the same nonzero eigenvalues. In

addition, together with using the Cholesky decomposition of the kernel

matrix in the augmented feature space, we have

1/2 1/2

1/2 1/2

1/2 1/2

1/2 1/2

1/2 1/2

1/2 1/2

log det() log det(()())
log det(() ())
log det()
log det() (Note:
log det() (Note:)
log det(() ()

)

T T

T

T

T

T T

T

=

=

=

= = +

= =

=

ΦAΦ ΦA ΦA
ΦA ΦA

A Φ ΦA
A KA K K ee
A C CA K C C
CA CA

   

 

 

 



1/2 1/2

)
log det(()())
log det().

T

T

=

=

CA CA
CAC (3.38)

47

Hence, (3.37) becomes

 log det()

 s.t. 1

m

0.

ax T

T =
≥

α
CAC

e α
α

 (3.39)

As a result, directly solving (3.37) can be avoid by using the formulation

(3.39) with the fact that C can be obtained by factorizing T+K ee .

After the objective of MVCE can be rewritten as a function of the kernel

matrix, Dolia et al. and Wei et al. then also try to rewrite the weighted norm

in the augmented feature space without explicitly using the function φ . For

a given n∈x  , the weighted norm weighted by E of appropriated

dimensions is defined as () Tf =x x Ex  . In the feature space, the norm

becomes () Tf =x φ Eφ  . However, in fact, E comes in the form of an

inverse matrix, i.e. 1 T− =E ΦAΦ   . Dolia et al. and Wei et al. utilize the

singular value decomposition (SVD) of 1/2ΦA as

 1/2 T=ΦA UΣV (3.40)

where U, V, and Σ are the eigenvector matrix of 1/2 1/2()TΦA ΦA  , the

eigenvector matrix of 1/2 1/2()TΦA ΦA  , and singular values of 1/2ΦA ,

respectively. It follows that

 1/2 1/2 1()T T T T −= = =ΦA ΦA ΦAΦ UΣΣ U E     (3.41)

and

 1/2 1/2 1/2 1/2 1/2 1/2()T T T T= = =ΦA ΦA A Φ ΦA A KA VΣ ΣV     . (3.42)

Therefore, (3.41) and (3.42) imply that 1−E and 1/2 1/2A KA share the same

set of non-zero eigenvalues. Since K is known from the training examples

and A is also known from the solution of (3.39), we can easily

compute 1/2 1/2A KA . As a result, the eigendecomposition of 1/2 1/2A KA yields

the matrices V and TΣ Σ .

48

Since, from (3.41), we have 1()T T−=E U ΣΣ U , the weight norm can be

rewritten as

 () 1
() T T Tf

−
=x φ U ΣΣ U φ  . (3.43)

Also from (3.40), 1/2 ()T +=U ΦA ΣV , where ()+⋅ is a pseudoinverse operator.

Therefore, it is possible to entirely eliminate the unknown function φ from

the weighted norm, () Tf =x φ Eφ  , by simply replacing any multiplication

pairs between the term φ in ()f x and the term Φ in U with the vector of

kernel functions.

3.3.2 Constructing MVCE in the feature space via empirical feature mapping

Although Dolia et al. [57-58] and Wei et al. [59-60] successfully proposed a

method to kernelize MVCE as described in Section 3.3.1, it is important to

emphasize that their works rely on the factorization of 1/2 1/2A KA . Although

we believe that the factorization is an indispensable step toward kernelizing

the MVCE, their methods are over-complicated. Its formulation relies on the

factorization of the constituent of the kernel matrix K and the Lagrange

multiplier’s matrix A. Precisely, the fact that their approach must factorize

the matrix 1/2 1/2A KA makes it rely on the structure of the problem.

As a result, in this section, we propose an alternative solution based on the

empirical feature mapping, or the kernel principle component analysis

(kernel PCA) mapping which is a more elegant but simple answer to

kernelizing the MVCE. The empirical feature mapping in fact is not a new

concept in the literature. It has been studied by many researchers, including

[75-76]; however, its use in the MVCE problem is still unexplored.

For a given set of m training examples 1{ }m
i i=x , we would like to define a

map from the input space n to a space called “empirical feature space EH ”

such that the inner product in EH is equal to the one in H .

49

Definition 3.1: Given the training examples 1 2, ,..., n
m ∈x x x  . The kernel

PCA map from n to EH is defined as

 : () ()T
E

+φ x Ω k x

where Ω satisfies T=K Ω Ω and 1 2() [(,), (,),..., (,)] .T
mk k k=k x x x x x x x

Corollary 3.1: The empirical feature space EH and the feature space H

have the same inner product and Euclidean distance.

Proof: Let ()i i=k k x , ()i i=φ φ x , and ()
iE E i=φ φ x . It follows that

() () (,)
i j

T T T T T T T T
E E i j i j i j i j i jk+ + + += = = = =φ φ k Ω Ω k k K k φ Φ Φ Φ Φ φ φ φ x x .

The Euclidean distance in both space is also the same according to
2

(,) 2 (,) (,)i j i i i j j jk k k− = − +φ φ x x x x x x . □

From the definition, kernel PCA mapping explicitly defines a map from the

input space to an empirical feature space EH . The term “empirical” indicate

that the map is created from the given empirical measures. The space EH is

a Euclidean space with a finite dimension and it is different from the feature

space H which can possibly have infinite dimensions such as in the case of

the RBF kernel.

Even though the dimension of H may be infinite, learning machines usually

perform only in a subspace of H spanned by the images of the training

examples 1{ ()}m
i i=φ x . Since the inner product and the Euclidean distance in

EH are the same as in H as in Corollary 3.1, the separability between

examples is preserved between both spaces. Mathematically, we say that H

is isomorphic with EH [75].

As a result, in this thesis, we suggest that the MVCE in the kernel-defined

feature space should be constructed via the use of the empirical feature map,

avoiding the need in trying to reformulate the MVCE problem in terms of

inner products. That is, from a given set of training examples 1{ }m
i i=x , we

50

first compute the kernel matrix K. Then, factorize it so that we obtain Ω .

After that, follow the mapping defined in Definition 3.1. Hence, the image

of an example in the empirical feature space can be obtained.

One benefit of the empirical feature map is that it allows the existing

formulations to seamlessly work in the feature space. Hence, the

formulations of the proposed eSVDD with negative examples (3.12) and

TESVM (3.34) can now readily be equipped with the kernel methods.

Furthermore, with the empirical feature map, an example in the input space

can be visualized in the feature space. The center and boundary of the

hyperellipsoid ,E cE can also be computed.

It is worth noting that, although a kernel matrix K which satisfies Mercer's

condition can always be factorized as T=K Ω Ω , the decomposed matrix Ω

is not unique for one K. There is more than one approach in factorizing K,

such as eigenvalue decomposition and LDL decomposition, and each

method results in different .Ω In eigendecomposition, suppose T=K VΛV ,

then, we have 1/2()T=Ω VΛ , where Λ is the diagonal eigenvalue matrix

corresponding to the eigenvector matrix V. For LDL decomposition,
T=K LDL , we have 1/2()T=Ω LD where L is the lower triangular matrix

whose diagonal elements are ones and D is a diagonal matrix. In general,

both Λ and D are not full-rank because K is positive semidefinite. In this

thesis, therefore, it is necessary to use a reduced or truncated version of the

decomposition.

	CHAPTER 3 Support Vector Classifiers based on Hyperellipsoids
	3.1 Ellipsoidal Support Vector Data Description
	3.2 Twin Hyper-ellipsoidal Support Vector Machine
	3.2.1 Connection to MVCE with negative examples

	3.3 Ellipsoids with Kernel Methods
	3.3.1 Existing literature on kernelizing MVCE
	3.3.2 Constructing MVCE in the feature space via empirical feature mapping

