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CHAPTER 4 

Experimental Results and Discussions 

This chapter is divided into two sections with the aim to evaluate all the proposed 

algorithms presented in Chapter 3. In the first section, the performance of the neSVDD 

is evaluated on one-class classification problems. After that, the second section 

proceeds to assess the performance of the TESVM on binary classification. 

4.1 One-class Classification with Ellipsoidal Support Vector Data Description 

All experiments conducted in this section are performed on the system equipped with 

Intel Core i7-4790 processor and 8 GB of ram under 64-bit Ubuntu 14.10. All classifiers 

were developed using MATLAB 2014a and the log-determinant minimization was 

solved by the SDPT3 solver [69] interfaced via YALMIP [70]. 

4.1.1 Standard datasets 

Four one-class classification methods which are the target of the evaluation 

are SVDD, nSVDD, eSVDD, and the proposed neSVDD. That is, the 

comparison can be divided into two scenarios. The first scenario is the 

comparison between ellipsoidal and spherical boundaries, i.e. SVDD vs. 

eSVDD, and nSVDD vs. neSVDD. The second scenario is the benefit of the 

inclusion of negative examples into the formulations, i.e. SVDD vs. nSVDD, 

and eSVDD vs. neSVDD.  

To simplify the experimental process, we used the implementation of SVDD 

and nSVDD from DDtools [77]. In short, DDtools is a MATLAB’s toolbox 

which is specifically designed for testing one-class classification algorithms 

and is provided by D. Tax, the author of SVDD. In order to compare SVDD 

against eSVDD, we also add our own implementation of neSVDD
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Table 4.1 Standard datasets for one-class classification 
 Dataset n m1 m2 

1 Balance-scale (left)  4 288 337 
2 Balance-scale (middle)  4 49 576 
3 Balance-scale (right)  4 288 337 
4 Cancer wpbc (nonret)  33 151 47 
5 Cancer wpbc (ret)  33 47 151 
6 Ecoli (periplasm)  7 52 284 
7 Glass (bldg. float)  9 70 144 
8 Glass (bldg. nonfloat) 9 76 138 
9 Glass (containers)  9 13 201 
10 Glass (headlamps)  9 29 185 
11 Glass (vehicle float)  9 17 197 
12 Hepatitis (live)  19 123 32 
13 Housing (MEDV>35)  13 48 458 
14 Imports (low risk)  25 71 88 
15 Iris (setosa) 4 50 100 
16 Iris (versicolor)  4 50 100 
17 Iris (virginica)  4 50 100 
18 Liver (1)  6 145 200 
19 Liver (2)  6 200 145 
20 Sonar (mines)  60 111 97 
21 Sonar (rocks)  60 97 111 
22 Spectf (0)  44 95 254 
23 Spectf (1)  44 254 95 
24 Thyroid (normal)  21 93 3679 
25 Wine (1)  13 59 119 
26 Wine (2)  13 71 107 
27 Wine (3)  13 48 130 

 
to the toolbox. The implementation of eSVDD is, in fact, the same as 

neSVDD but without considering negative examples. The model of 

neSVDD is trained using the dual formulation (3.13) with the classification 

rule defined in (3.15). 

To justify the performance of these classifiers, we conducted some 

experiments using the standard benchmark datasets as listed in Table 4.1 

where n, m1, and m2 denote the number of features, target examples, and 

outliers, respectively. These datasets were also obtained from D. Tax’s 

webpage [78] in prtools format [79] and were already preprocessed by the 

owner such as filling missing values. In addition, as a remark, the datasets 

are created from multiclass datasets by assigning one class of data to be the 

target class, and the rest to be outliers 

In the experiments, the training data were further preprocessed by scaling to 

one before the training process. We use only target classes to train SVDD 
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and eSVDD. Furthermore, because of its popularity, we choose the RBF 

kernel as the kernel function for the experiment in this thesis. In addition, 

the RBF kernel is also a perfect choice for SVDD according to [31]. As a 

result, these ellipsoidal and spherical domain description algorithms are 

compared against one another under the same RBF kernel function. We 

select two hyperparameters for SVDD, nSVDD, eSVDD, and neSVDD by 

using grid search over 120 pairs of parameters. The best value of σ  is 

searched from the set {0.5, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50} and C is 

searched from 1/(mr) for [0.1,0.2,...,1.0]r∈ . 

For eSVDD, we set the search range of C to N/(mr) where 

[0.1,0.2,...,1.0]r∈ . N is the approximate dimension of the empirical feature 

space. We factorize the kernel matrix K using eigendecomposition which 

provides 1/2( )T=Ω LD . After that kernel PCA map can be computed. 

Nevertheless, the rank of D is not always full. Therefore, we truncated its 

diagonal elements smaller than 510− . The dimension of the reduced D 

matrix is in fact the dimension of the empirical feature space. Moreover, a 

degenerate case of ellipsoids has to be avoided, when Assumption 2.1 does 

not hold, by adding a weighted identity matrix γ I  of the appropriate 

dimension inside the logdet function. In the experiment, the weight γ  is set 

to 510γ −= . 

For each choice of the hyperparameter pair C and σ, ten-fold cross-

validation was used. In order to ensure the consistency of the results, we 

evaluated all four ellipsoidal and spherical SVDDs on the same partitioned 

data of the cross-validation. However, in order to reduce the training time, 

for 9 out of 10 folds used for training nSVDD and neSVDD, negative 

examples were limited to only 20 examples, instead of 9m2/10. The best set 

of hyperparameters was determined using the maximum mean of the area 

under the Receiver Operating Characteristic (ROC) curve. 

The ROC curve is generally the plot between false positive rates and true 

positive rates. The area under the curve is at most equal to one. To construct  
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the ROC curve from the classifiers, it is necessary also output membership 

probabilities in addition to the classification result. For a training example, 

we define the membership value as de−  where d is the distance to the 

center of the descriptive boundary.  

After the grid search was performed, the best parameters then were selected. 

We report the areas under the ROC curves from 5 independent runs of 10-

fold cross-validations and the results are presented in Table 4.2. From the 

table, the best value among four algorithms is emphasized using bold-faced 

font for each dataset. We also use asterisk (*) to highlight the case when 

adding negative examples help improve the results for both SVDD and 

eSVDD.  

According to Table 4.2, the number of datasets that each algorithm is the 

best was 16, 8, 4, and 3 datasets, for neSVDD, eSVDD, nSVDD, and SVDD, 

Table 4.2 The comparison of the area under ROC for one-class classification 
Dataset Spherical SVDD Ellipsoidal SVDD 

SVDD nSVDD eSVDD neSVDD 
Balance-scale (left) 0.9665 (0.0204) 0.9671 (0.0201)* 0.9879 (0.0091) 0.9896 (0.0102)* 
Balance-scale (middle) 0.8009 (0.1099) 0.8014 (0.1082)* 0.9221 (0.0476) 0.9845 (0.0377)* 
Balance-scale (right) 0.9665 (0.0188) 0.9676 (0.0184)* 0.9870 (0.0088) 0.9900 (0.0082)* 
Cancer wpbc (nonret) 0.5433 (0.1233) 0.5362 (0.1305) 0.5239 (0.1527) 0.5335 (0.1503)* 
Cancer wpbc (ret) 0.6128 (0.1509) 0.6283 (0.1578)* 0.6449 (0.1291) 0.6172 (0.1474) 
Ecoli (periplasm) 0.9580 (0.0608) 0.9599 (0.0586)* 0.9414 (0.0592) 0.9472 (0.0585)* 
Glass (bldg. float) 0.8000 (0.0943) 0.8008 (0.0893)* 0.8317 (0.0824) 0.8309 (0.0756) 
Glass (bldg. nonfloat) 0.6541 (0.1244) 0.6841 (0.1281)* 0.7502 (0.1125) 0.7083 (0.1293) 
Glass (containers) 0.8269 (0.3286) 0.8269 (0.3286) 0.9787 (0.0371) 0.9836 (0.0287)* 
Glass (headlamps) 0.9425 (0.0808) 0.9425 (0.0808) 0.9124 (0.1200) 0.9108 (0.1247) 
Glass (vehicle float) 0.7116 (0.1230) 0.7324 (0.1258)* 0.8600 (0.1430) 0.8896 (0.1448)* 
Hepatitis (live) 0.8183 (0.1252) 0.8183 (0.1252) 0.8182 (0.1369) 0.8284 (0.1249)* 
Housing (MEDV>35) 0.8523 (0.0936) 0.8604 (0.0935)* 0.8905 (0.0766) 0.8867 (0.0822) 
Imports (low risk) 0.8338 (0.0968) 0.8351 (0.0964)* 0.7618 (0.1299) 0.8823 (0.0890)* 
Iris (setosa) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 
Iris (versicolor) 0.9708 (0.0353) 0.9796 (0.0322)* 0.9920 (0.0194) 0.9888 (0.0233) 
Iris (virginica) 0.9688 (0.0456) 0.9692 (0.0459)* 0.9796 (0.0337) 0.9704 (0.0369) 
Liver (1) 0.5614 (0.0770) 0.5670 (0.0927)* 0.6155 (0.0782) 0.6187 (0.0792)* 
Liver (2) 0.5485 (0.1068) 0.6057 (0.0972)* 0.5771 (0.1059) 0.6316 (0.1052)* 
Sonar (mines) 0.7394 (0.0987) 0.7429 (0.0992)* 0.7879 (0.0919) 0.8015 (0.0918)* 
Sonar (rocks) 0.7179 (0.1109) 0.7209 (0.1103)* 0.6274 (0.1232) 0.7327 (0.1122)* 
Spectf (0) 0.8978 (0.0570) 0.9008 (0.0564)* 0.9435 (0.0585) 0.9420 (0.0532) 
Spectf (1) 0.7153 (0.0845) 0.7327 (0.0834)* 0.6464 (0.0480) 0.6474 (0.0471)* 
Thyroid (normal) 0.7928 (0.0735) 0.8453 (0.0676)* 0.9503 (0.0428) 0.9644 (0.0497)* 
Wine (1) 0.9989 (0.0047) 0.9989 (0.0047) 0.9978 (0.0076) 0.9991 (0.0037)* 
Wine (2) 0.9011 (0.0703) 0.9011 (0.0703) 0.9559 (0.0441) 0.9713 (0.0411)* 
Wine (3) 0.9949 (0.0181) 0.9949 (0.0181) 0.9986 (0.0062) 0.9989 (0.0058)* 
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respectively. We observe that eSVDD provides better results than SVDD in 

18 out of 26 datasets, and neSVDD is also better than nSVDD for 21 out of 

26 datasets. In overall, the ellipsoidal boundary yields superior results to the 

spherical one for 22 out of 26 datasets. Therefore, changing the descriptive 

boundary from a hypersphere to a hyperellipsoid help improve the results. 

Moreover, Table 4.2 also suggests that negative examples help improve the 

performance of both SVDD and eSVDD in many datasets. Precisely, 

according to the number of asterisks in Table 4.2, including negative 

examples into the formulation enhances the area under the ROC curve for 

19 datasets in the case of SVDD, and 18 datasets in the case of eSVDD.  

Incorporating negative examples may sometimes decrease the performance 

of the classifiers. This situation can be observed from Table 4.2 where 

nSVDD is worse than SVDD for one dataset, and neSVDD is worse than 

eSVDD for 8 datasets. This is because the presence of some negative 

examples might not be helpful in creating a better decision boundary, 

especially when only 20 examples of outliers were used in the experiment. 

In fact, what is important is the positions of examples which can provide 

meaningful information to the creation of descriptive boundaries. 

Furthermore, in the case of neSVDD, we also address the performance 

decreases to occasional numerical errors during the simulation. In some 

cases, the matrix TXAYX   in neSVDD is indefinite making the optimization 

(3.13) unable to be solved. Therefore, to deal with such a problem, we 

always discarded any pair of cross-validation parameters whenever any 

training folds could not be trained. However, even with this issue, neSVDD 

is still superior to nSVDD. 

In Appendix B, we provide additional results in Table B.1 which were 

obtained under the same experimental settings as in Table 4.2; however, 

instead of using the classification rule (3.15) for the optimization (3.13), the 

incorrect rule from (3.14) is used. Since (3.14) differs from (3.15) due to 

missing the proper normalization factor, the results in Table B.1 are 

unsurprisingly poorer than the ones in Table 4.2. 
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4.1.2 Effect of hyperparameters 

For linear eSVDD, only one hyperparameter C is required to be specified. 

Since from the formulation of eSVDD (3.12), the sum of all Lagrange 

multiplies has to equal n. Therefore, eSVDD has the minimum value of C 

equal to n/m. When C increases, the size of the hyperellipsoid also increases. 

The size of the eSVDD’s ellipsoid is limited by the maximum volume 

containing the examples as shown in Figure 4.1. The increase of C more 

than a certain value has no effect on the shape of the ellipsoid. However, 

this is different from neSVDD as shown in Figure 4.2. The reason is that the 

constraint T n=y a  in neSVDD is still satisfied even for a very large C due 

to the subtraction between Lagrange multipliers. Thus, the value of a 

Lagrange multiplier can be as big as the value of C. For eSVDD, however, 

when we set C too large, a Lagrange multiplier cannot also be too large 

because of the constraint T n=e a . 

  
Figure 4.1 Effect of the parameter C on the boundary of eSVDD 

  
Figure 4.2 Effect of the parameter C on the boundary of neSVDD 
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The RBF eSVDD has one more hyperparameter than the linear eSVDD. 

Figure 4.3 shows the effect of RBF kernels’s parameter σ on neSVDD. In 

the figure, the target class 5 examples and the outlier class have one 

examples. By decreasing only kernel parameter σ, the data descriptive 

contours fit tighter to the examples, while the number of support vectors 

increases. 

4.2 Two-class Classification with Twin Hyper-ellipsoidal Support Vector Machine 

This section devotes to evaluating the performance of the proposed binary classifier, the 

twin hyper-ellipsoidal support vector machine (TESVM). Particularly, we compare the 

accuracy of the proposed method against THSVM and TWSVM, i.e. its spherical and 

planar counterparts as well as the state-of-the-art method like SVM. All classifiers are 

implemented using MATLAB 2017a on 64-bit Ubuntu 17.04 under 2.8GHz Intel Core 

i5-6402P with 8GB of RAM on both artificial and standard benchmark datasets.  

Since TESVM is considered as an improvement of THSVM, head-to-head comparisons 

between the two are presented. All experiments are performed using 10-fold cross-

validation and the cross-validation is repeated for 10 times with randomly shuffled 

examples. We use SDPT3 [69] through YALMIP [70] as a semidefinite programming 

solver for TESVM because of its support for the log-determinant objective function. 

The quadratic programming in THSVM and TWSVM is solved using the MATLAB's 

quadprog solver. For the implementation of SVM, libSVM [80] is used. 

  
(a) σ = 0.50                                                        (b) σ = 0.75 

Figure 4.3 Contour plots of the effect of σ parameter on neSVDD with RBF kernel 
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4.2.1 Artificial datasets 

Three 2-dimensional artificial datasets are presented in this section in order 

to visually compare TESVM, THSVM, SVM, and TWSVM. The details of 

the data are summarized in Table 4.3. The first two datasets contain non-

separable data generated based on Gaussian distributions and are to be 

classified by linear classifiers, while the third dataset is the Ho- Kleinberg’s 

checkerboard dataset [81] consisting of a series of examples with uniform 

distributions to form a 4 4×  tiles of checkerboard. This dataset is a 

challenging case for comparing the performance of nonlinear classifiers. 

Table 4.3 Artificial datasets for binary classification 
Dataset n m1 m2 m 

Toy 1 2 100 100 200 
Toy 2 2 50 200 250 
Checkerboard 2 514 486 1000 

 
The hyperparameters are chosen by performing a uniform grid search over 

ranges of parameters. The best set of parameters is the one which provides 

the best 10-fold cross-validation accuracy. In the case of THSVM, we set 

1 2c c c= =  and 1 2ν ν ν= =  where {10 | 5, 4,...,5}ic i∈ = − −  and 

{0.0,0.1,0.2,...,0.9}ν ∈ .  In the case of TESVM, we also set 1 2c c c= =  and 

1 2ν ν ν= =  with {2 | 4, 3,..., 4}ic i∈ = − −  and 9 12{10 ,10 }.ν − −∈ The parameter 

σ of the RBF kernel for both methods is searched from {2 | 4, 3,...,5}i i = − − . 

For SVM and TWSVM, all parameters including C and σ are searched from 

{2 | 5, 3,...,5}i i = − − . 

The first toy dataset is shown in Figure 4.4 where Figure 4.4(a)-4.4(d) show 

the results from TESVM, THSVM, TWSVM, and SVM, respectively. The 

examples in class 1 are represented by the red circles while the examples in 

class 2 are shown using the plus signs. In the cases of TESVM, THSVM, 

and TWSVM, the dash-dot lines (“-.”) and dash (“--”) lines represent the 

descriptive boundary for class 1 and 2, respectively, while for SVM the 

dash-dot lines indicating the margin of SVM. The solid lines illustrate the 

decision boundary between two classes.  
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Each class in Toy 1 dataset contains 100 examples. Both classes are 

randomly generated from different center and rotation. Precisely, the 

Gaussian distributions are from 1/2((0,0) ,diag(1,1000 ))T −N  and 
1/2((1,0) ,diag(1,1000 ))T −N  with the clockwise rotation angles at -45 and 45 

degrees, respectively. The purpose of this dataset is to illustrate the 

circumstance when THSVM loses the spirit of TWSVM, even though it is 

said to be a successor. One benefit of linear TWSVM over the linear SVM 

is that linear TWSVM is inherently able to deal with the so-called “cross-

planes” dataset [24] as seen in the comparison between Figure 4.4(c) and 

4.4(d). However, THSVM has no such an ability as presented in Figure 

  
      (a) TESVM                                                (b) THSVM 

  
 (c) TWSVM                                               (d) SVM 

Figure 4.4 Toy 1 dataset with linear kernel. The test accuracy on training set is  

(a) 92.5% (b) 80.5% (c) 92.0%. (d) 78.5%. 
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4.4(b). When the examples from two classes form an “×” shape, the 

accuracy obtained from THSVM on the training data can be as low as 50%. 

This is not the case for TESVM in Figure 4.4(a) as it offers less 

conservative class descriptors. According to Figure 4.4, TESVM 

significantly outperforms THSVM and SVM as can be seen from the test 

accuracy on the training set where TESVM, THSVM, and SVM achieve 

92.5%, 80.5%, and 78.5% of accuracy, respectively. In contrast, the 

performance of TESVM is on par with TWSVM, i.e. 92.5% vs. 92.0%. As a 

remark, the decision rule in Figure 4.4 is tested on the entire training 

examples. Therefore, for better generalization, we provide the test accuracy 

from the 10-fold cross-validation in Table 4.4 where the highest accuracy is 

emphasized in bold showing that TESVM much better than THSVM in the 

case of linear classifiers.  

For the second toy dataset, the examples in each class are generated from 

two different Gaussian distributions with unbalanced numbers of examples. 

The first class has 50 examples randomly drawn from 
1/2 1/2((9,0) ,diag(1000 ,1000 ))T −N , while the second class has 200 examples 

drawn from 1/2((10,0) ,diag(1,1000 ))T −N . This dataset is specifically to 

demonstrate another weakness of THSVM. Despite the claim that THSVM 

is superior to TWSVM as the nonparallel hyperplanes of TWSVM cannot 

efficiently describe two classes when the examples are drawn from two 

distinct Gaussian distributions [19], our result shows that THSVM almost 

fails in this dataset as shown in Figure 4.5(b). From the figure, the accuracy 

on the training examples from THSVM is 80.0%. This implies that THSVM 

incorrectly identifies all the training examples to be entirely from the second 

class. On the other hand, according to Figure 4.5(a), 4.5(c), and 4.5(d), 

TESVM, TWSVM, and SVM achieve the accuracy of 99.2%, 97.6%, and 

97.2%, respectively, showing no such a weakness as in the case of THSVM. 

Table 4.4 Binary classification accuracy on artificial datasets  
Dataset Kernel TESVM THSVM TWSVM SVM 

Toy 1 linear 92.25 (0.42) 79.40 (0.51) 92.40 (0.32) 78.15 (1.08) 
Toy 2 linear 98.76 (0.35) 80.44 (0.55) 97.28 (0.25) 97.36 (0.21) 
Checkerboard RBF 96.15 (0.37) 96.45 (0.31) 95.97 (0.30) 95.73 (0.56) 
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The accuracy from 10-fold cross-validation in Table 4.4 also further 

validates the result. 

Finally, for the third toy dataset, the Ho-Kleinberg’s checkerboard dataset is 

chosen to show the performance of the algorithms for a nonlinear separable 

case. We use the RBF kernel due to its popularity and success with real-

world data. Figure 4.6(a)-4.6(d) displays the decision boundaries from 

THSVM, TESVM, TWSVM, and SVM. It can be observed that the decision 

boundary obtained from TESVM is rather complex with more curvature 

than from THSVM. Although it is reported from the figure that TESVM 

provides the better test accuracy on the training data than THSVM, i.e., 

  
      (a) TESVM                                                (b) THSVM 

  
(c) TWSVM                                               (d) SVM 

Figure 4.5 Toy 2 dataset with linear kernel. The test accuracy on training set is  

(a) 99.2% (b) 80.0% (c) 97.6% (d) 97.2%. 



 

62 
 

99.3% compared with 98.8%, TESVM gives slightly less accuracy from the 

10-fold cross-validation, according to Table 4.4. In our view, all four 

methods when used with the RBF kernel are on par with one another in term 

of performance on this dataset. Therefore, additional datasets are required so 

as to further evaluate their performance. 

4.2.2 Standard datasets 

In this section, the standard datasets which are publicly available from the 

well-known UCI Machine Learning Repository [82] are used to compare the 

performances of THSVM, TESVM, SVM, and TWSVM. The details of the 

datasets are shown in Table 4.5. All the datasets contain two labels of data, 

   
      (a) TESVM                                                (b) THSVM 

    
(c) TWSVM                                               (d) SVM 

Figure 4.6 Checkerboard dataset with RBF kernel. The test accuracy on training set is  

(a) 99.3% (b) 98.8% (c) 98.5% (d) 98.2%. 
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except for Iris and Thyroid which have three classes. Therefore, Iris and 

Thyroid datasets are formed two-class problems by using one-against-all 

strategy.  

Since the aim of this thesis is on the advantage of using hyperellipsoids over 

hyperspheres, we first present the experimental results comparing THSVM 

vs. TESVM for the case of linear classifiers and nonlinear classifiers with 

the RBF kernel in Tables 4.6 and 4.7 respectively. Since THSVM separately 

finds two separate hyperspheres describing two classes, and TESVM also 

finds two separate hyperellipsoids, we thus consider two scenarios of 

hyperparameter selections. In Scenario I, the hyperparameters for solving 

two optimization subproblems are set to be the same, while in Scenario II, 

the hyperparameters can be different. As a result, the second scenario should 

reflex more flexibility of the decision boundary than the first scenario. 

In the first scenario, the search ranges for the best hyperparameters are 

identical to the ranges specified in Section 4.2.1. However, for the second 

scenario, we set 1 2c c≠  and 1 2ν ν≠  for both THSVM and TESVM, where 

1 2, {10 | 3, 2,...,3}ic c i∈ = − −  and 1 2, {0.0,0.1,0.2,...,0.9}ν ν ∈  for THSVM, 

and 1 2, {2 | 4, 3,..., 4}ic c i∈ = − −  and 9 12
1 2, {10 ,10 }ν ν − −∈  for TESVM. The 

kernel parameter σ  is always set the same for one pair of optimizations and 

is searched from the set {2 | 4, 3,...,5}i i = − − . In addition, for TESVM to 

Table 4.5 Standard datasets for binary classification 
Dataset n m m1 m2 

Bupa 6 345 145 200 
Diabetes 8 768 500 268 
Haberman 3 306 225 81 
Heart 13 270 150 120 
Hepatitis 19 155 32 123 
Ionosphere 33 351 126 225 
Iris (1) 4 150 50 100 
Iris (2) 4 150 50 100 
Iris (3)   4 150 50 100 
Postop 8 86 62 24 
Sonar 60 208 111 97 
Thyroid (1) 5 215 150 65 
Thyroid (2) 5 215 180 35 
Thyroid (3) 5 215 185 30 
Transfusion 4 748 570 178 
WDBC 30 569 357 212 
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avoid degenerate cases when the matrix inside log-determinant objective 

function (3.25) has some zero eigenvalues, we also add a small diagonal 

matrix γ I  to it where γ  is a small scalar and I is an identity matrix of 

appropriate dimensions. We consider γ  as another hyperparameter and 

search for its optimal value from the range {10 | 1, 2, 3, 4}i i = − − − − .  

From Tables 4.6 and 4.7, the results indicate that the second scenario likely 

provides better classification accuracy since the decision boundary is 

Table 4.6 Classification accuracy (and its standard deviation) for linear THSVM vs. 
linear TESVM under two different scenarios 

Dataset Scenario I Scenario II 
TESVM THSVM TESVM THSVM 

Bupa 67.7391 (1.2377) 56.9565 (1.0248) 68.6957 (1.0584) 57.3913 (1.1674) 
Diabetes 72.1875 (0.6175) 73.1771 (1.5321) 75.8464 (0.7474) 74.2708 (0.5428) 
Haberman 69.0523 (1.1221) 71.1765 (2.3606) 75.3268 (0.5167) 73.0392 (0.9774) 
Heart 81.2963 (1.1077) 79.9630 (1.6420) 81.8519 (1.1581) 80.4074 (2.2928) 
Hepatitis 82.9032 (1.9054) 79.0323 (1.0201) 82.9677 (1.8044) 80.1935 (1.9486) 
Ionosphere 68.7464 (0.7603) 37.7493 (0.4505) 92.1937 (0.3344) 87.7208 (0.6363) 
Iris (1) 100.0000 (0.0000) 100.0000 (0.0000) 100.0000 (0.0000) 100.0000 (0.0000) 
Iris (2) 82.9333 (0.6441) 66.8000 (0.4216) 88.0667 (1.4555) 86.6667 (1.5396) 
Iris (3) 96.6667 (0.0000) 93.4000 (0.6630) 96.7333 (0.6630) 96.8000 (0.8195) 
Postop 61.3953 (2.0363) 55.4651 (3.4689) 69.3023 (1.9915) 69.1860 (1.5744) 
Sonar 75.8654 (1.4476) 69.3269 (1.2980) 77.1635 (1.7148) 69.5673 (1.8419) 
Thyroid (1) 83.6744 (1.0842) 34.5116 (1.7096) 92.1860 (0.7844) 87.9535 (3.1120) 
Thyroid (2) 98.0465 (0.1961) 98.3721 (0.8277) 98.4651 (0.4412) 98.9302 (0.4927) 
Thyroid (3) 97.6279 (0.2640) 97.3953 (1.6142) 98.0465 (0.1961) 98.6977 (0.7532) 
Transfusion 74.1578 (0.5199) 75.9358 (0.7377) 76.5909 (0.4980) 75.5882 (0.4725) 
WDBC 95.4482 (0.4097) 94.2179 (0.4719) 95.7821 (0.3416) 94.7100 (0.8707) 

Table 4.7 Classification accuracy (and its standard deviation) for THSVM vs. TESVM 
with RBF kernel under two different scenarios 

Dataset Scenario I Scenario II 
TESVM THSVM TESVM THSVM 

Bupa 69.7971 (1.2876) 69.7391 (1.1928) 69.7971 (1.2876) 69.7391 (1.4081) 
Diabetes 76.1849 (0.5402) 76.3411 (0.5760) 76.8359 (0.3157) 76.3411 (0.5760) 
Haberman 76.1438 (0.3774) 74.1176 (2.3906) 76.2092 (0.6855) 71.4706 (4.0174) 
Heart 83.9259 (0.6098) 83.0000 (0.9147) 83.9259 (0.6098) 83.6667 (0.5367) 
Hepatitis 83.4839 (1.2613) 81.6129 (2.5672) 84.7097 (1.2558) 85.2258 (0.7100) 
Ionosphere 94.3020 (0.3290) 95.1567 (0.6579) 94.4444 (0.3077) 95.1567 (0.6579) 
Iris (1) 100.0000 (0.0000) 100.0000 (0.0000) 100.0000 (0.0000) 100.0000 (0.0000) 
Iris (2) 97.4667 (0.2811) 96.9333 (0.5622) 97.6667 (0.6479) 97.6000 (0.7166) 
Iris (3) 98.0667 (0.4919) 96.7333 (0.7337) 98.0667 (0.4919) 96.3333 (1.0541) 
Postop 71.7442 (1.2318) 69.1860 (1.8385) 72.7907 (0.9806) 70.3488 (1.4759) 
Sonar 89.6635 (1.3264) 87.2115 (1.2861) 89.6635 (1.3264) 88.1731 (0.9122) 
Thyroid (1) 96.9302 (0.4493) 96.4651 (0.9093) 97.2093 (0.5370) 97.2558 (0.4073) 
Thyroid (2) 99.4884 (0.1471) 98.8372 (0.3289) 99.4884 (0.1471) 98.5116 (0.7532) 
Thyroid (3) 98.6512 (0.3432) 98.5116 (0.8987) 98.6512 (0.3432) 98.3721 (1.0342) 
Transfusion 77.3128 (0.7047) 76.7914 (1.0992) 77.4332 (0.1381) 77.3930 (0.5653) 
WDBC 97.1880 (0.1172) 96.5026 (0.3925) 97.1880 (0.2029) 96.8014 (0.3868) 
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formed by searching a larger search space of hyperparameters. However, 

that is not always true, as can be seen from the case of linear THSVM with 

Transfusion dataset where Scenario II has lower accuracy than Scenario I. 

That is because the best hyperparameters are determined based only on one 

run of 10-fold cross validations while the results are reported from ten 

independent runs with randomly shuffled data. 

Additionally, similar to the results in Section 4.2.1, it can be observed that 

linear TESVM tested with the standard datasets also performs better than 

linear THSVM on both scenarios as reported in Table 4.6 on most of the 

datasets. That is 11 and 12 datasets out of 15 datasets for Scenario I and II, 

respectively. While linear TESVM performs worse in some datasets, the 

differences are rather small. As a result, we conclude that linear TESVM 

provides better prediction results than linear THSVM. For further insights 

into Table 4.6, we also summarize the ranking of each algorithm for each 

dataset in Appendix B’s Table B.2 where linear TESVM with Scenario II 

has the best average rank as well as the best average accuracy. 

The classification accuracy from both THSVM and TESVM with the RBF 

kernel on the standard datasets also further shows the advantage of using 

hyperellipsoids over hyperspheres. According to Table 4.7, we observe that 

TESVM provides better accuracy on 13 and 12 datasets out of 15 datasets 

on the first and the second scenarios, respectively. Although the accuracies 

are not drastically improved from Scenario I to Scenario II and also from 

THSVM to TESVM, slight enhancements in the accuracies in many datasets 

are still a good indicator to show that the less conservative class descriptors 

of hyperellipsoids can help squeeze the performance from the less flexible 

spherical shape of THSVM, even together with the RBF kernel. We also 

summarize Table 4.7 by ranking them for each dataset as shown in 

Appendix B’s Table B.3. According to the table, TESVM with RBF kernel 

under Scenario II has the best average rank as well as the best average 

accuracy. 
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Moreover, we further compare both THSVM and TESVM with SVM and 

TWSVM. The setups of SVM and TWSVM are the same as described in 

Section 4.2.1. The comparisons of all four classifiers are provided in Table 

4.8 and 4.9 for the linear and RBF kernels, respectively. The accuracy 

values from THSVM and TESVM in Table 4.8 are extracted from the best 

scenario in Table 4.6 for each dataset. Likewise, the results from THSVM 

and TESVM in Table 4.9 are also obtained from Table 4.7. We observe that 

Table 4.8 Classification accuracy (and its standard deviation) for linear binary 
classifiers 

Dataset TESVM THSVM TWSVM SVM 
Bupa 68.6957 (1.0584) 57.3913 (1.1674) 66.6667 (0.6111) 69.1014 (0.8334) 
Diabetes 75.8464 (0.7474) 74.2708 (0.5428) 76.9401 (0.3806) 76.9271 (0.3178) 
Haberman 75.3268 (0.5167) 73.0392 (0.9774) 75.4575 (0.5856) 73.5294 (0.0000) 
Heart 81.8519 (1.1581) 80.4074 (2.2928) 83.8519 (0.5843) 84.1481 (0.5179) 
Hepatitis 82.9677 (1.8044) 80.1935 (1.9486) 80.1290 (2.3122) 79.4839 (1.5146) 
Ionosphere 92.1937 (0.3344) 87.7208 (0.6363) 82.0798 (0.7288) 87.5499 (0.8709) 
Iris (1) 100.0000 (0.0000) 100.0000 (0.0000) 100.0000 (0.0000) 100.0000 (0.0000) 
Iris (2) 88.0667 (1.4555) 86.6667 (1.5396) 74.8667 (1.3717) 72.0000 (1.4055) 
Iris (3) 96.7333 (0.6630) 96.8000 (0.8195) 94.8000 (0.8777) 95.8000 (0.6325) 
Postop 69.3023 (1.9915) 69.1860 (1.5744) 70.5814 (1.2318) 72.0930 (0.0000) 
Sonar 77.1635 (1.7148) 69.5673 (1.8419) 75.5288 (1.9945) 78.2692 (2.0623) 
Thyroid (1) 92.1860 (0.7844) 87.9535 (3.1120) 81.3488 (0.4625) 86.6512 (0.4412) 
Thyroid (2) 98.4651 (0.4412) 98.9302 (0.4927) 92.2791 (0.8262) 98.6047 (0.0000) 
Thyroid (3) 98.0465 (0.1961) 98.6977 (0.7532) 97.3488 (0.2247) 98.0465 (0.4274) 
Transfusion 76.5909 (0.4980) 75.9358 (0.7377) 77.9278 (0.6253) 76.2032 (0.0000) 
WDBC 95.7821 (0.3416) 94.7100 (0.8707) 94.6749 (0.3214) 97.6977 (0.1934) 

Average 85.5762 83.2169 82.7801 84.1315 

Table 4.9 Classification accuracy (and its standard deviation) for classifiers  
with RBF kernel 

Dataset TESVM THSVM TWSVM SVM 
Bupa 69.7971 (1.2876) 69.7391 (1.4081) 73.2174 (0.5829) 72.6087 (0.8560) 
Diabetes 76.8359 (0.3157) 76.3411 (0.5760) 77.0964 (0.7751) 77.3958 (0.3373) 
Haberman 76.2092 (0.6855) 74.1176 (2.3906) 73.2026 (1.4035) 74.2484 (0.7193) 
Heart 83.9259 (0.6098) 83.6667 (0.5367) 83.7778 (0.6246) 84.3704 (0.4553) 
Hepatitis 84.7097 (1.2558) 85.2258 (0.7100) 84.3871 (1.5745) 83.4839 (1.9521) 
Ionosphere 94.4444 (0.3077) 95.1567 (0.6579) 93.9031 (0.8191) 95.2137 (0.3984) 
Iris (1) 100.0000 (0.0000) 100.0000 (0.0000) 100.0000 (0.0000) 100.0000 (0.0000) 
Iris (2) 97.6667 (0.6479) 97.6000 (0.7166) 97.2667 (0.5837) 97.2667 (0.2108) 
Iris (3) 98.0667 (0.4919) 96.7333 (0.7337) 97.2000 (0.5259) 95.8667 (0.5259) 
Postop 72.7907 (0.9806) 70.3488 (1.4759) 69.0698 (3.2980) 72.6744 (1.2560) 
Sonar 89.6635 (1.3264) 88.1731 (0.9122) 88.7981 (1.2215) 89.7596 (1.2831) 
Thyroid (1) 97.2093 (0.5370) 97.2558 (0.4073) 95.1628 (0.9607) 96.0465 (0.5481) 
Thyroid (2) 99.4884 (0.1471) 98.8372 (0.3289) 99.4884 (0.1471) 98.9767 (0.1961) 
Thyroid (3) 98.6512 (0.3432) 98.5116 (0.8987) 97.8605 (0.2402) 97.8140 (0.6951) 
Transfusion 77.4332 (0.1381) 77.3930 (0.5653) 79.2112 (0.4332) 78.9706 (0.6335) 
WDBC 97.1880 (0.2029) 96.8014 (0.3868) 98.0492 (0.1934) 97.8383 (0.1862) 

Average 88.3800 87.8688 87.9807 88.2834 
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TESVM and SVM provide better results than THSVM and TWSVM in term 

of the number of datasets for both linear and RBF kernels. For the average 

accuracy across all 16 standard datasets, TESVM is superior to other 

methods. Furthermore, we further summarize Table 4.8 and 4.9 by reporting 

the corresponding ranks as presented in Appendix B’s Table B.4 and B.5. 

From the tables, TESVM achieves the best ranks as well as the best average 

accuracies. In fact, these ranks of TESVM are considered close to SVM’s. 

One drawback of TESVM that we can observe during the experiments is the 

proper choices of ( 1ν , 2ν ). According to (3.25), the term T T T−XAX Xαα X  

is equivalent to 
1 2

1

2

T T
i i i j j

i jm
να

∈ ∈

−∑ ∑x x x x
I I

 .which implies that if 1ν  is 

specified too large, the overall term will become an indefinite matrix. Thus, 

the optimization cannot be solved. As a result, the values of 1ν  and 2ν  in 

this paper are kept being rather small to avoid such a pitfall and the proper 

selection method is subjected to further research. 

4.2.3 Private dataset 

Although standard datasets are widely used to gauge the performance of a 

classification algorithm, we are also interested in applying TESVM to other 

datasets whose data collection and feature extraction processes are 

 
(a) Class 1: Normal and ASC-US cells 

 
(b) Class 2: LSIL cells 

 
(c) Class 3: HSIL cells 

 
(d) Class 4: SCC cells 

Figure 4.7 Examples of cervical cancer cell (Courtesy of T. Chankong) 
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transparent to us. In this section, we deliberately select the proprietary 

dataset known as the “LCH pap smear dataset” by Chankong et al. [83]. 

The LCH data named after Lampang Cancer Hospital (LCH) who was also 

the source of data, consists of 300 cervical cancer cell images categorized 

into 4 classes by expert as shown in Figure 4.7. The process of data 

collection was also approved by the Lampang Cancer Hospital Ethics 

Committee. The number of data in each class is summarized in Table 4.10 

and the details of each class of cells are as follows. Class 1 contains 150 

cells where 80 of them are normal cells and 70 are atypical squamous cells 

of undetermined significance (ASC-US). Class 2 and 3 consist of 64 low-

grade squamous intraepithelial lesion (LSIL) and 38 high-grade squamous 

intraepithelial lesion (HSIL), respectively. Finally, Class 4 consists of 

squamous cell carcinoma (SCC) cells. Among 4 classes, only Class 1 is 

considered normal, while the rest is abnormal classified into different 

degrees of abnormalities. The raw images of the cells were undergone a 

feature extraction process resulted in totally 9 features. For more details on 

the dataset and its extraction process, see the reference [83]. 

The experimental setup for training and testing the LCH dataset is the same 

as in Section 4.2.2. Since the dataset has four classes, we form four binary 

classification scenarios based on the one-against-all fashion as shown in 

Table 4.11. The multiclass classification with the one-against-one strategy is 

also given. Some of the results for SVM, TWSVM, and THSVM presented 

in the table were previously reported in [84]. According to the table, 

Table 4.10 LCH pap smear dataset 
Class 1 2 3 4 Total 

No. of examples 150 64 38 48 300 
No. of features 9 

 
Table 4.11 Classification accuracy (and its standard deviation) for classifiers with RBF 

kernel on LCH dataset 
Dataset TESVM THSVM TWSVM SVM 

1 vs the rest 89.3333 (0.5212) 85.8667 (1.1353) 92.3333 (0.8607) 91.3333 (1.1547) 
2 vs the rest 88.9333 (0.7503) 86.0667 (0.6441) 93.5667 (0.2250) 92.8667 (0.3220) 
3 vs the rest 89.7000 (0.3668) 86.6333 (1.9717) 88.6333 (0.7445) 87.5000 (0.5270) 
4 vs the rest 89.5667 (0.8020) 89.3000 (1.0476) 89.8333 (0.5932) 89.7667 (0.8614) 
One-against-one 77.4667 (1.1675) 71.3333 (1.0887) 81.2000 (0.8043) 79.2000 (0.8777) 
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TWSVM exhibits the best performance among the others. Our proposed 

TESVM, however, does outperform THSVM for all cases.  

4.2.4 TESVM with instance reduction 

SVM and TWSVM solve one or two QPPs to find the best hyperplanes from 

the given training data to create a decision rule. Likewise, SVDD and 

THSVM also require solving QPPs to create hyperspheres. For TESVM, 

since its formulation is based on the semidefinite program of MVCE, it is 

more computational expensive due to a larger number of unknown variables 

to be solved.  

Table 4.12 shows some selected datasets with at least 1000 examples where 

nc, n, and m are the number of classes, features, and examples, respectively. 

Among these datasets, we conduct some experiments similar to the 

experiments in Section 4.2.2 (Scenario II). However, as shown in Table 4.13, 

where the classification accuracy (%) and the training time (seconds) are 

Table 4.12 Large datasets with at least 1000 examples 
Dataset nc n m 

Adult 2 14 32561 
Banana 2 2 5300 
Checkerboard 2 2 1000 
German 2 20 1000 
HTRU2 2 8 17898 
Occupancy 2 5 20560 
Pen-based 10 16 7494 
Page-blocks0 2 10 5472 
Phoneme 2 5 5404 
Shuttle 7 9 43500 
Skin 2 3 245057 
Twonorm 2 20 7400 
Wilt 2 5 4339 

 
Table 4.13 Classification accuracy and training time (in seconds) and their standard 

deviations for some selected datasets from Table 4.12 
Dataset TESVM THSVM TWSVM SVM 

Checkerboard 96.15 (0.37) 
114.1 (123.4) 

96.45 (0.31) 
0.293 (0.110) 

95.97 (0.30) 
0.245 (0.045) 

95.73 (0.56)  
0.050 (0.007) 

HTRU2 Out of memory N/A N/A 98.04 (0.02) 
9.666 (1.301) 

Occupancy 
detection 

Out of memory N/A N/A 98.99 (0.01) 
3.437 (0.289) 

Shuttle Out of memory N/A N/A 99.90 (0.01) 
5.098 (0.490) 

Skin 
segmentation 

Out of memory N/A N/A N/A 
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shown in normal and italic texts, respectively, TESVM fails to be trained on 

many datasets except for the checkerboard dataset which has only 2 classes, 

2 features, and 1000 examples. Hence, this problem reflects a major 

drawback of TESVM. In fact, any MVCE-based classifiers attempting at 

solving an SDP problem using a generic SDP solver are unable to be trained 

under large datasets.  

There are many possibilities to enable TESVM to handle larger data. For 

example, active set strategies are proposed in [41] as a technique to solve 

MVCE problem with more than 10000 examples. Wang and Xiao [63] also 

suggest a procedure based on Mahalanobis distance in the kernel space to 

select a subset of data which contains possible supports for the 

hyperellipsoid.  

In this thesis, however, we attempt to solve the problem from another 

perspective. We introduce an instance selection technique as proposed by A. 

Yodjaiphet [85] to be a preprocessing step before solving the MVCE-based 

classifiers. Although many instance reduction methods have been presented 

in literature, the technique proposed in [85] offers exceptional reduction 

speed while retaining the significant portion of data. The rough idea of the 

instance selection procedure is that, among all training examples, the most 

important part of the data is only located at the boundary where two 

different classes face against or overlap each other. Therefore, it is 

intuitively plausible to ignore the examples located far from the boundary. 

The implementation of this idea can be achieved entirely based on 

comparing the in-class and between-class distances of various subsets of 

data. In fact, most parts of the algorithm rely merely on k-nearest neighbors 

where the reduction procedure can be described as in Figure 4.8. For the 

exacted reduction algorithm, see [85].  The illustrations of the data reduction 

Noise and 
overlapping 
data removal

Class boundary 
approx.

Initialize 
reduced 
dataset

Extract data 
from training 
set to reduced 

dataset

Data 
pruning

1-NN 3-NN 1-NN 1-NN

 
Figure 4.8 Instance reduction procedure 
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results are shown in Figure 4.9 and 4.10 for Banana and Ho-Kleinberg’s 

checkerboard datasets, respectively. According to the figures, the reduced 

data are mainly extracted from the boundary of the original data. 

The goodness of the instance reduction technique will allow the proposed 

TESVM classifier to be trained on larger datasets and be solved using a 

generic SDP solver. Since the complexity of the introduced reduction 

scheme is much lower than solving an SDP problem, incorporating the 

reduction step into TESVM does not add much time complexity. Although 

the instance reduction does sacrifice some classification accuracy, Table 

4.14 shows show that the accuracy loss is acceptable in the case of SVM. 

To demonstrate the performance of TESVM with data reduction, 10 

independent runs of 10-fold cross validation are performed on the reduced 

version of datasets listed in Table 4.12. Because 10-fold cross validation 

   
Figure 4.9 Banana dataset and its reduced version 

   
Figure 4.10 Ho-Kleinberg’s checkerboard dataset and its reduced version 
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constructs 10 models from different nine folds of data, we report the average 

sizes as well as their standard deviations of 9-fold training data for both the 

original and reduced datasets in Table 4.15. It is important to note that, 

although the reduced 9 folds are used for training, the resulted models are 

tested using the normal testing fold which does not undergo data reduction.  

Moreover, the datasets whose name is followed by a parenthesized number 

such as “Pen-based (3)” are two-class datasets created by using one-against-

all fashion. That is “Pen-based (3)” is the dataset derived from the third 

class against the rest from the 10-classes Pen-based dataset. 

Table 4.14 Classification accuracy (with its standard deviation) of SVM: With vs. 
without instance reduction 

Dataset SVM 
(without instance reduction) 

SVM  
(with instance reduction) 

Accuracy  
loss (%) 

Checkerboard 95.2600 (0.3239) 93.5700 (0.5438) -1.77 
Banana 90.6038 (0.0755) 90.3717 (0.1543) -0.26 
HTRU2 98.0417 (0.0192) 97.9009 (0.0201) -0.14 
Occupancy detection 98.9942 (0.0050) 98.7359 (0.0360) -0.26 

 
Table 4.15 The average number of examples (and its standard deviation) of 9 training 

folds in 10-fold cross validation 
Dataset Original training folds Reduced training folds 

Adult 29304.9 (0.3) 174.32 (10.79) 
Banana 4770.0 (0.0) 236.61 (7.53) 
Checkerboard 900.0 (0.0) 109.39 (2.60) 
German 900.0 (0.0) 129.54 (5.25) 
HTRU2 16108.2 (0.4) 168.91 (7.98) 
Occupancy 18504.0 (0.0) 141.72 (6.29) 
Pen-based (1) 6744.6 (0.5) 37.28 (1.66) 
Pen-based (2) 6744.6 (0.5) 132.47 (4.04) 
Pen-based (3) 6744.6 (0.5) 90.25 (3.08) 
Pen-based (4) 6744.6 (0.5) 73.50 (3.17) 
Pen-based (5) 6744.6 (0.5) 66.35 (2.98) 
Pen-based (6) 6744.6 (0.5) 80.93 (2.78) 
Pen-based (7) 6744.6 (0.5) 38.19 (1.66) 
Pen-based (8) 6744.6 (0.5) 87.46 (3.47) 
Pen-based (9) 6744.6 (0.5) 63.50 (2.43) 
Pen-based (10) 6744.6 (0.5) 77.95 (2.64) 
Page-blocks0 4924.8 (0.4) 143.71 (5.24) 
Phoneme 4863.6 (0.5) 36.84 (4.54) 
Shuttle (1) 39150.0 (0.0) 71.48 (2.57) 
Shuttle (4) 39150.0 (0.0) 53.98 (1.55) 
Shuttle (5) 39150.0 (0.0) 13.62 (1.12) 
Skin 220551.3 (0.5) 170.10 (3.76) 
Twonorm 6660.0 (0.0) 59.81 (5.67) 
Wilt 3905.1 (0.3) 69.22 (4.65) 
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Similar to the experimental setup in Scenario II of Section 4.2.2, each 

hyperellipsoid in TESVM are independently adjusted their hyperparameters. 

This setting is also the case for each hypersphere of THSVM. In TWSVM, 

however, the hyperparameters for each hyperplane are set to be identical. In 

order to find the best hyperparameters, we perform a grid search over given 

ranges of parameters where the best parameters are the ones which provides 

the best 10-fold cross-validation accuracy.  

The percentages of classification accuracy from four classifiers with RBF 

kernel, i.e., TESVM, THSVM, TWSVM, and SVM, on the reduced datasets 

are shown in Table 4.16. For each dataset, the average classification 

accuracy (%) as well as its standard deviation is shown using the normal 

text, while the average training time (in seconds) is shown in italics. In order 

to interpret the result, we also provide Table B.6 in Appendix B to 

summarize the rank of each classifier on each dataset as well as the average 

rank and average accuracy. According to those tables, when taking only 

TESVM and THSVM into account, TESVM performed better than THSVM 

for 18 out of 24 datasets. In addition, among four classifiers, TESVM 

achieved the second place for the average rank with 9 datasets being the best 

among the others. Although SVM is the best in terms of the average rank, 

average accuracy, and attaining the best accuracy for 12 datasets, TESVM 

can still find a niche in some datasets, better than both THSVM and 

TWSVM which are from the same family of twin support vector classifiers. 

In fact, upon a closer comparison between TESVM and SVM, we observe 

that TESVM is better than SVM for 10 out of 24 datasets.  

Moreover, as further references, classification accuracy and training time (in 

seconds) are also reported for the four classifiers with RBF kernel on 

smaller datasets as shown in Table 4.17 with their ranking summarized in 

Table B.7 in Appendix B. According to the tables, among 12 datasets, 

TESVM obtained the best accuracy for 3 out of 12 datasets, while SVM 

achieved totally 8 out of 12 datasets. This suggests that the strength of SVM 

in that it can provide good prediction accuracy, especially in the datasets 

with smaller number of examples. However, similar to the results from 
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Table 4.16 for larger datasets, TESVM still ranks at the second place over 

THSVM and TWSVM. In fact, among 12 datasets, there is no dataset where 

THSVM performed better than TESVM. 

Table 4.16 Classification accuracy and training time (in seconds) and their standard 
deviations on the large datasets with instance reduction 

Dataset TESVM THSVM TWSVM SVM 
Adult 80.7411 (0.1949) 

6.8040 (0.9743) 
81.5703 (0.2944) 
0.0137 (0.0010) 

82.7481 (0.1507) 
0.0103 (0.0020) 

81.5279 (0.2359) 
0.0095 (0.0010) 

Banana 90.3453 (0.1571) 
5.3456 (0.7702) 

88.1321 (0.2268) 
0.0190 (0.0016) 

89.4642 (0.9107) 
0.0132 (0.0014) 

90.3717 (0.1543) 
0.0121 (0.0012) 

Checkerboard 93.6000 (0.4372) 
0.9411 (0.1884) 

94.9400 (0.5147) 
0.0103 (0.0009) 

91.4500 (0.9301) 
0.0071 (0.0005) 

93.5700 (0.5438) 
0.0059 (0.0014) 

German 71.3300 (0.6993) 
7.2037 (1.1181) 

70.8500 (1.0638) 
0.0106 (0.0009) 

74.3200 (0.5940) 
0.0085 (0.0021) 

73.6000 (0.8602) 
0.0079 (0.0025) 

HTRU2 97.9070 (0.0487) 
2.8546 (0.3729) 

97.8333 (0.0609) 
0.0126 (0.0003) 

97.8634 (0.0658) 
0.0085 (0.0009) 

97.9009 (0.0201) 
0.0054 (0.0007) 

Occupancy 98.8205 (0.1635) 
7.9758 (1.5885) 

98.0034 (0.3991) 
0.0090 (0.0006) 

98.6629 (0.1167) 
0.0078 (0.0008) 

98.7359 (0.0360) 
0.0068 (0.0010) 

Pen-based (1) 99.7972 (0.0320) 
1.1629 (0.1794) 

99.7732 (0.0218) 
0.0066 (0.0004) 

99.7251 (0.0362) 
0.0060 (0.0006) 

99.7451 (0.0172) 
0.0012 (0.0001) 

Pen-based (2) 99.3355 (0.0402) 
6.8744 (1.0637) 

99.2060 (0.0675) 
0.0115 (0.0006) 

98.7950 (0.1603) 
0.0080 (0.0006) 

99.5850 (0.0528) 
0.0068 (0.0005) 

Pen-based (3) 99.6410 (0.0473) 
1.4653 (0.2253) 

99.5103 (0.0345) 
0.0079 (0.0005) 

99.4876 (0.0651) 
0.0067 (0.0007) 

99.8225 (0.0289) 
0.0030 (0.0004) 

Pen-based (4) 99.6771 (0.0407) 
0.8786 (0.1729) 

99.6130 (0.0308) 
0.0078 (0.0008) 

99.4489 (0.0545) 
0.0063 (0.0005) 

99.7585 (0.0364) 
0.0021 (0.0002) 

Pen-based (5) 99.8706 (0.0282) 
0.7942 (0.1496) 

99.6744 (0.0454) 
0.0076 (0.0009) 

99.6851 (0.0804) 
0.0061 (0.0005) 

99.8612 (0.0268) 
0.0021 (0.0002) 

Pen-based (6) 99.7838 (0.0453) 
1.2034 (0.1762) 

99.7638 (0.0252) 
0.0082 (0.0006) 

98.8671 (0.1697) 
0.0065 (0.0006) 

99.7758 (0.0338) 
0.0027 (0.0004) 

Pen-based (7) 99.7825 (0.0907) 
0.4321 (0.1149) 

99.8479 (0.0432) 
0.0064 (0.0003) 

99.7638 (0.0413) 
0.0058 (0.0005) 

99.8812 (0.0336) 
0.0012 (0.0002) 

Pen-based (8) 99.5957 (0.0383) 
1.2566 (0.1981) 

99.5250 (0.0766) 
0.0084 (0.0005) 

98.9685 (0.1428) 
0.0064 (0.0005) 

99.7758 (0.0551) 
0.0033 (0.0003) 

Pen-based (9) 99.7251 (0.0328) 
0.7202 (0.1331) 

99.6878 (0.0229) 
0.0078 (0.0006) 

99.5036 (0.1149) 
0.0061 (0.0005) 

99.7758 (0.0343) 
0.0022 (0.0003) 

Pen-based (10) 99.6531 (0.0680) 
1.0655 (0.1684) 

99.6437 (0.0683) 
0.0084 (0.0016) 

99.2167 (0.3654) 
0.0065 (0.0006) 

99.8305 (0.0295) 
0.0030 (0.0003) 

Page-blocks0 96.3359 (0.1002) 
7.6180 (1.6104) 

92.7814 (0.6407) 
0.0099 (0.0008) 

95.6232 (0.1596) 
0.0081 (0.0008) 

95.8553 (0.2031) 
0.0080 (0.0012) 

Phoneme 74.9112 (0.9248) 
0.3806 (0.0327) 

74.7150 (2.5087) 
0.0065 (0.0007) 

69.3949 (2.5887) 
0.0064 (0.0011) 

73.0477 (2.0270) 
0.0009 (0.0001) 

Shuttle (1) 99.7175 (0.0758) 
0.8790 (0.0833) 

95.4816 (0.6618) 
0.0067 (0.0004) 

97.9097 (0.4675) 
0.0058 (0.0006) 

99.7149 (0.0227) 
0.0046 (0.0008) 

Shuttle (4) 99.8246 (0.0583) 
0.7044 (0.1214) 

99.8531 (0.0362) 
0.0064 (0.0006) 

95.9285 (0.2519) 
0.0061 (0.0010) 

99.9559 (0.0043) 
0.0016 (0.0004) 

Shuttle (5) 99.9269 (0.0059) 
1.5511 (0.2659)  

99.8947 (0.0579) 
0.0063 (0.0004) 

99.4186 (0.3942) 
0.0060 (0.0003) 

99.9434 (0.0057) 
0.0011 (0.0003) 

Skin 99.9045 (0.0303) 
4.8346 (0.6326) 

98.2431 (0.0533) 
0.0112 (0.0005) 

99.6005 (0.4138) 
0.0103 (0.0027) 

99.5800 (0.0739) 
0.0061 (0.0005) 

Twonorm 94.6000 (0.4659) 
0.6062 (0.1164) 

96.5838 (0.1354) 
0.0073 (0.0012) 

95.1203 (0.6232) 
0.0058 (0.0006) 

96.6419 (0.2164) 
0.0023 (0.0005) 

Wilt 99.2279 (0.0714) 
0.6909 (0.0580) 

99.4031 (0.0619) 
0.0079 (0.0006) 

99.0873 (0.2373) 
0.0072 (0.0016) 

99.4330 (0.0607) 
0.0021 (0.0003) 
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In conclusion, this section shows that it is impossible to evaluate TESVM 

against its peers on the datasets larger than 1000 examples without the 

instance reduction. With the introduction of the data reduction technique, 

we can conclude that TESVM is superior to THSVM and TWSVM. 

Although, for smaller datasets with instance reduction, TESVM seems 

weaker than SVM in term of the number of the best datasets, such weakness 

is lessened in the large datasets.  

 
 

Table 4.17 Classification accuracy and training time (in seconds) and their standard 
deviations on the small datasets with instance reduction 

Dataset TESVM THSVM TWSVM SVM 
Bupa 68.3768 (1.7891) 

0.6809 (0.1119) 
64.6667 (1.2923)  

0.0100 (0.0039) 
67.9130 (1.6569)  

0.0066 (0.0022) 
68.8406 (1.4732)  

0.0011 (0.0005) 
Diabetes 74.8047 (0.9334) 

1.0374 (0.2619) 
72.4219 (0.8784)  

0.0097 (0.0026) 
76.0938 (0.4034)  

0.0070 (0.0017) 
76.6406 (0.6205)  

0.0022 (0.0006) 
Haberman 74.4771 (1.8322) 

1.2488 (0.3378) 
70.9150 (1.7016)  

0.0084 (0.0034) 
73.2026 (0.9243)  

0.0079 (0.0038) 
73.4641 (0.6680)  

0.0009 (0.0015) 
Heart 80.3704 (1.6002) 

1.3773 (0.3822) 
78.1852 (1.1509)  

0.0075 (0.0021) 
83.5185 (1.2128)  

0.0060 (0.0008) 
83.6667 (1.4125)  

0.0006 (0.0001) 
Hepatitis 81.0968 (1.6108) 

1.5119 (0.4153) 
80.4516 (1.2558)  

0.0071 (0.0012) 
81.2258 (1.2705)  

0.0060 (0.0007) 
78.9677 (1.8299)  

0.0004 (0.0000) 
Ionosphere 68.3191 (2.8861) 

1.5099 (0.4049) 
40.2279 (0.9478)  

0.0071 (0.0012) 
60.6553 (2.0826)  

0.0060 (0.0011) 
87.3504 (1.2896)  

0.0006 (0.0001) 
Sonar 83.9904 (1.5710)  

1.7955 (0.4553) 
75.7212 (2.4956)  

0.0075 (0.0011) 
78.9904 (1.7268)  

0.0063 (0.0017) 
82.6442 (2.4246)  

0.0013 (0.0007) 
Thyroid (1) 95.2093 (1.0296)  

2.1585 (0.5578) 
82.8372 (1.2099)  

0.0065 (0.0011) 
93.4419 (1.1695)  

0.0058 (0.0010) 
95.6744 (0.8219)  

0.0003 (0.0001) 
Thyroid (2) 97.6744 (0.5801)  

2.1455 (0.5524) 
93.0233 (1.0963)  

0.0065 (0.0010) 
92.7442 (1.3551)  

0.0057 (0.0008) 
98.3721 (0.3953)  

0.0002 (0.0001) 
Thyroid (3) 95.8140 (1.9364)  

2.2227 (0.5513) 
91.3953 (1.6877)  

0.0062 (0.0010) 
94.5116 (1.8187)  

0.0065 (0.0043) 
94.1860 (4.1673)  

0.0003 (0.0001) 
Transfusion 73.8235 (2.6914)  

2.0786 (0.5180) 
73.3021 (0.8121)  

0.0084 (0.0011) 
72.2326 (4.0969)  

0.0064 (0.0010) 
77.1123 (0.5151)  

0.0011 (0.0003) 
WDBC 95.7645 (0.6804)  

2.0930 (0.5358) 
84.0598 (2.4212)  

0.0071 (0.0013) 
96.4851 (0.5039)  

0.0058 (0.0008) 
96.6784 (0.7792)  

0.0007 (0.0002) 
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