

51

CHAPTER 4

Experimental Results and Discussions

This chapter is divided into two sections with the aim to evaluate all the proposed

algorithms presented in Chapter 3. In the first section, the performance of the neSVDD

is evaluated on one-class classification problems. After that, the second section

proceeds to assess the performance of the TESVM on binary classification.

4.1 One-class Classification with Ellipsoidal Support Vector Data Description

All experiments conducted in this section are performed on the system equipped with

Intel Core i7-4790 processor and 8 GB of ram under 64-bit Ubuntu 14.10. All classifiers

were developed using MATLAB 2014a and the log-determinant minimization was

solved by the SDPT3 solver [69] interfaced via YALMIP [70].

4.1.1 Standard datasets

Four one-class classification methods which are the target of the evaluation

are SVDD, nSVDD, eSVDD, and the proposed neSVDD. That is, the

comparison can be divided into two scenarios. The first scenario is the

comparison between ellipsoidal and spherical boundaries, i.e. SVDD vs.

eSVDD, and nSVDD vs. neSVDD. The second scenario is the benefit of the

inclusion of negative examples into the formulations, i.e. SVDD vs. nSVDD,

and eSVDD vs. neSVDD.

To simplify the experimental process, we used the implementation of SVDD

and nSVDD from DDtools [77]. In short, DDtools is a MATLAB’s toolbox

which is specifically designed for testing one-class classification algorithms

and is provided by D. Tax, the author of SVDD. In order to compare SVDD

against eSVDD, we also add our own implementation of neSVDD

52

Table 4.1 Standard datasets for one-class classification
 Dataset n m1 m2

1 Balance-scale (left) 4 288 337
2 Balance-scale (middle) 4 49 576
3 Balance-scale (right) 4 288 337
4 Cancer wpbc (nonret) 33 151 47
5 Cancer wpbc (ret) 33 47 151
6 Ecoli (periplasm) 7 52 284
7 Glass (bldg. float) 9 70 144
8 Glass (bldg. nonfloat) 9 76 138
9 Glass (containers) 9 13 201
10 Glass (headlamps) 9 29 185
11 Glass (vehicle float) 9 17 197
12 Hepatitis (live) 19 123 32
13 Housing (MEDV>35) 13 48 458
14 Imports (low risk) 25 71 88
15 Iris (setosa) 4 50 100
16 Iris (versicolor) 4 50 100
17 Iris (virginica) 4 50 100
18 Liver (1) 6 145 200
19 Liver (2) 6 200 145
20 Sonar (mines) 60 111 97
21 Sonar (rocks) 60 97 111
22 Spectf (0) 44 95 254
23 Spectf (1) 44 254 95
24 Thyroid (normal) 21 93 3679
25 Wine (1) 13 59 119
26 Wine (2) 13 71 107
27 Wine (3) 13 48 130

to the toolbox. The implementation of eSVDD is, in fact, the same as

neSVDD but without considering negative examples. The model of

neSVDD is trained using the dual formulation (3.13) with the classification

rule defined in (3.15).

To justify the performance of these classifiers, we conducted some

experiments using the standard benchmark datasets as listed in Table 4.1

where n, m1, and m2 denote the number of features, target examples, and

outliers, respectively. These datasets were also obtained from D. Tax’s

webpage [78] in prtools format [79] and were already preprocessed by the

owner such as filling missing values. In addition, as a remark, the datasets

are created from multiclass datasets by assigning one class of data to be the

target class, and the rest to be outliers

In the experiments, the training data were further preprocessed by scaling to

one before the training process. We use only target classes to train SVDD

53

and eSVDD. Furthermore, because of its popularity, we choose the RBF

kernel as the kernel function for the experiment in this thesis. In addition,

the RBF kernel is also a perfect choice for SVDD according to [31]. As a

result, these ellipsoidal and spherical domain description algorithms are

compared against one another under the same RBF kernel function. We

select two hyperparameters for SVDD, nSVDD, eSVDD, and neSVDD by

using grid search over 120 pairs of parameters. The best value of σ is

searched from the set {0.5, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50} and C is

searched from 1/(mr) for [0.1,0.2,...,1.0]r∈ .

For eSVDD, we set the search range of C to N/(mr) where

[0.1,0.2,...,1.0]r∈ . N is the approximate dimension of the empirical feature

space. We factorize the kernel matrix K using eigendecomposition which

provides 1/2()T=Ω LD . After that kernel PCA map can be computed.

Nevertheless, the rank of D is not always full. Therefore, we truncated its

diagonal elements smaller than 510− . The dimension of the reduced D

matrix is in fact the dimension of the empirical feature space. Moreover, a

degenerate case of ellipsoids has to be avoided, when Assumption 2.1 does

not hold, by adding a weighted identity matrix γ I of the appropriate

dimension inside the logdet function. In the experiment, the weight γ is set

to 510γ −= .

For each choice of the hyperparameter pair C and σ, ten-fold cross-

validation was used. In order to ensure the consistency of the results, we

evaluated all four ellipsoidal and spherical SVDDs on the same partitioned

data of the cross-validation. However, in order to reduce the training time,

for 9 out of 10 folds used for training nSVDD and neSVDD, negative

examples were limited to only 20 examples, instead of 9m2/10. The best set

of hyperparameters was determined using the maximum mean of the area

under the Receiver Operating Characteristic (ROC) curve.

The ROC curve is generally the plot between false positive rates and true

positive rates. The area under the curve is at most equal to one. To construct

54

the ROC curve from the classifiers, it is necessary also output membership

probabilities in addition to the classification result. For a training example,

we define the membership value as de− where d is the distance to the

center of the descriptive boundary.

After the grid search was performed, the best parameters then were selected.

We report the areas under the ROC curves from 5 independent runs of 10-

fold cross-validations and the results are presented in Table 4.2. From the

table, the best value among four algorithms is emphasized using bold-faced

font for each dataset. We also use asterisk (*) to highlight the case when

adding negative examples help improve the results for both SVDD and

eSVDD.

According to Table 4.2, the number of datasets that each algorithm is the

best was 16, 8, 4, and 3 datasets, for neSVDD, eSVDD, nSVDD, and SVDD,

Table 4.2 The comparison of the area under ROC for one-class classification
Dataset Spherical SVDD Ellipsoidal SVDD

SVDD nSVDD eSVDD neSVDD
Balance-scale (left) 0.9665 (0.0204) 0.9671 (0.0201)* 0.9879 (0.0091) 0.9896 (0.0102)*
Balance-scale (middle) 0.8009 (0.1099) 0.8014 (0.1082)* 0.9221 (0.0476) 0.9845 (0.0377)*
Balance-scale (right) 0.9665 (0.0188) 0.9676 (0.0184)* 0.9870 (0.0088) 0.9900 (0.0082)*
Cancer wpbc (nonret) 0.5433 (0.1233) 0.5362 (0.1305) 0.5239 (0.1527) 0.5335 (0.1503)*
Cancer wpbc (ret) 0.6128 (0.1509) 0.6283 (0.1578)* 0.6449 (0.1291) 0.6172 (0.1474)
Ecoli (periplasm) 0.9580 (0.0608) 0.9599 (0.0586)* 0.9414 (0.0592) 0.9472 (0.0585)*
Glass (bldg. float) 0.8000 (0.0943) 0.8008 (0.0893)* 0.8317 (0.0824) 0.8309 (0.0756)
Glass (bldg. nonfloat) 0.6541 (0.1244) 0.6841 (0.1281)* 0.7502 (0.1125) 0.7083 (0.1293)
Glass (containers) 0.8269 (0.3286) 0.8269 (0.3286) 0.9787 (0.0371) 0.9836 (0.0287)*
Glass (headlamps) 0.9425 (0.0808) 0.9425 (0.0808) 0.9124 (0.1200) 0.9108 (0.1247)
Glass (vehicle float) 0.7116 (0.1230) 0.7324 (0.1258)* 0.8600 (0.1430) 0.8896 (0.1448)*
Hepatitis (live) 0.8183 (0.1252) 0.8183 (0.1252) 0.8182 (0.1369) 0.8284 (0.1249)*
Housing (MEDV>35) 0.8523 (0.0936) 0.8604 (0.0935)* 0.8905 (0.0766) 0.8867 (0.0822)
Imports (low risk) 0.8338 (0.0968) 0.8351 (0.0964)* 0.7618 (0.1299) 0.8823 (0.0890)*
Iris (setosa) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)
Iris (versicolor) 0.9708 (0.0353) 0.9796 (0.0322)* 0.9920 (0.0194) 0.9888 (0.0233)
Iris (virginica) 0.9688 (0.0456) 0.9692 (0.0459)* 0.9796 (0.0337) 0.9704 (0.0369)
Liver (1) 0.5614 (0.0770) 0.5670 (0.0927)* 0.6155 (0.0782) 0.6187 (0.0792)*
Liver (2) 0.5485 (0.1068) 0.6057 (0.0972)* 0.5771 (0.1059) 0.6316 (0.1052)*
Sonar (mines) 0.7394 (0.0987) 0.7429 (0.0992)* 0.7879 (0.0919) 0.8015 (0.0918)*
Sonar (rocks) 0.7179 (0.1109) 0.7209 (0.1103)* 0.6274 (0.1232) 0.7327 (0.1122)*
Spectf (0) 0.8978 (0.0570) 0.9008 (0.0564)* 0.9435 (0.0585) 0.9420 (0.0532)
Spectf (1) 0.7153 (0.0845) 0.7327 (0.0834)* 0.6464 (0.0480) 0.6474 (0.0471)*
Thyroid (normal) 0.7928 (0.0735) 0.8453 (0.0676)* 0.9503 (0.0428) 0.9644 (0.0497)*
Wine (1) 0.9989 (0.0047) 0.9989 (0.0047) 0.9978 (0.0076) 0.9991 (0.0037)*
Wine (2) 0.9011 (0.0703) 0.9011 (0.0703) 0.9559 (0.0441) 0.9713 (0.0411)*
Wine (3) 0.9949 (0.0181) 0.9949 (0.0181) 0.9986 (0.0062) 0.9989 (0.0058)*

55

respectively. We observe that eSVDD provides better results than SVDD in

18 out of 26 datasets, and neSVDD is also better than nSVDD for 21 out of

26 datasets. In overall, the ellipsoidal boundary yields superior results to the

spherical one for 22 out of 26 datasets. Therefore, changing the descriptive

boundary from a hypersphere to a hyperellipsoid help improve the results.

Moreover, Table 4.2 also suggests that negative examples help improve the

performance of both SVDD and eSVDD in many datasets. Precisely,

according to the number of asterisks in Table 4.2, including negative

examples into the formulation enhances the area under the ROC curve for

19 datasets in the case of SVDD, and 18 datasets in the case of eSVDD.

Incorporating negative examples may sometimes decrease the performance

of the classifiers. This situation can be observed from Table 4.2 where

nSVDD is worse than SVDD for one dataset, and neSVDD is worse than

eSVDD for 8 datasets. This is because the presence of some negative

examples might not be helpful in creating a better decision boundary,

especially when only 20 examples of outliers were used in the experiment.

In fact, what is important is the positions of examples which can provide

meaningful information to the creation of descriptive boundaries.

Furthermore, in the case of neSVDD, we also address the performance

decreases to occasional numerical errors during the simulation. In some

cases, the matrix TXAYX in neSVDD is indefinite making the optimization

(3.13) unable to be solved. Therefore, to deal with such a problem, we

always discarded any pair of cross-validation parameters whenever any

training folds could not be trained. However, even with this issue, neSVDD

is still superior to nSVDD.

In Appendix B, we provide additional results in Table B.1 which were

obtained under the same experimental settings as in Table 4.2; however,

instead of using the classification rule (3.15) for the optimization (3.13), the

incorrect rule from (3.14) is used. Since (3.14) differs from (3.15) due to

missing the proper normalization factor, the results in Table B.1 are

unsurprisingly poorer than the ones in Table 4.2.

56

4.1.2 Effect of hyperparameters

For linear eSVDD, only one hyperparameter C is required to be specified.

Since from the formulation of eSVDD (3.12), the sum of all Lagrange

multiplies has to equal n. Therefore, eSVDD has the minimum value of C

equal to n/m. When C increases, the size of the hyperellipsoid also increases.

The size of the eSVDD’s ellipsoid is limited by the maximum volume

containing the examples as shown in Figure 4.1. The increase of C more

than a certain value has no effect on the shape of the ellipsoid. However,

this is different from neSVDD as shown in Figure 4.2. The reason is that the

constraint T n=y a in neSVDD is still satisfied even for a very large C due

to the subtraction between Lagrange multipliers. Thus, the value of a

Lagrange multiplier can be as big as the value of C. For eSVDD, however,

when we set C too large, a Lagrange multiplier cannot also be too large

because of the constraint T n=e a .

Figure 4.1 Effect of the parameter C on the boundary of eSVDD

Figure 4.2 Effect of the parameter C on the boundary of neSVDD

57

The RBF eSVDD has one more hyperparameter than the linear eSVDD.

Figure 4.3 shows the effect of RBF kernels’s parameter σ on neSVDD. In

the figure, the target class 5 examples and the outlier class have one

examples. By decreasing only kernel parameter σ, the data descriptive

contours fit tighter to the examples, while the number of support vectors

increases.

4.2 Two-class Classification with Twin Hyper-ellipsoidal Support Vector Machine

This section devotes to evaluating the performance of the proposed binary classifier, the

twin hyper-ellipsoidal support vector machine (TESVM). Particularly, we compare the

accuracy of the proposed method against THSVM and TWSVM, i.e. its spherical and

planar counterparts as well as the state-of-the-art method like SVM. All classifiers are

implemented using MATLAB 2017a on 64-bit Ubuntu 17.04 under 2.8GHz Intel Core

i5-6402P with 8GB of RAM on both artificial and standard benchmark datasets.

Since TESVM is considered as an improvement of THSVM, head-to-head comparisons

between the two are presented. All experiments are performed using 10-fold cross-

validation and the cross-validation is repeated for 10 times with randomly shuffled

examples. We use SDPT3 [69] through YALMIP [70] as a semidefinite programming

solver for TESVM because of its support for the log-determinant objective function.

The quadratic programming in THSVM and TWSVM is solved using the MATLAB's

quadprog solver. For the implementation of SVM, libSVM [80] is used.

(a) σ = 0.50 (b) σ = 0.75

Figure 4.3 Contour plots of the effect of σ parameter on neSVDD with RBF kernel

58

4.2.1 Artificial datasets

Three 2-dimensional artificial datasets are presented in this section in order

to visually compare TESVM, THSVM, SVM, and TWSVM. The details of

the data are summarized in Table 4.3. The first two datasets contain non-

separable data generated based on Gaussian distributions and are to be

classified by linear classifiers, while the third dataset is the Ho- Kleinberg’s

checkerboard dataset [81] consisting of a series of examples with uniform

distributions to form a 4 4× tiles of checkerboard. This dataset is a

challenging case for comparing the performance of nonlinear classifiers.

Table 4.3 Artificial datasets for binary classification
Dataset n m1 m2 m

Toy 1 2 100 100 200
Toy 2 2 50 200 250
Checkerboard 2 514 486 1000

The hyperparameters are chosen by performing a uniform grid search over

ranges of parameters. The best set of parameters is the one which provides

the best 10-fold cross-validation accuracy. In the case of THSVM, we set

1 2c c c= = and 1 2ν ν ν= = where {10 | 5, 4,...,5}ic i∈ = − − and

{0.0,0.1,0.2,...,0.9}ν ∈ . In the case of TESVM, we also set 1 2c c c= = and

1 2ν ν ν= = with {2 | 4, 3,..., 4}ic i∈ = − − and 9 12{10 ,10 }.ν − −∈ The parameter

σ of the RBF kernel for both methods is searched from {2 | 4, 3,...,5}i i = − − .

For SVM and TWSVM, all parameters including C and σ are searched from

{2 | 5, 3,...,5}i i = − − .

The first toy dataset is shown in Figure 4.4 where Figure 4.4(a)-4.4(d) show

the results from TESVM, THSVM, TWSVM, and SVM, respectively. The

examples in class 1 are represented by the red circles while the examples in

class 2 are shown using the plus signs. In the cases of TESVM, THSVM,

and TWSVM, the dash-dot lines (“-.”) and dash (“--”) lines represent the

descriptive boundary for class 1 and 2, respectively, while for SVM the

dash-dot lines indicating the margin of SVM. The solid lines illustrate the

decision boundary between two classes.

59

Each class in Toy 1 dataset contains 100 examples. Both classes are

randomly generated from different center and rotation. Precisely, the

Gaussian distributions are from 1/2((0,0) ,diag(1,1000))T −N and
1/2((1,0) ,diag(1,1000))T −N with the clockwise rotation angles at -45 and 45

degrees, respectively. The purpose of this dataset is to illustrate the

circumstance when THSVM loses the spirit of TWSVM, even though it is

said to be a successor. One benefit of linear TWSVM over the linear SVM

is that linear TWSVM is inherently able to deal with the so-called “cross-

planes” dataset [24] as seen in the comparison between Figure 4.4(c) and

4.4(d). However, THSVM has no such an ability as presented in Figure

 (a) TESVM (b) THSVM

 (c) TWSVM (d) SVM

Figure 4.4 Toy 1 dataset with linear kernel. The test accuracy on training set is

(a) 92.5% (b) 80.5% (c) 92.0%. (d) 78.5%.

60

4.4(b). When the examples from two classes form an “×” shape, the

accuracy obtained from THSVM on the training data can be as low as 50%.

This is not the case for TESVM in Figure 4.4(a) as it offers less

conservative class descriptors. According to Figure 4.4, TESVM

significantly outperforms THSVM and SVM as can be seen from the test

accuracy on the training set where TESVM, THSVM, and SVM achieve

92.5%, 80.5%, and 78.5% of accuracy, respectively. In contrast, the

performance of TESVM is on par with TWSVM, i.e. 92.5% vs. 92.0%. As a

remark, the decision rule in Figure 4.4 is tested on the entire training

examples. Therefore, for better generalization, we provide the test accuracy

from the 10-fold cross-validation in Table 4.4 where the highest accuracy is

emphasized in bold showing that TESVM much better than THSVM in the

case of linear classifiers.

For the second toy dataset, the examples in each class are generated from

two different Gaussian distributions with unbalanced numbers of examples.

The first class has 50 examples randomly drawn from
1/2 1/2((9,0) ,diag(1000 ,1000))T −N , while the second class has 200 examples

drawn from 1/2((10,0) ,diag(1,1000))T −N . This dataset is specifically to

demonstrate another weakness of THSVM. Despite the claim that THSVM

is superior to TWSVM as the nonparallel hyperplanes of TWSVM cannot

efficiently describe two classes when the examples are drawn from two

distinct Gaussian distributions [19], our result shows that THSVM almost

fails in this dataset as shown in Figure 4.5(b). From the figure, the accuracy

on the training examples from THSVM is 80.0%. This implies that THSVM

incorrectly identifies all the training examples to be entirely from the second

class. On the other hand, according to Figure 4.5(a), 4.5(c), and 4.5(d),

TESVM, TWSVM, and SVM achieve the accuracy of 99.2%, 97.6%, and

97.2%, respectively, showing no such a weakness as in the case of THSVM.

Table 4.4 Binary classification accuracy on artificial datasets
Dataset Kernel TESVM THSVM TWSVM SVM

Toy 1 linear 92.25 (0.42) 79.40 (0.51) 92.40 (0.32) 78.15 (1.08)
Toy 2 linear 98.76 (0.35) 80.44 (0.55) 97.28 (0.25) 97.36 (0.21)
Checkerboard RBF 96.15 (0.37) 96.45 (0.31) 95.97 (0.30) 95.73 (0.56)

61

The accuracy from 10-fold cross-validation in Table 4.4 also further

validates the result.

Finally, for the third toy dataset, the Ho-Kleinberg’s checkerboard dataset is

chosen to show the performance of the algorithms for a nonlinear separable

case. We use the RBF kernel due to its popularity and success with real-

world data. Figure 4.6(a)-4.6(d) displays the decision boundaries from

THSVM, TESVM, TWSVM, and SVM. It can be observed that the decision

boundary obtained from TESVM is rather complex with more curvature

than from THSVM. Although it is reported from the figure that TESVM

provides the better test accuracy on the training data than THSVM, i.e.,

 (a) TESVM (b) THSVM

(c) TWSVM (d) SVM

Figure 4.5 Toy 2 dataset with linear kernel. The test accuracy on training set is

(a) 99.2% (b) 80.0% (c) 97.6% (d) 97.2%.

62

99.3% compared with 98.8%, TESVM gives slightly less accuracy from the

10-fold cross-validation, according to Table 4.4. In our view, all four

methods when used with the RBF kernel are on par with one another in term

of performance on this dataset. Therefore, additional datasets are required so

as to further evaluate their performance.

4.2.2 Standard datasets

In this section, the standard datasets which are publicly available from the

well-known UCI Machine Learning Repository [82] are used to compare the

performances of THSVM, TESVM, SVM, and TWSVM. The details of the

datasets are shown in Table 4.5. All the datasets contain two labels of data,

 (a) TESVM (b) THSVM

(c) TWSVM (d) SVM

Figure 4.6 Checkerboard dataset with RBF kernel. The test accuracy on training set is

(a) 99.3% (b) 98.8% (c) 98.5% (d) 98.2%.

63

except for Iris and Thyroid which have three classes. Therefore, Iris and

Thyroid datasets are formed two-class problems by using one-against-all

strategy.

Since the aim of this thesis is on the advantage of using hyperellipsoids over

hyperspheres, we first present the experimental results comparing THSVM

vs. TESVM for the case of linear classifiers and nonlinear classifiers with

the RBF kernel in Tables 4.6 and 4.7 respectively. Since THSVM separately

finds two separate hyperspheres describing two classes, and TESVM also

finds two separate hyperellipsoids, we thus consider two scenarios of

hyperparameter selections. In Scenario I, the hyperparameters for solving

two optimization subproblems are set to be the same, while in Scenario II,

the hyperparameters can be different. As a result, the second scenario should

reflex more flexibility of the decision boundary than the first scenario.

In the first scenario, the search ranges for the best hyperparameters are

identical to the ranges specified in Section 4.2.1. However, for the second

scenario, we set 1 2c c≠ and 1 2ν ν≠ for both THSVM and TESVM, where

1 2, {10 | 3, 2,...,3}ic c i∈ = − − and 1 2, {0.0,0.1,0.2,...,0.9}ν ν ∈ for THSVM,

and 1 2, {2 | 4, 3,..., 4}ic c i∈ = − − and 9 12
1 2, {10 ,10 }ν ν − −∈ for TESVM. The

kernel parameter σ is always set the same for one pair of optimizations and

is searched from the set {2 | 4, 3,...,5}i i = − − . In addition, for TESVM to

Table 4.5 Standard datasets for binary classification
Dataset n m m1 m2

Bupa 6 345 145 200
Diabetes 8 768 500 268
Haberman 3 306 225 81
Heart 13 270 150 120
Hepatitis 19 155 32 123
Ionosphere 33 351 126 225
Iris (1) 4 150 50 100
Iris (2) 4 150 50 100
Iris (3) 4 150 50 100
Postop 8 86 62 24
Sonar 60 208 111 97
Thyroid (1) 5 215 150 65
Thyroid (2) 5 215 180 35
Thyroid (3) 5 215 185 30
Transfusion 4 748 570 178
WDBC 30 569 357 212

64

avoid degenerate cases when the matrix inside log-determinant objective

function (3.25) has some zero eigenvalues, we also add a small diagonal

matrix γ I to it where γ is a small scalar and I is an identity matrix of

appropriate dimensions. We consider γ as another hyperparameter and

search for its optimal value from the range {10 | 1, 2, 3, 4}i i = − − − − .

From Tables 4.6 and 4.7, the results indicate that the second scenario likely

provides better classification accuracy since the decision boundary is

Table 4.6 Classification accuracy (and its standard deviation) for linear THSVM vs.
linear TESVM under two different scenarios

Dataset Scenario I Scenario II
TESVM THSVM TESVM THSVM

Bupa 67.7391 (1.2377) 56.9565 (1.0248) 68.6957 (1.0584) 57.3913 (1.1674)
Diabetes 72.1875 (0.6175) 73.1771 (1.5321) 75.8464 (0.7474) 74.2708 (0.5428)
Haberman 69.0523 (1.1221) 71.1765 (2.3606) 75.3268 (0.5167) 73.0392 (0.9774)
Heart 81.2963 (1.1077) 79.9630 (1.6420) 81.8519 (1.1581) 80.4074 (2.2928)
Hepatitis 82.9032 (1.9054) 79.0323 (1.0201) 82.9677 (1.8044) 80.1935 (1.9486)
Ionosphere 68.7464 (0.7603) 37.7493 (0.4505) 92.1937 (0.3344) 87.7208 (0.6363)
Iris (1) 100.0000 (0.0000) 100.0000 (0.0000) 100.0000 (0.0000) 100.0000 (0.0000)
Iris (2) 82.9333 (0.6441) 66.8000 (0.4216) 88.0667 (1.4555) 86.6667 (1.5396)
Iris (3) 96.6667 (0.0000) 93.4000 (0.6630) 96.7333 (0.6630) 96.8000 (0.8195)
Postop 61.3953 (2.0363) 55.4651 (3.4689) 69.3023 (1.9915) 69.1860 (1.5744)
Sonar 75.8654 (1.4476) 69.3269 (1.2980) 77.1635 (1.7148) 69.5673 (1.8419)
Thyroid (1) 83.6744 (1.0842) 34.5116 (1.7096) 92.1860 (0.7844) 87.9535 (3.1120)
Thyroid (2) 98.0465 (0.1961) 98.3721 (0.8277) 98.4651 (0.4412) 98.9302 (0.4927)
Thyroid (3) 97.6279 (0.2640) 97.3953 (1.6142) 98.0465 (0.1961) 98.6977 (0.7532)
Transfusion 74.1578 (0.5199) 75.9358 (0.7377) 76.5909 (0.4980) 75.5882 (0.4725)
WDBC 95.4482 (0.4097) 94.2179 (0.4719) 95.7821 (0.3416) 94.7100 (0.8707)

Table 4.7 Classification accuracy (and its standard deviation) for THSVM vs. TESVM
with RBF kernel under two different scenarios

Dataset Scenario I Scenario II
TESVM THSVM TESVM THSVM

Bupa 69.7971 (1.2876) 69.7391 (1.1928) 69.7971 (1.2876) 69.7391 (1.4081)
Diabetes 76.1849 (0.5402) 76.3411 (0.5760) 76.8359 (0.3157) 76.3411 (0.5760)
Haberman 76.1438 (0.3774) 74.1176 (2.3906) 76.2092 (0.6855) 71.4706 (4.0174)
Heart 83.9259 (0.6098) 83.0000 (0.9147) 83.9259 (0.6098) 83.6667 (0.5367)
Hepatitis 83.4839 (1.2613) 81.6129 (2.5672) 84.7097 (1.2558) 85.2258 (0.7100)
Ionosphere 94.3020 (0.3290) 95.1567 (0.6579) 94.4444 (0.3077) 95.1567 (0.6579)
Iris (1) 100.0000 (0.0000) 100.0000 (0.0000) 100.0000 (0.0000) 100.0000 (0.0000)
Iris (2) 97.4667 (0.2811) 96.9333 (0.5622) 97.6667 (0.6479) 97.6000 (0.7166)
Iris (3) 98.0667 (0.4919) 96.7333 (0.7337) 98.0667 (0.4919) 96.3333 (1.0541)
Postop 71.7442 (1.2318) 69.1860 (1.8385) 72.7907 (0.9806) 70.3488 (1.4759)
Sonar 89.6635 (1.3264) 87.2115 (1.2861) 89.6635 (1.3264) 88.1731 (0.9122)
Thyroid (1) 96.9302 (0.4493) 96.4651 (0.9093) 97.2093 (0.5370) 97.2558 (0.4073)
Thyroid (2) 99.4884 (0.1471) 98.8372 (0.3289) 99.4884 (0.1471) 98.5116 (0.7532)
Thyroid (3) 98.6512 (0.3432) 98.5116 (0.8987) 98.6512 (0.3432) 98.3721 (1.0342)
Transfusion 77.3128 (0.7047) 76.7914 (1.0992) 77.4332 (0.1381) 77.3930 (0.5653)
WDBC 97.1880 (0.1172) 96.5026 (0.3925) 97.1880 (0.2029) 96.8014 (0.3868)

65

formed by searching a larger search space of hyperparameters. However,

that is not always true, as can be seen from the case of linear THSVM with

Transfusion dataset where Scenario II has lower accuracy than Scenario I.

That is because the best hyperparameters are determined based only on one

run of 10-fold cross validations while the results are reported from ten

independent runs with randomly shuffled data.

Additionally, similar to the results in Section 4.2.1, it can be observed that

linear TESVM tested with the standard datasets also performs better than

linear THSVM on both scenarios as reported in Table 4.6 on most of the

datasets. That is 11 and 12 datasets out of 15 datasets for Scenario I and II,

respectively. While linear TESVM performs worse in some datasets, the

differences are rather small. As a result, we conclude that linear TESVM

provides better prediction results than linear THSVM. For further insights

into Table 4.6, we also summarize the ranking of each algorithm for each

dataset in Appendix B’s Table B.2 where linear TESVM with Scenario II

has the best average rank as well as the best average accuracy.

The classification accuracy from both THSVM and TESVM with the RBF

kernel on the standard datasets also further shows the advantage of using

hyperellipsoids over hyperspheres. According to Table 4.7, we observe that

TESVM provides better accuracy on 13 and 12 datasets out of 15 datasets

on the first and the second scenarios, respectively. Although the accuracies

are not drastically improved from Scenario I to Scenario II and also from

THSVM to TESVM, slight enhancements in the accuracies in many datasets

are still a good indicator to show that the less conservative class descriptors

of hyperellipsoids can help squeeze the performance from the less flexible

spherical shape of THSVM, even together with the RBF kernel. We also

summarize Table 4.7 by ranking them for each dataset as shown in

Appendix B’s Table B.3. According to the table, TESVM with RBF kernel

under Scenario II has the best average rank as well as the best average

accuracy.

66

Moreover, we further compare both THSVM and TESVM with SVM and

TWSVM. The setups of SVM and TWSVM are the same as described in

Section 4.2.1. The comparisons of all four classifiers are provided in Table

4.8 and 4.9 for the linear and RBF kernels, respectively. The accuracy

values from THSVM and TESVM in Table 4.8 are extracted from the best

scenario in Table 4.6 for each dataset. Likewise, the results from THSVM

and TESVM in Table 4.9 are also obtained from Table 4.7. We observe that

Table 4.8 Classification accuracy (and its standard deviation) for linear binary
classifiers

Dataset TESVM THSVM TWSVM SVM
Bupa 68.6957 (1.0584) 57.3913 (1.1674) 66.6667 (0.6111) 69.1014 (0.8334)
Diabetes 75.8464 (0.7474) 74.2708 (0.5428) 76.9401 (0.3806) 76.9271 (0.3178)
Haberman 75.3268 (0.5167) 73.0392 (0.9774) 75.4575 (0.5856) 73.5294 (0.0000)
Heart 81.8519 (1.1581) 80.4074 (2.2928) 83.8519 (0.5843) 84.1481 (0.5179)
Hepatitis 82.9677 (1.8044) 80.1935 (1.9486) 80.1290 (2.3122) 79.4839 (1.5146)
Ionosphere 92.1937 (0.3344) 87.7208 (0.6363) 82.0798 (0.7288) 87.5499 (0.8709)
Iris (1) 100.0000 (0.0000) 100.0000 (0.0000) 100.0000 (0.0000) 100.0000 (0.0000)
Iris (2) 88.0667 (1.4555) 86.6667 (1.5396) 74.8667 (1.3717) 72.0000 (1.4055)
Iris (3) 96.7333 (0.6630) 96.8000 (0.8195) 94.8000 (0.8777) 95.8000 (0.6325)
Postop 69.3023 (1.9915) 69.1860 (1.5744) 70.5814 (1.2318) 72.0930 (0.0000)
Sonar 77.1635 (1.7148) 69.5673 (1.8419) 75.5288 (1.9945) 78.2692 (2.0623)
Thyroid (1) 92.1860 (0.7844) 87.9535 (3.1120) 81.3488 (0.4625) 86.6512 (0.4412)
Thyroid (2) 98.4651 (0.4412) 98.9302 (0.4927) 92.2791 (0.8262) 98.6047 (0.0000)
Thyroid (3) 98.0465 (0.1961) 98.6977 (0.7532) 97.3488 (0.2247) 98.0465 (0.4274)
Transfusion 76.5909 (0.4980) 75.9358 (0.7377) 77.9278 (0.6253) 76.2032 (0.0000)
WDBC 95.7821 (0.3416) 94.7100 (0.8707) 94.6749 (0.3214) 97.6977 (0.1934)

Average 85.5762 83.2169 82.7801 84.1315

Table 4.9 Classification accuracy (and its standard deviation) for classifiers
with RBF kernel

Dataset TESVM THSVM TWSVM SVM
Bupa 69.7971 (1.2876) 69.7391 (1.4081) 73.2174 (0.5829) 72.6087 (0.8560)
Diabetes 76.8359 (0.3157) 76.3411 (0.5760) 77.0964 (0.7751) 77.3958 (0.3373)
Haberman 76.2092 (0.6855) 74.1176 (2.3906) 73.2026 (1.4035) 74.2484 (0.7193)
Heart 83.9259 (0.6098) 83.6667 (0.5367) 83.7778 (0.6246) 84.3704 (0.4553)
Hepatitis 84.7097 (1.2558) 85.2258 (0.7100) 84.3871 (1.5745) 83.4839 (1.9521)
Ionosphere 94.4444 (0.3077) 95.1567 (0.6579) 93.9031 (0.8191) 95.2137 (0.3984)
Iris (1) 100.0000 (0.0000) 100.0000 (0.0000) 100.0000 (0.0000) 100.0000 (0.0000)
Iris (2) 97.6667 (0.6479) 97.6000 (0.7166) 97.2667 (0.5837) 97.2667 (0.2108)
Iris (3) 98.0667 (0.4919) 96.7333 (0.7337) 97.2000 (0.5259) 95.8667 (0.5259)
Postop 72.7907 (0.9806) 70.3488 (1.4759) 69.0698 (3.2980) 72.6744 (1.2560)
Sonar 89.6635 (1.3264) 88.1731 (0.9122) 88.7981 (1.2215) 89.7596 (1.2831)
Thyroid (1) 97.2093 (0.5370) 97.2558 (0.4073) 95.1628 (0.9607) 96.0465 (0.5481)
Thyroid (2) 99.4884 (0.1471) 98.8372 (0.3289) 99.4884 (0.1471) 98.9767 (0.1961)
Thyroid (3) 98.6512 (0.3432) 98.5116 (0.8987) 97.8605 (0.2402) 97.8140 (0.6951)
Transfusion 77.4332 (0.1381) 77.3930 (0.5653) 79.2112 (0.4332) 78.9706 (0.6335)
WDBC 97.1880 (0.2029) 96.8014 (0.3868) 98.0492 (0.1934) 97.8383 (0.1862)

Average 88.3800 87.8688 87.9807 88.2834

67

TESVM and SVM provide better results than THSVM and TWSVM in term

of the number of datasets for both linear and RBF kernels. For the average

accuracy across all 16 standard datasets, TESVM is superior to other

methods. Furthermore, we further summarize Table 4.8 and 4.9 by reporting

the corresponding ranks as presented in Appendix B’s Table B.4 and B.5.

From the tables, TESVM achieves the best ranks as well as the best average

accuracies. In fact, these ranks of TESVM are considered close to SVM’s.

One drawback of TESVM that we can observe during the experiments is the

proper choices of (1ν , 2ν). According to (3.25), the term T T T−XAX Xαα X

is equivalent to
1 2

1

2

T T
i i i j j

i jm
να

∈ ∈

−∑ ∑x x x x
I I

 .which implies that if 1ν is

specified too large, the overall term will become an indefinite matrix. Thus,

the optimization cannot be solved. As a result, the values of 1ν and 2ν in

this paper are kept being rather small to avoid such a pitfall and the proper

selection method is subjected to further research.

4.2.3 Private dataset

Although standard datasets are widely used to gauge the performance of a

classification algorithm, we are also interested in applying TESVM to other

datasets whose data collection and feature extraction processes are

(a) Class 1: Normal and ASC-US cells

(b) Class 2: LSIL cells

(c) Class 3: HSIL cells

(d) Class 4: SCC cells

Figure 4.7 Examples of cervical cancer cell (Courtesy of T. Chankong)

68

transparent to us. In this section, we deliberately select the proprietary

dataset known as the “LCH pap smear dataset” by Chankong et al. [83].

The LCH data named after Lampang Cancer Hospital (LCH) who was also

the source of data, consists of 300 cervical cancer cell images categorized

into 4 classes by expert as shown in Figure 4.7. The process of data

collection was also approved by the Lampang Cancer Hospital Ethics

Committee. The number of data in each class is summarized in Table 4.10

and the details of each class of cells are as follows. Class 1 contains 150

cells where 80 of them are normal cells and 70 are atypical squamous cells

of undetermined significance (ASC-US). Class 2 and 3 consist of 64 low-

grade squamous intraepithelial lesion (LSIL) and 38 high-grade squamous

intraepithelial lesion (HSIL), respectively. Finally, Class 4 consists of

squamous cell carcinoma (SCC) cells. Among 4 classes, only Class 1 is

considered normal, while the rest is abnormal classified into different

degrees of abnormalities. The raw images of the cells were undergone a

feature extraction process resulted in totally 9 features. For more details on

the dataset and its extraction process, see the reference [83].

The experimental setup for training and testing the LCH dataset is the same

as in Section 4.2.2. Since the dataset has four classes, we form four binary

classification scenarios based on the one-against-all fashion as shown in

Table 4.11. The multiclass classification with the one-against-one strategy is

also given. Some of the results for SVM, TWSVM, and THSVM presented

in the table were previously reported in [84]. According to the table,

Table 4.10 LCH pap smear dataset
Class 1 2 3 4 Total

No. of examples 150 64 38 48 300
No. of features 9

Table 4.11 Classification accuracy (and its standard deviation) for classifiers with RBF

kernel on LCH dataset
Dataset TESVM THSVM TWSVM SVM

1 vs the rest 89.3333 (0.5212) 85.8667 (1.1353) 92.3333 (0.8607) 91.3333 (1.1547)
2 vs the rest 88.9333 (0.7503) 86.0667 (0.6441) 93.5667 (0.2250) 92.8667 (0.3220)
3 vs the rest 89.7000 (0.3668) 86.6333 (1.9717) 88.6333 (0.7445) 87.5000 (0.5270)
4 vs the rest 89.5667 (0.8020) 89.3000 (1.0476) 89.8333 (0.5932) 89.7667 (0.8614)
One-against-one 77.4667 (1.1675) 71.3333 (1.0887) 81.2000 (0.8043) 79.2000 (0.8777)

69

TWSVM exhibits the best performance among the others. Our proposed

TESVM, however, does outperform THSVM for all cases.

4.2.4 TESVM with instance reduction

SVM and TWSVM solve one or two QPPs to find the best hyperplanes from

the given training data to create a decision rule. Likewise, SVDD and

THSVM also require solving QPPs to create hyperspheres. For TESVM,

since its formulation is based on the semidefinite program of MVCE, it is

more computational expensive due to a larger number of unknown variables

to be solved.

Table 4.12 shows some selected datasets with at least 1000 examples where

nc, n, and m are the number of classes, features, and examples, respectively.

Among these datasets, we conduct some experiments similar to the

experiments in Section 4.2.2 (Scenario II). However, as shown in Table 4.13,

where the classification accuracy (%) and the training time (seconds) are

Table 4.12 Large datasets with at least 1000 examples
Dataset nc n m

Adult 2 14 32561
Banana 2 2 5300
Checkerboard 2 2 1000
German 2 20 1000
HTRU2 2 8 17898
Occupancy 2 5 20560
Pen-based 10 16 7494
Page-blocks0 2 10 5472
Phoneme 2 5 5404
Shuttle 7 9 43500
Skin 2 3 245057
Twonorm 2 20 7400
Wilt 2 5 4339

Table 4.13 Classification accuracy and training time (in seconds) and their standard

deviations for some selected datasets from Table 4.12
Dataset TESVM THSVM TWSVM SVM

Checkerboard 96.15 (0.37)
114.1 (123.4)

96.45 (0.31)
0.293 (0.110)

95.97 (0.30)
0.245 (0.045)

95.73 (0.56)
0.050 (0.007)

HTRU2 Out of memory N/A N/A 98.04 (0.02)
9.666 (1.301)

Occupancy
detection

Out of memory N/A N/A 98.99 (0.01)
3.437 (0.289)

Shuttle Out of memory N/A N/A 99.90 (0.01)
5.098 (0.490)

Skin
segmentation

Out of memory N/A N/A N/A

70

shown in normal and italic texts, respectively, TESVM fails to be trained on

many datasets except for the checkerboard dataset which has only 2 classes,

2 features, and 1000 examples. Hence, this problem reflects a major

drawback of TESVM. In fact, any MVCE-based classifiers attempting at

solving an SDP problem using a generic SDP solver are unable to be trained

under large datasets.

There are many possibilities to enable TESVM to handle larger data. For

example, active set strategies are proposed in [41] as a technique to solve

MVCE problem with more than 10000 examples. Wang and Xiao [63] also

suggest a procedure based on Mahalanobis distance in the kernel space to

select a subset of data which contains possible supports for the

hyperellipsoid.

In this thesis, however, we attempt to solve the problem from another

perspective. We introduce an instance selection technique as proposed by A.

Yodjaiphet [85] to be a preprocessing step before solving the MVCE-based

classifiers. Although many instance reduction methods have been presented

in literature, the technique proposed in [85] offers exceptional reduction

speed while retaining the significant portion of data. The rough idea of the

instance selection procedure is that, among all training examples, the most

important part of the data is only located at the boundary where two

different classes face against or overlap each other. Therefore, it is

intuitively plausible to ignore the examples located far from the boundary.

The implementation of this idea can be achieved entirely based on

comparing the in-class and between-class distances of various subsets of

data. In fact, most parts of the algorithm rely merely on k-nearest neighbors

where the reduction procedure can be described as in Figure 4.8. For the

exacted reduction algorithm, see [85]. The illustrations of the data reduction

Noise and
overlapping
data removal

Class boundary
approx.

Initialize
reduced
dataset

Extract data
from training
set to reduced

dataset

Data
pruning

1-NN 3-NN 1-NN 1-NN

Figure 4.8 Instance reduction procedure

71

results are shown in Figure 4.9 and 4.10 for Banana and Ho-Kleinberg’s

checkerboard datasets, respectively. According to the figures, the reduced

data are mainly extracted from the boundary of the original data.

The goodness of the instance reduction technique will allow the proposed

TESVM classifier to be trained on larger datasets and be solved using a

generic SDP solver. Since the complexity of the introduced reduction

scheme is much lower than solving an SDP problem, incorporating the

reduction step into TESVM does not add much time complexity. Although

the instance reduction does sacrifice some classification accuracy, Table

4.14 shows show that the accuracy loss is acceptable in the case of SVM.

To demonstrate the performance of TESVM with data reduction, 10

independent runs of 10-fold cross validation are performed on the reduced

version of datasets listed in Table 4.12. Because 10-fold cross validation

Figure 4.9 Banana dataset and its reduced version

Figure 4.10 Ho-Kleinberg’s checkerboard dataset and its reduced version

72

constructs 10 models from different nine folds of data, we report the average

sizes as well as their standard deviations of 9-fold training data for both the

original and reduced datasets in Table 4.15. It is important to note that,

although the reduced 9 folds are used for training, the resulted models are

tested using the normal testing fold which does not undergo data reduction.

Moreover, the datasets whose name is followed by a parenthesized number

such as “Pen-based (3)” are two-class datasets created by using one-against-

all fashion. That is “Pen-based (3)” is the dataset derived from the third

class against the rest from the 10-classes Pen-based dataset.

Table 4.14 Classification accuracy (with its standard deviation) of SVM: With vs.
without instance reduction

Dataset SVM
(without instance reduction)

SVM
(with instance reduction)

Accuracy
loss (%)

Checkerboard 95.2600 (0.3239) 93.5700 (0.5438) -1.77
Banana 90.6038 (0.0755) 90.3717 (0.1543) -0.26
HTRU2 98.0417 (0.0192) 97.9009 (0.0201) -0.14
Occupancy detection 98.9942 (0.0050) 98.7359 (0.0360) -0.26

Table 4.15 The average number of examples (and its standard deviation) of 9 training

folds in 10-fold cross validation
Dataset Original training folds Reduced training folds

Adult 29304.9 (0.3) 174.32 (10.79)
Banana 4770.0 (0.0) 236.61 (7.53)
Checkerboard 900.0 (0.0) 109.39 (2.60)
German 900.0 (0.0) 129.54 (5.25)
HTRU2 16108.2 (0.4) 168.91 (7.98)
Occupancy 18504.0 (0.0) 141.72 (6.29)
Pen-based (1) 6744.6 (0.5) 37.28 (1.66)
Pen-based (2) 6744.6 (0.5) 132.47 (4.04)
Pen-based (3) 6744.6 (0.5) 90.25 (3.08)
Pen-based (4) 6744.6 (0.5) 73.50 (3.17)
Pen-based (5) 6744.6 (0.5) 66.35 (2.98)
Pen-based (6) 6744.6 (0.5) 80.93 (2.78)
Pen-based (7) 6744.6 (0.5) 38.19 (1.66)
Pen-based (8) 6744.6 (0.5) 87.46 (3.47)
Pen-based (9) 6744.6 (0.5) 63.50 (2.43)
Pen-based (10) 6744.6 (0.5) 77.95 (2.64)
Page-blocks0 4924.8 (0.4) 143.71 (5.24)
Phoneme 4863.6 (0.5) 36.84 (4.54)
Shuttle (1) 39150.0 (0.0) 71.48 (2.57)
Shuttle (4) 39150.0 (0.0) 53.98 (1.55)
Shuttle (5) 39150.0 (0.0) 13.62 (1.12)
Skin 220551.3 (0.5) 170.10 (3.76)
Twonorm 6660.0 (0.0) 59.81 (5.67)
Wilt 3905.1 (0.3) 69.22 (4.65)

73

Similar to the experimental setup in Scenario II of Section 4.2.2, each

hyperellipsoid in TESVM are independently adjusted their hyperparameters.

This setting is also the case for each hypersphere of THSVM. In TWSVM,

however, the hyperparameters for each hyperplane are set to be identical. In

order to find the best hyperparameters, we perform a grid search over given

ranges of parameters where the best parameters are the ones which provides

the best 10-fold cross-validation accuracy.

The percentages of classification accuracy from four classifiers with RBF

kernel, i.e., TESVM, THSVM, TWSVM, and SVM, on the reduced datasets

are shown in Table 4.16. For each dataset, the average classification

accuracy (%) as well as its standard deviation is shown using the normal

text, while the average training time (in seconds) is shown in italics. In order

to interpret the result, we also provide Table B.6 in Appendix B to

summarize the rank of each classifier on each dataset as well as the average

rank and average accuracy. According to those tables, when taking only

TESVM and THSVM into account, TESVM performed better than THSVM

for 18 out of 24 datasets. In addition, among four classifiers, TESVM

achieved the second place for the average rank with 9 datasets being the best

among the others. Although SVM is the best in terms of the average rank,

average accuracy, and attaining the best accuracy for 12 datasets, TESVM

can still find a niche in some datasets, better than both THSVM and

TWSVM which are from the same family of twin support vector classifiers.

In fact, upon a closer comparison between TESVM and SVM, we observe

that TESVM is better than SVM for 10 out of 24 datasets.

Moreover, as further references, classification accuracy and training time (in

seconds) are also reported for the four classifiers with RBF kernel on

smaller datasets as shown in Table 4.17 with their ranking summarized in

Table B.7 in Appendix B. According to the tables, among 12 datasets,

TESVM obtained the best accuracy for 3 out of 12 datasets, while SVM

achieved totally 8 out of 12 datasets. This suggests that the strength of SVM

in that it can provide good prediction accuracy, especially in the datasets

with smaller number of examples. However, similar to the results from

74

Table 4.16 for larger datasets, TESVM still ranks at the second place over

THSVM and TWSVM. In fact, among 12 datasets, there is no dataset where

THSVM performed better than TESVM.

Table 4.16 Classification accuracy and training time (in seconds) and their standard
deviations on the large datasets with instance reduction

Dataset TESVM THSVM TWSVM SVM
Adult 80.7411 (0.1949)

6.8040 (0.9743)
81.5703 (0.2944)
0.0137 (0.0010)

82.7481 (0.1507)
0.0103 (0.0020)

81.5279 (0.2359)
0.0095 (0.0010)

Banana 90.3453 (0.1571)
5.3456 (0.7702)

88.1321 (0.2268)
0.0190 (0.0016)

89.4642 (0.9107)
0.0132 (0.0014)

90.3717 (0.1543)
0.0121 (0.0012)

Checkerboard 93.6000 (0.4372)
0.9411 (0.1884)

94.9400 (0.5147)
0.0103 (0.0009)

91.4500 (0.9301)
0.0071 (0.0005)

93.5700 (0.5438)
0.0059 (0.0014)

German 71.3300 (0.6993)
7.2037 (1.1181)

70.8500 (1.0638)
0.0106 (0.0009)

74.3200 (0.5940)
0.0085 (0.0021)

73.6000 (0.8602)
0.0079 (0.0025)

HTRU2 97.9070 (0.0487)
2.8546 (0.3729)

97.8333 (0.0609)
0.0126 (0.0003)

97.8634 (0.0658)
0.0085 (0.0009)

97.9009 (0.0201)
0.0054 (0.0007)

Occupancy 98.8205 (0.1635)
7.9758 (1.5885)

98.0034 (0.3991)
0.0090 (0.0006)

98.6629 (0.1167)
0.0078 (0.0008)

98.7359 (0.0360)
0.0068 (0.0010)

Pen-based (1) 99.7972 (0.0320)
1.1629 (0.1794)

99.7732 (0.0218)
0.0066 (0.0004)

99.7251 (0.0362)
0.0060 (0.0006)

99.7451 (0.0172)
0.0012 (0.0001)

Pen-based (2) 99.3355 (0.0402)
6.8744 (1.0637)

99.2060 (0.0675)
0.0115 (0.0006)

98.7950 (0.1603)
0.0080 (0.0006)

99.5850 (0.0528)
0.0068 (0.0005)

Pen-based (3) 99.6410 (0.0473)
1.4653 (0.2253)

99.5103 (0.0345)
0.0079 (0.0005)

99.4876 (0.0651)
0.0067 (0.0007)

99.8225 (0.0289)
0.0030 (0.0004)

Pen-based (4) 99.6771 (0.0407)
0.8786 (0.1729)

99.6130 (0.0308)
0.0078 (0.0008)

99.4489 (0.0545)
0.0063 (0.0005)

99.7585 (0.0364)
0.0021 (0.0002)

Pen-based (5) 99.8706 (0.0282)
0.7942 (0.1496)

99.6744 (0.0454)
0.0076 (0.0009)

99.6851 (0.0804)
0.0061 (0.0005)

99.8612 (0.0268)
0.0021 (0.0002)

Pen-based (6) 99.7838 (0.0453)
1.2034 (0.1762)

99.7638 (0.0252)
0.0082 (0.0006)

98.8671 (0.1697)
0.0065 (0.0006)

99.7758 (0.0338)
0.0027 (0.0004)

Pen-based (7) 99.7825 (0.0907)
0.4321 (0.1149)

99.8479 (0.0432)
0.0064 (0.0003)

99.7638 (0.0413)
0.0058 (0.0005)

99.8812 (0.0336)
0.0012 (0.0002)

Pen-based (8) 99.5957 (0.0383)
1.2566 (0.1981)

99.5250 (0.0766)
0.0084 (0.0005)

98.9685 (0.1428)
0.0064 (0.0005)

99.7758 (0.0551)
0.0033 (0.0003)

Pen-based (9) 99.7251 (0.0328)
0.7202 (0.1331)

99.6878 (0.0229)
0.0078 (0.0006)

99.5036 (0.1149)
0.0061 (0.0005)

99.7758 (0.0343)
0.0022 (0.0003)

Pen-based (10) 99.6531 (0.0680)
1.0655 (0.1684)

99.6437 (0.0683)
0.0084 (0.0016)

99.2167 (0.3654)
0.0065 (0.0006)

99.8305 (0.0295)
0.0030 (0.0003)

Page-blocks0 96.3359 (0.1002)
7.6180 (1.6104)

92.7814 (0.6407)
0.0099 (0.0008)

95.6232 (0.1596)
0.0081 (0.0008)

95.8553 (0.2031)
0.0080 (0.0012)

Phoneme 74.9112 (0.9248)
0.3806 (0.0327)

74.7150 (2.5087)
0.0065 (0.0007)

69.3949 (2.5887)
0.0064 (0.0011)

73.0477 (2.0270)
0.0009 (0.0001)

Shuttle (1) 99.7175 (0.0758)
0.8790 (0.0833)

95.4816 (0.6618)
0.0067 (0.0004)

97.9097 (0.4675)
0.0058 (0.0006)

99.7149 (0.0227)
0.0046 (0.0008)

Shuttle (4) 99.8246 (0.0583)
0.7044 (0.1214)

99.8531 (0.0362)
0.0064 (0.0006)

95.9285 (0.2519)
0.0061 (0.0010)

99.9559 (0.0043)
0.0016 (0.0004)

Shuttle (5) 99.9269 (0.0059)
1.5511 (0.2659)

99.8947 (0.0579)
0.0063 (0.0004)

99.4186 (0.3942)
0.0060 (0.0003)

99.9434 (0.0057)
0.0011 (0.0003)

Skin 99.9045 (0.0303)
4.8346 (0.6326)

98.2431 (0.0533)
0.0112 (0.0005)

99.6005 (0.4138)
0.0103 (0.0027)

99.5800 (0.0739)
0.0061 (0.0005)

Twonorm 94.6000 (0.4659)
0.6062 (0.1164)

96.5838 (0.1354)
0.0073 (0.0012)

95.1203 (0.6232)
0.0058 (0.0006)

96.6419 (0.2164)
0.0023 (0.0005)

Wilt 99.2279 (0.0714)
0.6909 (0.0580)

99.4031 (0.0619)
0.0079 (0.0006)

99.0873 (0.2373)
0.0072 (0.0016)

99.4330 (0.0607)
0.0021 (0.0003)

75

In conclusion, this section shows that it is impossible to evaluate TESVM

against its peers on the datasets larger than 1000 examples without the

instance reduction. With the introduction of the data reduction technique,

we can conclude that TESVM is superior to THSVM and TWSVM.

Although, for smaller datasets with instance reduction, TESVM seems

weaker than SVM in term of the number of the best datasets, such weakness

is lessened in the large datasets.

Table 4.17 Classification accuracy and training time (in seconds) and their standard
deviations on the small datasets with instance reduction

Dataset TESVM THSVM TWSVM SVM
Bupa 68.3768 (1.7891)

0.6809 (0.1119)
64.6667 (1.2923)

0.0100 (0.0039)
67.9130 (1.6569)

0.0066 (0.0022)
68.8406 (1.4732)

0.0011 (0.0005)
Diabetes 74.8047 (0.9334)

1.0374 (0.2619)
72.4219 (0.8784)

0.0097 (0.0026)
76.0938 (0.4034)

0.0070 (0.0017)
76.6406 (0.6205)

0.0022 (0.0006)
Haberman 74.4771 (1.8322)

1.2488 (0.3378)
70.9150 (1.7016)

0.0084 (0.0034)
73.2026 (0.9243)

0.0079 (0.0038)
73.4641 (0.6680)

0.0009 (0.0015)
Heart 80.3704 (1.6002)

1.3773 (0.3822)
78.1852 (1.1509)

0.0075 (0.0021)
83.5185 (1.2128)

0.0060 (0.0008)
83.6667 (1.4125)

0.0006 (0.0001)
Hepatitis 81.0968 (1.6108)

1.5119 (0.4153)
80.4516 (1.2558)

0.0071 (0.0012)
81.2258 (1.2705)

0.0060 (0.0007)
78.9677 (1.8299)

0.0004 (0.0000)
Ionosphere 68.3191 (2.8861)

1.5099 (0.4049)
40.2279 (0.9478)

0.0071 (0.0012)
60.6553 (2.0826)

0.0060 (0.0011)
87.3504 (1.2896)

0.0006 (0.0001)
Sonar 83.9904 (1.5710)

1.7955 (0.4553)
75.7212 (2.4956)

0.0075 (0.0011)
78.9904 (1.7268)

0.0063 (0.0017)
82.6442 (2.4246)

0.0013 (0.0007)
Thyroid (1) 95.2093 (1.0296)

2.1585 (0.5578)
82.8372 (1.2099)

0.0065 (0.0011)
93.4419 (1.1695)

0.0058 (0.0010)
95.6744 (0.8219)

0.0003 (0.0001)
Thyroid (2) 97.6744 (0.5801)

2.1455 (0.5524)
93.0233 (1.0963)

0.0065 (0.0010)
92.7442 (1.3551)

0.0057 (0.0008)
98.3721 (0.3953)

0.0002 (0.0001)
Thyroid (3) 95.8140 (1.9364)

2.2227 (0.5513)
91.3953 (1.6877)

0.0062 (0.0010)
94.5116 (1.8187)

0.0065 (0.0043)
94.1860 (4.1673)

0.0003 (0.0001)
Transfusion 73.8235 (2.6914)

2.0786 (0.5180)
73.3021 (0.8121)

0.0084 (0.0011)
72.2326 (4.0969)

0.0064 (0.0010)
77.1123 (0.5151)

0.0011 (0.0003)
WDBC 95.7645 (0.6804)

2.0930 (0.5358)
84.0598 (2.4212)

0.0071 (0.0013)
96.4851 (0.5039)

0.0058 (0.0008)
96.6784 (0.7792)

0.0007 (0.0002)

	CHAPTER 4 Experimental Results and Discussions
	4.1 One-class Classification with Ellipsoidal Support Vector Data Description
	4.1.1 Standard datasets
	4.1.2 Effect of hyperparameters

	4.2 Two-class Classification with Twin Hyper-ellipsoidal Support Vector Machine
	4.2.1 Artificial datasets
	4.2.2 Standard datasets
	4.2.3 Private dataset
	4.2.4 TESVM with instance reduction

