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STATEMENTS OF ORIGINALITY

A method to kernelize minimum volume covering ellipsoid using empirical
feature map is proposed in order to allow minimum volume covering ellipsoid to

form more complex description boundary.

Minimum volume covering ellipsoid is formulated with soft margins and negative

examples.

An ellipsoid-based binary classifier called twin hyper-ellipsoidal support vector
machine is proposed. The proposed method is to find a kernelized soft-margin
minimum volume ellipsoid around one class, but also being as far as possible

from the other class.
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