CONTENTS

Page

ACKNOW	VLEDGEMENTS	c
THAI ABSTRACT		
ENGLISH ASTRACT		
CONTENTS		
LIST OF TABLES		
LIST OF I	FIGURES	n
LIST OF A	ABBREVIATIONS	q
CHAPTE	R 1 Introduction and Literature Review	1
1.1	Statement and Significance of Problem	1
1.2	Literature Review	6
1.3	Objective of Study	10
1.4	Scopes of Study	10
1.5	Benefit of study	10
CHAPTE	R 2 Theory and Methodology of Study	11
2.1	Hydrosystems Engineering	11
	2.1.1 Hydrosystems description	12
	2.1.2 Issues in hydrosystems engineering	12
	2.1.3 Design and analysis	13
	2.1.4 Conventional and optimization procedures	13
2.2	Optimization Theory	14
	2.2.1 Optimization methodology	15
	2.2.2 Applications of optimization in hydrosystems	16
	2.2.3 Modelling development phases	17
2.3	Reservoir Operation Management	18
	2.3.1 Reservoir operation	19
	2.3.2 Reservoir operation for electricity production	20
	2.3.3 Reservoir operation management to water balance	22

	2.4	Reservoir operation for water supply and Flood Control	25
		2.4.1 Reservoir operation modelling	25
		2.4.2 Controlling and operating management of flood case	27
		2.4.3 Controlling and operating management of water shortage case	29
	2.5	Optimization Models for Operation Development	30
CHA	PTEF	R 3 Rainfall Forecasting Model	33
	3.1	Introduction	33
		3.1.1 History of rainfall forecasting	33
		3.1.2 Rationale of rainfall forecasting	33
	3.2	Forecasting Methodology	34
	3.3	Forecast Rainfall by FFME Method	34
		3.3.1 Forecast formulation	35
		3.3.2 Forecast methodology	35
		3.3.3 Conclusion of forecast function	35
		3.3.4 Data analysis of forecast function in Microsoft Excel model	36
	3.4	Forecast Rainfall by Minitab Method	37
		3.4.1 Forecasting algorithm of Minitab software	37
		3.4.2 Forecasting methodology in Minitab software	38
		3.4.3 Data analysis in Minitab software	39
	3.5	Forecast Rainfall by SPSS Method	39
		3.5.1 Time series modelling and forecasting	40
		3.5.2 SPSS methodology	40
		3.5.3 Data analysis in SPSS software	41
	3.6	Forecast Rainfall by FFT Software Calculation Online	42
		3.6.1 Fast Fourier Transform algorithm	42
		3.6.2 Forecasted results by using FFT method	43
	3.7	Results Conclusion of Four Methodology	44
		3.7.1 Simulation results of rainfall forecasting by four methods	44
		3.7.2 Comparison of simulation results	45
CHA	PTEF	R 4 Optimization Technique of Multi-Reservoir Operation Management	46
	4.1	Concept	46

4.2	Physical Data for Using in the Optimization Model	46
	4.2.1 Water inflow into reservoir management	46
	4.2.2 Reservoir storage capacity	49
	4.2.3 Reservoir evaporation net	50
	4.2.4 Tail water data of hydropower plants	50
	4.2.5 Spillway discharge data of Namkhan 2 and 3 hydropower plants	51
	4.2.6 Technical data of hydropower plants	52
4.3	Methodology Process for Optimizing operation	52
	4.3.1 Simulation model process	52
	4.3.2 Methodology process of operating simulation	53
4.4	Optimization Technique of Multi-Reservoir Management	54
	4.4.1 Little watery criterion case (LWC)	55
	4.4.2 Watery criterion that less rather case (WCLR)	58
	4.4.3 Normal watery criterion case (NWC)	61
	4.4.4 Watery criterion that very rather case (WCVR)	64
	4.4.5 Very watery criterion case (VWC)	67
4.5	Comparison Results of Before-After Using Optimization Technique	70
	4.5.1 Evaluation and comparison of energy generation after using	
	the optimization technique	70
	4.5.2 Evaluation and comparison of water release from spillway after	
	using the optimization technique	72
CHAPTEI	R 5 Research Results	73
5.1	Simulation Results of Little Watery Criterion Year (LWC)	74
5.2	Simulation Results of Watery Criterion Year that Less Rather (WCLR)	76
5.3	Simulation Results of Normal Watery Criterion Year (NWC)	79
5.4	Simulation Results of Watery Criterion Year that Very Rather (WCVR)	82
5.5	Simulation Results of Very Watery Criterion Year (VWC)	85
5.6	Evaluation of Simulation Results after Revised by Optimization	88
	5.6.1 Energy generation and water release volume of LWC	88
	5.6.2 Energy generation and water release volume of WCLR	89
	5.6.3 Energy generation and water release volume of NWC	89
	5.6.4 Energy generation and water release volume of WCVR	89

5.6.5 Energy generation and water release volume of VWC	89	
5.7 Comparison Results after Revised by Optimization Technique	90	
5.7.1 Reservoir elevation of results after revised by optimization	90	
5.7.2 Comparison of upper and lower curve after revised to appropriate	91	
CHAPTER 6 Conclusion and Recommendations	93	
6.1 Conclusions of the Study	93	
6.2 Recommendation of the Study	95	
REFERENCES	97	
PUBLICATION	99	
APPENDIX A	100	
APPENDIX B	126	
APPENDIX C	136	
APPENDIX D	144	
APPENDIX E	171	
CURRICULUM VITAE	186	
C. Good SIT		
41 UNIVERS		
ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่		
Copyright [©] by Chiang Mai University		

Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLE

44 45 47 48
45 47 48
47 48
47 48
48
48
49
50
50
51
51
51
52
57
57
58
60
60
61
63
63
64
64
66
66
67
67

 Table 4.25 Time of power generation pattern of Namkhan 2 HPP in VWC case Table 4.26 Time of power generation pattern of Namkhan 3 HPP in VWC case Table 4.27 Water released from spillway of simulation result in VWC case Table 4.28 Comparing energy generation of before-after revised by using optimization technique of Namkhan 2 hydropower plant 	
 Table 4.26 Time of power generation pattern of Namkhan 3 HPP in VWC case Table 4.27 Water released from spillway of simulation result in VWC case Table 4.28 Comparing energy generation of before-after revised by using optimization technique of Namkhan 2 hydropower plant 	69
Table 4.27Water released from spillway of simulation result in VWC caseTable 4.28Comparing energy generation of before-after revised by using optimization technique of Namkhan 2 hydropower plant	70
Table 4.28Comparing energy generation of before-after revised by using optimization technique of Namkhan 2 hydropower plant	70
optimization technique of Namkhan 2 hydropower plant	
	71
Table 4.29Comparing energy generation of before-after revised by using	
optimization technique of Namkhan 3 hydropower plant	71
Table 4.30Comparing the water released from spillway of before-after the using	
optimization technique of Namkhan 2 hydropower plant	72
Table 4.31Comparing the water released from spillway of before-after the using	
optimization technique of Namkhan 3 hydropower plant	72
Table 5.1Energy generation for before-after revised of LWC case	74
Table 5.2Energy generation for before-after revised of WCLR case	77
Table 5.3Energy generation for before-after revised of NWC case	80
Table 5.4Energy generation for before-after revised of WCVR case	83
Table 5.5Energy generation for before-after revised of VWC case	86
Table 6.1Conclusion of energy generation and plan factor of Namkhan 2 HPP	95
Table 6.2Conclusion of energy generation and plan factor of Namkhan 3 HPP	95
AI UNIVERS	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure 1.1	Location of Namkhan 2 and 3 HPP in Luangphabang province	2
Figure 1.2	Characteristic of Namkhan basin	3
Figure 2.1	Hydrologic cycle of annual water balance	11
Figure 2.2	Block diagram representation of the global hydro system	12
Figure 2.3	Conventional design and analysis process	14
Figure 2.4	Possible area under constraints of the system	15
Figure 2.5	Possible area under constraints and regulation appropriate	16
Figure 2.6	Modelling development phase	17
Figure 2.7	Block diagram operation of reservoir management planning	19
Figure 2.8	Expected hill diagram of prototype turbine	21
Figure 2.9	Schematic representations of Namkhan 2 and 3 reservoirs	21
Figure 2.10	Overall structure of real-time flood management model	27
Figure 2.11	Controlling and operating management of flood case	28
Figure 2.12	Controlling and operating management of water shortage case	29
Figure 2.13	Optimization model for operation development	30
Figure 2.14	Namkhan 2 HPP's switching curve for reservoir management	32
Figure 2.15	Namkhan 3 HPP's switching curve for reservoir management	32
Figure 3.1	The rainfall result of function forecast in Microsoft Excel	37
Figure 3.2	Time series decomposition plot of the Minitab software	38
Figure 3.3	The rainfall result of the Minitab program	39
Figure 3.4	The predicted result of the SPSS program	41
Figure 3.5	The rainfall result of the SPSS program	42
Figure 3.6	The time loop of rainfall result of the FFT program	44
Figure 3.7	The results comparison of four methods	45
Figure 4.1	Monthly average inflow to reservoir discharge of Namkhan 2 HPP	48
Figure 4.2	Monthly average inflow to reservoir discharge of Namkhan 3 HPP	48
Figure 4.3	Simulation model process for operation and verify	53
Figure 4.4	Methodology detail of operation and simulation process	54

Figure 4.5	Reservoir elevation and water discharge of Namkhan 2 HPP (LWC)	56
Figure 4.6	Reservoir elevation and water discharge of Namkhan 3 HPP (LWC)	56
Figure 4.7	Reservoir elevation and water discharge of Namkhan 2 HPP (WCLR)	59
Figure 4.8	Reservoir elevation and water discharge of Namkhan 3 HPP (WCLR)	59
Figure 4.9	Reservoir elevation and water discharge of Namkhan 2 HPP (NWC)	62
Figure 4.10	Reservoir elevation and water discharge of Namkhan 3 HPP (NWC)	62
Figure 4.11	Reservoir elevation and water discharge of Namkhan 2 HPP (WCVR)	65
Figure 4.12	Reservoir elevation and water discharge of Namkhan 3 HPP (WCVR)	65
Figure 4.13	Reservoir elevation and water discharge of Namkhan 2 HPP (VWC)	68
Figure 4.14	Reservoir elevation and water discharge of Namkhan 3 HPP (VWC)	68
Figure 5.1	Simulation dialog box in HEC-ResSim3.1 modelling	73
Figure 5.2	Energy comparison of Namkhan 2 hydropower plant in LWC case	75
Figure 5.3	Energy comparison of Namkhan 3 hydropower plant in LWC case	75
Figure 5.4	Reservoir operation relationship of Namkhan 2 HPP in dry year case	76
Figure 5.5	Reservoir operation relationship of Namkhan 3 HPP in dry year case	76
Figure 5.6	Energy comparison for before-after revised of Namkhan 2 HPP	78
Figure 5.7	Energy comparison for before-after revised of Namkhan 3 HPP	78
Figure 5.8	Reservoir operation relationship of Namkhan 2 HPP in average dry year	
	case	79
Figure 5.9	Reservoir operation relationship of Namkhan 3 HPP in average dry year	
	case	79
Figure 5.10	Energy comparison for before-after revised of Namkhan 2 HPP	81
Figure 5.11	Energy comparison for before-after revised of Namkhan 3 HPP	81
Figure 5.12	Reservoir operation relationship of Namkhan 2 HPP in normal year	
A	case rights reserved	82
Figure 5.13	Reservoir operation relationship of Namkhan 3 HPP in normal year	
	case	82
Figure 5.14	Energy comparison for before-after revised of Namkhan 2 hydropower plant	84
Figure 5.15	Energy comparison for before-after revised of Namkhan 3 hydropower plant	84
Figure 5.16	Reservoir operation relationship of Namkhan 2 HPP in average wet year case	85
Figure 5.17	Reservoir operation relationship of Namkhan 3 HPP in average wet year case	85
Figure 5.18	Energy comparison for before-after revised of Namkhan 2 HPP	87

- Figure 5.19 87 Energy comparison for before-after revised of Namkhan 3 HPP Figure 5.20 88 Reservoir operation relationship of Namkhan 2 HPP in wet year case Figure 5.21 88 Reservoir operation relationship of Namkhan 3 HPP in wet year case Figure 5.22 Reservoir elevation and water discharge of Namkhan 2 HPP 90 Figure 5.23 Reservoir elevation and water discharge of Namkhan 3 HPP 91 Figure 5.24 Comparison between old and new curve of Namkhan 2 HPP 92
- Figure 5.25Comparison between old and new curve of Namkhan 3 HPP92

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF ABBREVIATIONS

ANFIS	Adaptive Network-based Fuzzy Inference System
APR	April
ARIMA	Autoregressive Integrated Moving Average
AUG	August
AverObs	Average Observe
AverSim	Average Simulation
В	Bottom Tunnel
CFRD	Concrete Face Rock fill Dam
cms	Cubic Meter per Second
DEC	December
DFT	Discrete Fourier Transform
DMs	Decision Making
DPSA	Dynamic Programming Successive Approximation
DSSVue	Data Storage System Visual Utility Engine
EDL	Electricite du Lao
EDL-Gen	Electricite Du Lao-Generation Public Company
EG	Energy Generation
EI	Efficiency Index
Ev	Evaporation
FEB	February
FFLP	Fuzzy linear Programming Model
FFT	Fast Fourier Transform
	Thosmas Fiering
GA	Genetic Algorithm
GW	Giga watts (10 ⁹ W)
GWh	Giga Watt Hours (10 ⁹ Wh)
Н	Head (m)
На	Hectare
HEC	Hydrology Engineering Center
HPP	Hydropower Plants

HWL _F	Head Water Level First Time
HWLE	Head Water Level End Time
IPP	Independent Power Producer
IPPe	Independent Power Producer Export
IPPd	Independent Power Producer Domestic
IPSO	Improved Particle Swarm Optimization
JAN	January
JUL	July
JUN	June All ling
Km	Kilometers (1,000 m)
Km ²	Square Kilo Meter
KWh	Kilo Watt Hour
Lao PDR	Lao People's Democratic Republic
LRC	Lower Rule Curve
LWC	Little Watery Criterion
MAD	Mean absolute Deviation
MAPE	Mean absolute Percentage Error
MAR	March
MAY	May
MCM	Million Cubic Meter
MLE	Maximum Likelihood Estimation
MW	Mega Watts (106 W)
MWh	Mega Watt – Hours (10 ⁶ Wh)
MVACODVI	Mega Volt – Ampere (10 ⁶ VA)
m^3/s	Cubic Meter Per Second
masl	Meter above sea level
mm	Mille Meter
NCC	National Control Center
NOV	November
NSGA-II	NON-dominated sorting genetic algorithm II model
NWC	Normal Watery Criterion
Obs	Observe Data

OCT	October
OC	Operation Curve
Р	Power (W)
Pmax	Power Generation Maximum
Pmin	Power Generation Minimum
PSO	Particle Swarm Optimization
POA	Progressive Optimization Algorithm
Qin	Water Inflow
Qs	Water Release from Spillway
Qt	Water Discharge Turbine
r	Pearson Correlation Coefficient
RCC	Roller Concrete Compact
REev	Reservoir Elevation
ResSim	Reservoir Simulation
RMES	Root Mean Square Error
R/min	Round per Minute
SEP	September
Sim	Simulation Results
SPSS	Statistical Package for Social Sciences
SSARR	Streamflow Synthesis and Reservoir Regulation
St	Water Storage in Reservoir
URC	Upper Rule Curve
USD	United stated Dollar
vwcCopyri	Very Watery Criterion
WNN	Wavelet Neural Network
WCLR	Watery Criterion that Little Rather
WCVR	Watery Criterion that Very Rather