CONTENTS

Acknowledgement	d
Abstract in Thai	e
Abstract in English	h
List of Tables	n
List of Figures	р
List of Abbreviations	S
List of Symbols	t
Statement of Originality in Thai	u
Statement of Originality in English	v
Chapter 1 Introduction	1
1.1 Historical Background	1
1.2 Objectives of this study	4
1.3 Reference	4
Chapter 2 Theory by Chiang Mai University	5
2.1 Refuse-Derived Fuel (RDF)	5
2.2 Factors affecting to RDF products	9
2.3 RDF Production	22
2.4 The economic analysis	24
2.5 The application of RDF	24
2.6 Basic of densification	27
2.7 Compression molding	31
2.8 Constitutive model	35

2.9 Energy consumption for compaction	3
2.10Situation of RDF in Thailand	
2.11References	
Chapter 3 Methodology	4
Chapter 4 Densified Fuels from Mixed Plastic Wastes and Corn Stover	
4.1 Introduction	-
4.2 Experimental methodology	
4.3 Results and discussion	
4.4 Conclusion	
4.5 References	-
Chapter 5 Factor affecting to densified pellet	
5.1 Introduction	-
5.2 Experimental methodology	-
5.3 Result and discussion	-
5.4 Conclusion	8
5.5 References	(
Chapter 6 Constitutive model of mixed plastic waste and corn stover densification	(
6.1 Introduction	(
6.2 Experimental methodology	
6.3 The result and discussion	(
6.4 Conclusion	1
6.5 References	10
Chapter 7 Finite element simulation and mathematical model	1
7.1 Introduction	1
7.2 Finite element model	1
7.3 Result and discussion	1
7.4 Conclusion	1
7.5 References	12
Chapter 8 Conclusions and perspective	12

	8.1 Conclusions	121
	8.2 Perspectives	123
Appe	ndices	124
	Appendix A Table of Characteristics of pellet from mixed plastic waste	125
	and corn stover at various condition	
	Appendix B Publication	144

Curriculum Vitae

158

LIST OF TABLES

Table 2.1 Categories of RDF as guide by the ASTM	6
Table 2.2 Survey of quality standards for RDF in Europe	8
Table 2.3 Quality standard by Australia, Sweden, German and European	9
country and all the	
Table 2.4 Composition of each type of biomass. (agriculture waste)	11
Table 2.5 The glass transition temperatures of each type of biomass	13
Table 2.6 Example of combustion characteristics of combustible materials	17
Table 2.7 The effect of increasing pressure to quality and density of briquettes	17
Table 2.8 Effect of briquetting pressure to mechanical strength	18
Table 2.9 Factors which effect to densified product properties	22
Table 3.1 Lists of testing and standard for determination of physical and chemical	50
properties of pellets	
Table 4.1 Characteristics of plastic waste and corn stover	54
Table 4.2 Characteristics of pellet from corn stover	54
Table 4.3 Characteristics of pellet from mixed plastic waste and corn stover	55
Table 5.1 Characteristics of plastic waste and corn stover	59
Table 5.2 Characteristics of pellet which is made from corn stover	59
Table 5.3 Characteristics of mixed plastic waste and corn stover at 55:45% wt.	60
Table 5.4 Characteristics of mixed plastic waste and corn stover at 65:35% wt.	61
Table 5.5 Characteristics of mixed plastic waste and corn stover at 75:25% wt.	61
Table 5.6 The ANOVA test result of pellet moisture content	63
Table 5.7 The ANOVA test result of pellet density	64
Table 5.8 The ANOVA test result of pellet durability	65
Table 5.9 The ANOVA test result of pellet ash content	66
Table 5.10 The ANOVA test result of pellet stability	67
Table 5.11 The ANOVA test result of calorific value	68

Table 5.12 The ANOVA test result of sulfur	69
Table 5.13 The ANOVA test result of chlorine	70
Table 5.14 The ANOVA test result of carbon	71
Table 5.15 The ANOVA test result of hydrogen	72
Table 5.16 The ANOVA test result of nitrogen	73
Table 5.17 The ANOVA test result of oxygen	74
Table 5.18 Characteristics of pellet from mixed plastic waste and	75
corn stover at difference ratio	
Table 5.19 RDF properties of mixed plastic waste and cassava root	84
(Chiemchaisri, 2010)	
Table 5.20 RDF properties of mixed plastic waste and corn stover	84
NH ₃ solution pretreatment	
Table 5.21 Energy consumption and energy ratio of palletization at each	85
condition	
Table 6.1 The parameter and R-square of constitutive model of each stress range	98
For uniaxial compression	
Table 6.2 The parameter and R-square of constitutive model of each stress range	104
For uniaxial compression of corn stover	
Table 6.3 The parameter and R-square of constitutive model of each stress range	107
For uniaxial compression of mixed plastic waste	
Table 7.1 The result of constants a and b, and R^2 value for all 3 samples which are	114
Obtained from Kawakita-Ludde model	
Copyright [©] by Chiang Mai University All rights reserved	
All rights reserved	

LIST OF FIGURES

Figure 2.1 Glass transition of lignin	14
Figure 2.2 Binding mechanism	28
Figure 2.3 The adhesion between surface and capillary of moving liquid surface	30
Figure 2.4 Diagram of densification process	31
Figure 2.5 Compaction mechanism of powder particles	31
Figure 2.6 mechanical elements which used to describe stress-strain of material	36
Figure 3.1 Grinding machine	49
Figure 3.2 Pelletization device of plastic wastes and corn stover compression	49
Figure 4.1 Compaction apparatus	53
Figure 4.2 Examples of corn stover pellets	54
Figure 4.3 Examples of plastic waste and corn stover pellets	54
Figure 4.4 Relation of pellet density and moisture content of	56
Figure 4.5 Relation of durability index and moisture content of	56
Figure 5.1 Relation of density and mixed plastic and corn stover ratio	76
Figure 5.2 Relation of durability index and mixed plastic and corn stover ratio	76
Figure 5.3 Pellet density at 150 MPa compression, 10% of moisture, $0.5 - 1$ mm.	77
of corn stover size and 25°C, 75°C and 100°C of preheating temperature	
Figure 5.4 The durability at the condition of 150 MPa, 10% of moisture,	78
0.5 - 1mm. of corn stover size and 25°C, 75°C and 100°C of	
preheating temperature	
Figure 5.5 The density at the condition of 100 MPa, 10% of moisture, $0.5 - 1$ mm.	79
of corn stover size and 25°C, 75°C and 100°C of preheating temperature	

Figure 5.6 The durability at the condition of 100 MPa, 10% of moisture, 0.5 – 1 mm. 79 of corn stover size and 25°C, 75°C and 100°C of preheating temperature

Figure 5.7 The density at the condition of 55:45 ratio of mixed plastic waste and	80
corn stover, 10% of moisture, $0.5 - 1$ of corn stover size and 25°C, 75°C	
and 100°C of preheating temperature	
Figure 5.8 The durability at the condition of 55:45 ratio of mixed plastic waste and	81
corn stover, 10% of moisture, $0.5 - 1$ of corn stover size and 25°C, 75°C	
and 100°C of preheating temperature	
Figure 5.9 The relation of density and moisture content at the condition of 150 MPa,	82
0.5 - 1 of corn stover size and 75°C of preheating temperature	
Figure 5.10 The relation of durability and moisture content at the condition	82
of 150 MPa, 0.5 – 1 of corn stover size and 75°C of preheating temperate	ure
Figure 5.11 The relation of density and particle size at the condition of 150 MPa	83
of compression, 10% of moisture content and 75°C of preheating	
temperature	
Figure 6.1 Compression test of densify plastic wastes and corn stover mixed	93
in Instron machine	
Figure 6.2 The compression curve of stress and natural strain for mixed plastic waste	94
and corn stover at the range of $0 - 150$ MPa	
Figure 6.3 A comparison of the constitutive model with the experiment data	95
at stress range 0-150 MPa	
Figure 6.4 Compression curve of 0 – 150 MPa	96
Figure 6.5 A comparison of the constitutive model with the experiment data	97
at the total compression curve of 0 – 150, and stress ranges of 0 to σ_i ,	
σ_i to 25 MPa, 25 to 50 MPa, 50 to 100 MPa and 100 to 150 MPa	
Figure 6.6 A comparison of experimental result and a single constitutive model	98
fitting stress range 4.1 (oi)-150 MPa	
Figure 6.7 The model parameters of the constitutive model	100
with applied stress to 150 MPa	
Figure 6.8 The compression curve of stress and natural strain for corn stover	101
at the range of $0 - 150$ MPa	

Figure 6.9 A comparison of the constitutive model with the experiment data	102
at stress range $0 - 150$ MPa for corn stover	
Figure 6.10 A comparison of the constitutive model for corn stover with the	103
experiment data at the total compression curve of $0 - 150$, and stress range	ges
of 0 to σ_i, σ_i to 25 MPa, 25 to 50 MPa, 50 to 100 MPa and 100 to 150 M	Pa
Figure 6.11 The compression curve of stress and natural strain for	105
mixed plastic waste at the range of $0 - 150$ MPa	
Figure 6.12 A comparison of the constitutive model with the experiment data	105
at stress range $0 - 150$ MPa for mixed plastic waste	
Figure 6.13 A comparison of the constitutive model for mixed plastic waste	106
with the experiment data at the total compression curve of $0 - 150$,	
and stress ranges of 0 to σ_i, σ_i to 25 MPa, 25 to 50 MPa, 50 to 100 MPa	
and 100 to 150 MPa	
Figure 6.14 The comparison of parameters of E, R, n, η , and σ_f of mixed plastic	108
waste and corn stover pellet, corn stover pellet and mixed	
plastic waste pellet	
Figure 7.1 The relation of P/C versus P fitted to the experiment data which	114
Obtained from Kawakita-Ludde model	
Figure 7.2 Distribution of compressive stress (left) and density (right) at 10 MPa	115
Figure 7.3 Distribution of compressive stress (left) and density (right) at 25 MPa	116
Figure 7.4 Distribution of compressive stress (left) and density (right) at 50 MPa	116
Figure 7.5 Distribution of compressive stress (left) and density (right) at 100 MPa	117
Figure 7.6 Distribution of compressive stress (left) and density (right) at 150 MPa	117
Figure 7.7 Figure 7.8: Density contour plots for 25, 50, 75,100, 125 and 150 MPa	118
Figure 7.8 Comparison of density from FE simulation to experimental data	119

LIST OF ABBREVIATIONS

cm ³	Cubic centimetre
cm ²	Square centimetre
cm	Centimeter
FE	Finite element
g	Gram
hr	Gram Hour
in.	Inch
kJ	Kilojoule
kg	Kilogram
kcal	Kilocalories
kWh	Kilowatt-hour
MJ	Megajoule
mg	Milligram
mm	Millimetre
m	Metre
m^2	Square metre
m ³	Cubic metre
ml Sas	Millilitre หาวิทยาลัยเชียงใหม่
MPa	Megapascal
min COPY	Minute by Chiang Mai University
o.d. A	Outside diameter
wt.	Weight

LIST OF SYMBOLS

°C	Degree Celsius
Ca(OH) ₂	Calcium hydroxide
CaO	Calcium Oxide
E	Elastic modulus
HCl	Hydrochloric acid
MgO	Magnesium Oxide
Ν	Strain hardening exponent
R	Strength coefficient
\mathbb{R}^2	R-square
SOx	Sulfur oxide
%	Percentile
3	Natural strain
σ	Stress
η	Viscous coefficient
$\sigma_{\rm f}$	friction loss AL UNIVERSI

ข้อความแห่งการริเริ่ม

ดุษฎีนิพนธ์นี้ได้ศึกษาความสัมพันธ์คอนสติติวทีฟและแบบจำลองเอมไพริคอล ของเชื้อเพลิงอัดเม็ด จากส่วนผสมของขยะพลาสติกและต้นข้าวโพด เพื่อศึกษาตัวแปรที่มีผลต่อการอัดเชื้อเพลิงอัดเม็ดจาก ขยะพลาสติกผสมและต้นข้าวโพด ได้แก่ อัตราส่วนผสมของขยะพลาสติกและต้นข้าวโพด ขนาดของ วัตถุดิบ ปริมาณความชื้นในวัตถุดิบ ความคันและอุณหภูมิของวัตถุดิบ เพื่อใช้เป็นข้อมูลพื้นฐานใน การวิจัยสำหรับการผลิตเชื้อเพลิงอัดเม็ดสำหรับใช้เป็นพลังงานทดแทนของประเทศต่อไป

STATEMENT OF ORIGINALITY

The thesis proposes Constitutive Relation and Empirical Model of Pellet from Plastic Waste-Corn Stover Mixture. The objectives are factors which affect to pelletization of mixed plastic waste and corn stover studying which are The moisture content, mixed plastic and corn stover ratio, grinding size, preheating temperature and mold compression pressure. The result makes advantage to any research that improves pellet fuel which use as renewable energy.

