CONTENTS

Acknowledgement	d
Abstract in Thai	e
Abstract in English	g
List of Tables	1
List of Figures	m
List of Abbreviations	u
List of Symbols	W
Glossary	aa
Statement of Originality in Thai	сс
Statement of Originality in English	ee
Chapter 1 Introduction	1
1.1 Historical Background	1
1.2 Literature Reviews	6
1.3 Objectives	32
1.4 Expecting Benefits	32
1.5 Scope of Study	32
1.6 Thesis Outlines	33
Chapter 2 Theory	34
2.1 Properties of PM	34
2.2 Diffusion Drying	50
2.3 Electrical Properties	51

2.4 Particle Charging	53
2.5 Filter and Deposition Mechanisms	60
2.6 Measurement of Flow Rate	64
2.7 Measurement of Ions and Charged Particles	65
2.8 Data Acquisition	68
2.9 Comparison with Standards Detectors	69
2.10 Statistical Analysis	70
2.11 Numerical Modeling of Flow and Electric Field	74
Chapter 3 Component Description and Modeling	77
3.1 Design of the PMx Detector	77
3.2 Sample Conditioning Inlet Section	78
3.3 Particle Charging Section	86
3.4 Size Classification, Faraday Cups and Cage	92
3.5 Electrometer Circuit	100
3.6 Flow System	102
3.7 Electrical Power System	103
3.8 Data Acquisition and Processing System	105
Chapter 4 Experimental Setup and Field Test Study	108
4.1 Experimental Apparatus4.2 Experimental Setup	108 114
4.3 Field Test Study and Location	124
Chapter 5 Results and Discussion	129
5.1 Characteristic of Air Conditioning Inlet Section	129
5.2 Characteristic of Particle Charging Section	135
5.3 Characteristic of Size Classification, Faraday Cups and Cage	146
5.4 Characteristic of Electrometer Circuit	155
5.5 Characteristic of Vacuum Pump	158

5.6 Characteristic of High Voltage Power Supply	158
5.7 Field Test Comparison with Standard Detectors	161
Chapter 6 Conclusion and Recommendations	186
6.1 Conclusion	186
6.2 Recommendations for Future works	188
References	189
List of Publications	203
Appendices	236
Appendix A	236
Appendix B	243
Curriculum Vitae	257
ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright [©] by Chiang Mai University All rights reserved	

LIST OF TABLES

Table 1.1	Comparison of the continuous particulate matter (PM) monitor	23
Table 2.1	The guideline standard of PM	40
Table 2.2	Comparison of calculation methods for charging by Diffusion, Field,	61
	and Combined Charging at $N_i t = 10^{12}$ ion.s/m ³ , $\varepsilon = 2.6$, NTP	
Table 2.3	Testing conditions for PM10 and PM2.5 candidate equivalent methods	70
Table 2.4	Meaning of the correlation values	71
Table 3.1	Specification of the PMx detector	79
Table 3.2	Comparison of the relative humidity removal products	83
	from diffusion dryer and Nafion® technique	
Table 3.3	Computation condition for numerical model	92
Table 4.1	Specification of TEOM 1400a	112
Table 4.2	Specification of FH62C14 Beta	113
Table 4.3	Particle size range and concentration of the salt particles from nebulizer	115
Table 4.4	Test condition for measuring the discharge current of the particle charger	119
Table 4.5	Setting valve for the relative humidity changes	121
Table 4.6	Test condition of the particle charger for the relative humidity changes	121
Table 4.7	Test condition of the particle charger for the temperature changes	122
Table 4.8	Details of the field test location	125
Table 5.1	Output voltage of an electrometer	160
Table 5.2	Comparison data for this field test	187

LIST OF FIGURES

Page

Figure 1.1 The typical diesel pa	article size distribution	2
Figure 1.2 The cancer risks from	n all source in air ambient	3
Figure 1.3 Schematic diagram	of the TEOM ambient particulate monitor	7
Figure 1.4 Flow schematic of m	odel 5014i beta ray	8
Figure 1.5 Schematic diagram	of piezoelectric microbalance	9
Figure 1.6 Schematic of the CA	MM	10
Figure 1.7 Schematic diagram	of E-Sampler from MetOne Company	11
Figure 1.8 DUSTTRAK TM DRY	K from TSI Company	12
Figure 1.9 Schematic diagram	of condensation particle counter	13
Figure 1.10 Schematic diagram	of the aerodynamic particle sizer	14
Figure 1.11 Schematic diagram	of electrical aerosol analyzer	17
Figure 1.12 Schematic diagram	of the differential mobility particle sizer	18
Figure 1.13 Schematic diagram	of the electrical aerosol spectrometer	19
Figure 1.14 Schematic diagram	of ELPI [™]	20
Figure 1.15 Schematic diagram	of an analyzer and sampler	21
Figure 1.16 Schematic diagram	of DustDETEC	22
Figure 2.1 Particle size ranges a	and definitions for aerosol	37
Figure 2.2 The size distribution	of dust aerosols	38
Figure 2.3 Fluid resistance betw	veen two parallel plates	41
Figure 2.4 Density and viscosity	y of air versus temperature	41
Figure 2.5 Fluid flow around th	e spherical particle	42
Figure 2.6 Slip correction factor	r at 20°C and 101 kPa	45
Figure 2.7 An irregular particle	and its equivalent spheres	47
Figure 2.8 Cross-sectional view	of an impactor	49

Figure 2.9	The collection efficiency and cutoff curve between actual and	49
	idea impactor	
Figure 2.10	Particle classification method in diameter size range	50
Figure 2.1	Diffusion charging	53
Figure 2.12	2 Electric field line in the uniform electric field	54
Figure 2.13	Field strength in a tube of diameter 0.2m with	56
	a concentric wire 1 mm in diameter at 50 kV	
Figure 2.14	The number of elementary charges of the charge limits	58
	and the diffusion, field and combine charging	
Figure 2.15	5 Number of elementary charges where the electric field changes	58
Figure 2.16	5 Number of elementary charges where the relative permittivity changes	59
Figure 2.17	Number of elementary charges where the residence time changes	59
Figure 2.18	3 Number of elementary charges where the temperature changes	59
Figure 2.19	Number of elementary charges where the ion concentration changes	60
Figure 2.20) Single-fiber efficiency	63
Figure 2.21	Single-fiber collection by interception	63
Figure 2.22	2 Single fiber collection by impaction	63
Figure 2.23	3 Single fiber collection by diffusion	64
Figure 2.24	The single-fiber efficiency of five basic several mechanisms	64
Figure 2.25	5 Structure of a Rotameter	65
Figure 2.26	5 Aerosol electrometer	66
Figure 2.27	7 Current to voltage converter basic circuit	67
Figure 2.28	B Description of the linear relationship	71
Figure 2.29	P Relationship between R and R^2	72
Figure 2.30) Difference of the linear regression	73
Figure 3.1	Operating diagram of the PMx detector	80
Figure 3.2	Design and cross section of the sampling head	80
Figure 3.3	Feature of the sampling head	81
Figure 3.4	Design/cross section and feature of the diffusion dryer	85
Figure 3.5	Domain and boundary of the head sampling	87

Figure 3.6 Domain and boundary of the diffusion dryer	87
Figure 3.7 Cross section and Structure of corona needle charger	88
Figure 3.8 Feature of corona needle charger	88
Figure 3.9 Cross section of corona needle charger	89
Figure 3.10 Computational domain of the charger	91
Figure 3.11 Boundary conditions of the charger	92
Figure 3.12 Cross section of PM10 impactor of DustDETEC version 1.0	94
Figure 3.13 Cross section of the inertial impactor	94
Figure 3.14 Feature of the inertial impactor	94
Figure 3.15 Characteristic of Faraday cups and HEPA filter	95
Figure 3.16 Components of the Faraday cup	95
Figure 3.17 Cross section of Faraday cage	96
Figure 3.18 Feature of the Faraday cage	96
Figure 3.19 Computational domain of the inertial impactor	98
Figure 3.20 Computational domain of the Faraday cage and electrometer	99
Figure 3.21 Boundary conditions of the particle size selector	99
Figure 3.22 Boundary conditions of the Faraday cage	100
Figure 3.23 Amplifier circuit for ultra-low input signal	101
Figure 3.24 Feature of the particle detector for PM1.0, PM2.5 and PM10	101
Figure 3.25 Simulation circuit of the electrometer	102
Figure 3.26 Flow meter and control	103
Figure 3.27 Feature of DC vacuum pump	103
Figure 3.28 DC switching power supply 220VAC 50Hz/15VDC 20A	104
Figure 3.29 Battery charging circuit	104
Figure 3.30 Spellman high voltage power supply	105
Figure 3.31 Power supply circuit for Spellman and electrometer circuit	105
Figure 3.32 ADAM-4017 data acquisition modules	106
Figure 3.33 UCON-485 to USB converter	107
Figure 3.34 Personal computer for record PM measuring data	107
Figure 3.35 Operating software for record PM measuring data	107

Figure 4.1	Standard electrometer Keithley model 6517A	109
Figure 4.2	The 1400a TEOM sensor unit for PM10	111
Figure 4.3	The 1400a TEOM control unit for PM10	111
Figure 4.4	The FH62 C-14 beta for PM10 monitor	112
Figure 4.5	The 5014i beta for PM2.5 monitor	112
Figure 4.6	The DRX 8533 DUSTTRAK for PM monitor	113
Figure 4.7	Operation diagram of the combustion aerosol generator	115
Figure 4.8	Diagram for generate the sample particle	115
Figure 4.9	Testing diagram of the diffusion dryer by the air ambient	116
Figure 4.10	Testing diagram of the diffusion dryer by the water aerosol	117
Figure 4.11	Testing diagram for find particle loss in the diffusion dryer	117
Figure 4.12	Testing diagram for pressure drop in the corona charger	118
Figure 4.13	Testing diagram for find discharge current from the corona charger	118
Figure 4.14	Testing diagram for charging current of the corona charger	118
Figure 4.15	Testing diagram for relative humidity changes	120
Figure 4.16	Testing diagram for temperature changes	120
Figure 4.17	Testing diagram of the impactor	122
Figure 4.18	Particle loss in Faraday cage and HEPA filter efficiency	122
Figure 4.19	Current source for lab test	123
Figure 4.20	Testing diagram of electrometer circuit	123
Figure 4.21	Testing diagram for the DC vacuum pump	123
Figure 4.22	Testing diagram of Spellman high voltage power supply	124
Figure 4.23	Location of Son Pa Mae Mo Lampang station	126
Figure 4.24	Location of Hoy king Mae Mho Lampang station	126
Figure 4.25	Location of Central government Chiang Mai station	127
Figure 4.26	Location of Yupparaj School Chiang Mai station	127
Figure 4.27	Location of CISAT-Doi Saket Chiang Mai	128

Figure 5.1	Mesh convergence curve of the sampling head model	130
Figure 5.2	Mesh convergence curve of the diffusion dryer model	130
Figure 5.3	Mesh domains of the air inlet	130
Figure 5.4	Velocity field inside the head sampling	131
Figure 5.5	Particle Trajectories of PM100, PM10, PM2.5, and PM1.0	131
Figure 5.6	Velocity field inside of the diffusion dryer	133
Figure 5.7	The relative humidity of the diffusion dryer	133
Figure 5.8	The relative humidity from the water spray	133
Figure 5.9	The relative humidity of the ambient air	134
Figure 5.10) Drying efficiency of the diffusion dryer	134
Figure 5.11	Temperature from the outdoor ambient air	134
Figure 5.12	2 The NaCl particle loss between inlet and outlet of the diffusion dryer	135
Figure 5.13	3 Mesh convergence curve of the particle charger model	136
Figure 5.14	Feature of mesh domains in the particle charger	136
Figure 5.15	5 Electric field inside the particle charger at 3 kV corona voltage	136
Figure 5.16	5 Surface of electric potential inside the particle charger	137
Figure 5.17	Contour of electric potential inside the particle charger	137
Figure 5.18	3 Contour of electric field inside the charger	137
Figure 5.19	Electric field strength of needle tip when the corona voltage changes	138
Figure 5.20	Velocity field inside the particle charger	138
Figure 5.21	Particle trajectories without electric charge in the charging zone	139
Figure 5.22	2 Particle trajectories of PM100 with electric charge in ion trap zone	139
Figure 5.23	Particle trajectories of PM10 with electric charge in ion trap zone	139
Figure 5.24	Particle trajectories of PM2.5 with electric charge in ion trap zone	140
Figure 5.25	5 Particle trajectories of PM1.0 with electric charge in ion trap zone	140
Figure 5.26	6 Pressure drop of the corona charger	141
Figure 5.27	Discharge current at high voltage changes	142
Figure 5.28	3 Ion number concentration at high voltage changes	142
Figure 5.29	<i>N_it</i> product at high voltage changes	143
Figure 5.30) Ion penetration at high voltage changes	143
Figure 5.31	Discharge current when the RH changes	144

Figure 5.32 Discharge current when the corona voltage changes.	144
Figure 5.33 Discharge current at 60%RH when the corona voltage changes	145
Figure 5.34 Corona onset and breakdown voltage	145
Figure 5.35 Discharge current when the temperature changes	145
Figure 5.36 Discharge current when the corona voltage changes	146
Figure 5.37 Collecting efficiency from analytical analysis at 5 L/min air flow rate	146
Figure 5.38 Velocity field average when mesh domain changes	147
Figure 5.39 Mesh domains of the particle size selector	148
Figure 5.40 Arrow direction of velocity field in the particle impactors	148
Figure 5.41 Velocity field allow z axial (r=0)	148
Figure 5.42 Particle tracing in the PM10 impactor	149
Figure 5.43 Particle tracing in the PM2.5 impactor	149
Figure 5.44 Particle tracing in the PM1.0 impactor	149
Figure 5.45 Velocity average in each of domains number	150
Figure 5.46 Mesh domains of the particle charge detector	151
Figure 5.47 Aero direction of velocity field in the Faraday cage	151
Figure 5.48 Particles tracing inside the particle detector	151
Figure 5.49 Comparison of flow velocity at the surface Faraday cup	152
Figure 5.50 Nano particle loss in the Faraday cage	152
Figure 5.51 Morphology photo of the NaCl in the PM10 impactor	153
Figure 5.52 Morphology photo of the NaCl in the PM2.5 impactor	153
Figure 5.53 Morphology photo of the NaCl in the PM1.0 impactor	153
Figure 5.54 Morphology photo of the combustion particle in the PM10 impactor	154
Figure 5.55 Morphology photo of the combustion particle in the PM2.5 impactor	154
Figure 5.56 Morphology photo of the combustion particle in the PM1.0 impactor	154
Figure 5.57 Morphology photo of the airborne particle in the PM10 impactor	156
Figure 5.58 Morphology photo of the airborne particle in the PM2.5 impactor	156
Figure 5.59 Morphology photo of the airborne particle in the PM1.0 impactor	156
Figure 5.60 Aerosol particle on the HEPA filter	157
Figure 5.61 Simulation circuit of current source and LMC6032 op-amp circuit	157
Figure 5.62 Comparison between 20 to 2,000 fA (input) and 0.001 to 1 V (output)	159

Figure 5.63 Comparison between 2 to 10 pA (input) and 1 to 5 V (output)	159
Figure 5.64 Comparison between 20 fA to 10 pA (input) and 0.01 to 5 V (output)	160
Figure 5.65 Relation of current, voltage and air flow rate of the vacuum pump	160
Figure 5.66 Input and output voltage of Spellman model MM0.1P0.5/12	161
Figure 5.67 Input and output voltage of Spellman model MM0.1P1.5/12	161
Figure 5.68 Charging current of PM10, PM2.5 and PM1.0 from the PMx detector	162
Figure 5.69 Comparison of 1 h average mass concentration from the 1400a	163
and the charging current from the PMx detector	
Figure 5.70 Relationship of 1 h average between the 1400a and the PMx detector	163
Figure 5.71 Comparison of 1 h average on 6 July 2013	163
Figure 5.72 Comparison of 1 h average between the 1400a and the PMx detector	164
Figure 5.73 Relationship of 1 h average between the 1400a and the PMx detector	165
Figure 5.74 Comparison of 24 h average between the 1400a and the PMx detector	165
Figure 5.75 Relationship of 24 h average between the 1400a and the PMx detector	165
Figure 5.76 Charging current of PM10 from the PMx detector	166
Figure 5.77 Comparison of the mass concentration	167
from the 1400a and the charging current from the PMx detector	
Figure 5.78 Relationship of 1 h average between the 1400a and the PMx detector	167
Figure 5.79 Comparison of 1 h average on 13 March 2014	167
Figure 5.80 Comparison of 1 h average between the 1400a and the PMx detector	168
Figure 5.81 Relationship of 1 h average between the 1400a and the PMx detector	169
Figure 5.82 Comparison of 24 h average between the 1400a and the PMx detector	169
Figure 5.83 Relationship of 24 h average between the 1400a and the PMx detector	170
Figure 5.84 Charging current of PM10 from the PMx detector	171
Figure 5.85 Mass concentration and charging current	171
Figure 5.86 Relationship of 1 h average between the 1400a and the PMx detector	171
Figure 5.87 Comparison of 1 h average on 18 April 2015	172
Figure 5.88 Comparison of 1 h average between the 1400a and the PMx detector	172
Figure 5.89 Relationship of 1 h average between the 1400a and the PMx detector	174
Figure 5.90 Comparison of 24 h average between the 1400a and the PMx detector	174
Figure 5.91 Relationship of 24 h average between the 1400a and the PMx detector	174

Figure 5.92 Charging current of PM10 from the PMx detector	175
Figure 5.93 Comparison of mass concentration and the charging detector	176
Figure 5.94 Relationship of 1 h average between FH62C14 and the PMx detector	176
Figure 5.95 Comparison of 1 h average on 17 December 2015	176
Figure 5.96 Comparison of 1 h average between FH62C14 and the PMx detector	177
Figure 5.97 Relationship of 1 h average between FH62C14 and the PMx detector	178
Figure 5.98 Comparison of 24 h average between FH62C14 and the PMx detector	178
Figure 5.99 Relationship of 24 h average between FH62C14 and the PMx detector	178
Figure 5.100 Charging current of PM2.5 from the PMx detector	179
Figure 5.101 Comparison of mass concentration and charging current	180
Figure 5.102 Relationship of 1 h average between the 5014i and the PMx detector	180
Figure 5.103 Comparison of 1 h average between the 5014i and the PMx detector	180
Figure 5.104 Comparison of 1 h average between 5014i and the PMx detector	181
Figure 5.105 Relationship of 1 h average between 5014i and the PMx detector	181
Figure 5.106 Comparison of 24 h average between the 5014i and the PMx detector	181
Figure 5.107 Relationship of 24 h average between the 5014i and the PMx detector	182
Figure 5.108 Comparison of mass concentration and charging current	183
Figure 5.109 Relationship of 1 min average between 8533 and the PMx detector	183
Figure 5.110 Comparison of 1 min average between the 8533 and the PMx detector	183
Figure 5.111 Relationship of 1 min average between 8522 and the PMx detector	184
Figure 5.112 Comparison of 1 h average between the 8533 and the PMx detector	184
Figure 5.113 Relationship of 1 h average between the 8533 and the PMx detector	186

Copyright[©] by Chiang Mai University All rights reserved

LIST OF ABBREVIATIONS

API	Air Pollution Index (Hong Kong)
APS	Aerodynamic Particle Sizer
AQHI	Air Quality Health Index (Canada)
AQI	Air Quality Index (US EPA, Thailand and Asian)
ASCII	American Standard Code for Information Interchange:
	(Character-encoding)
BAM	Beta Attenuation Monitor
CAG	Combustion Aerosol Generator
CAI	Comprehensive Air-quality Index (South Korea)
CAMMS	A Continuous Ambient Mass Monitor System
CAQI	Common Air Quality Index (Europe)
CFR	Code of Federal Regulations
CNC	Condensation Nuclei Counter
СО	Carbon Monoxide
COMEAP	Committee on Medical Effects of Air Pollutants (UK)
CPC	Condensation Particle Counter
DC	Direct Current
DMPS	Differential Mobility Particle Sizer
DMT	DMT Diffusion Dryer from Droplet Measurement Technologies
DNA	Deoxyribonucleic Acid
DRM	Direct Reading Monitor
EAA	Electrical Aerosol Analyzer
E-analyzer	the DAM for classifying the particle size of EAS
EAS	Electrical Aerosol Spectrometer
E-BAM	Beta Attenuation from Met One Instruments Inc
ELPI	Electrical Low Pressure Impactor
EMA	Electrical Mobility Analyzers
EPA	Environmental Protection Agency

FEM	Federal Equivalence Method
FRM	Federal Reference Method
HI	Harvard-Marple Impactor
IMECAs	El Indice Metropolitano de la Calidad del Aire (Mexico)
LCD	Liquid Crystal Display
LED	Light Emitting Diode
LIDAR	Light Detection and Ranging
MAR	Major Axis Line
MSB	Most Significant Bit
NAAQS	National Ambient Air Quality Standards
NH ₃	ammonia
NO	Nitric Oxide
NO ₂	Nitrogen Dioxide
O ₃	Ozone
OPC	Optical Particle Counters
PCD	Pollution Control Department (Thailand)
PDE	Partial Differential Equation
PM	Particulate Matter
PSAP	Particle Soot/Absorption Photometer
PSI	Pollutant Standards Index (Singapore)
RH	Relative Humidity
SEM	Scanning Electron Microscope
SMPS	Scanning Mobility Particle Sizer
SO ₂	Sulfur Dioxide
TEM	Transmission Electron Microscope
TEOM	Taper Element Oscillating Microbalance
TSP	Total Suspended Particulate or PM100
US EPA	United State Environmental Protection Agency
WHO	World Health Organization

LIST OF SYMBOLS

α	The solidity
σ	The electrical conductivity (S/m)
γ	The auxiliary variable for calculated β_4
γ	The surface tension of the droplet liquid
λ_i	Ion mean free path (m)
λ	The mean free path (µm)
X	The dynamic shape factor (for irregular particle)
$\beta_1, \beta_2, \beta_3, \beta_4$	The auxiliary variable for calculated the linear regression analysis
ρ	Density (kg/m^3) ; The incoming charged particles; The electric
	charge density (C/m ³)
μ	The deposition parameter; Micron (10^{-6} m)
ε	Dielectric constant of particles
η	The dynamic viscosity (Pa.s); Charge efficiency
$\Delta T_1, \Delta T_2$	Differential of temperature (Kelvin)
R_{e_p}	Particle Reynolds number
Е	The permittivity of particl (F/m
\overline{u} add \prod	The velocity vector (m/s)
_π Copyri	Pi (3.1415926)
$\sigma(r)$	The path integrated extinction
A	The area (m ²); Constant value in the power regression model
В	Magnetic flux ($Wb/m^2);$ Constant value (Power regression) ;
	Particle mobility (m/N.s)
<i>c</i> , <i>C</i>	The constant value
\overline{c}	The mean thermal speed of the ions $(2.4 \times 10^4 \text{ cm/s})$
C_c	Cunningham correction factor

C_D		The coefficient of drag
C_{eq}		Concentration of water vapor at saturation
C_r		Rotameter coefficient (about $0.6 - 0.8$)
D_j		The impactor jet diameter
<i>d</i> 50		Particle cutoff diameter
d_a		The aerodynamic diameter (m)
d_c		Particle velocity that gravity force; Cylinder diameter
d_m		The collision diameter of the molecule
d_e		The equivalent volume diameter (m)
d_p		Nozzle diameter; Particle diameter
d_s		Stoke diameter (m)
е	6	The elementary unit of charge $(1.6 \times 10^{-19} \text{ C})$
Ε	1	The electric field strength or electric field intensity (V/m)
E_{C}		The Collection Efficiency
F		Particle trajectories force; Force; Volume force field
F_D	13	The drag force of the air on the particle (N)
F_G		The gravity force (N)
F_E		Magnitude of the force (N)
g		Acceleration due to gravity
Ι		Discharge current (A); Transmitted flux (Wb/m ²)
I_e	8.2.	The electrometer current signal (A)
I_p	adar	Charging current (A)
J	Copyrig	The current density (A/m^2)
J_e	AII	The externally generated current density (A/m ²)
J_R		The parameter function of R_{dl}
k		Boltzmann's constant (1.38×10^{-16} dyn cm/K)
K_E		Constant of proportionality $(9 \times 10^9 \text{ N.m}^2/\text{C}^2)$
Kn		Knudsen number
L_1		The length of needle electrode (the corona needle-cone charger)
т		The particle mass (kg)
<i>m</i> f		The float mass (kg)

m_p	The particle mass concentration $(\mu g/m^3)$
n	The number of charge
n_c	The number of charge in combined chargers
n_d	The number of charge in diffusion charging
n _f	The number of charge in field charging
n _{ion}	The ion number concentration (ions/m ³)
n_p	The average number of elementary charge
n_{pi}	The mean of particle probability
n_s	Saturation charge
N	The number of air exchanges per day
Ni	The ion concentration (ion/cm ³)
N _p	The particle number concentration (particles/m ³)
p	Pressure (Pa or Pascal)
P _r	The pressure at standard temperature or NTP (101.3 kPa)
P_p	The particle penetration of the charger
P_t	Penetration of the inlet concentration
<i>p</i> _{STP}	The pressure at standard condition
q	The charge on the particle (coulomb)
Q	The air flow rate (m^3/s)
Q_a	The fluid flow rate (m^3/s)
Q_{kg}	The mass of silica gel (kg)
$Q_{STP,}$	The flow rate at standard condition
Q _j Copyri	The boundary current source (A/m ²)
r AII	The radius or distance (m)
r_p	Particle radius
R	Correlation coefficient
R^2	Correlation coefficient of determination
Re	Raynold number
R_{e_p}	The particle Reynolds number
R_{e_0}	The Reynold number of the particle at the initial velocity

R_{f}	Feedback resistor
R_i	Acceptable concentration range ($\mu g/m^3$)
S	The ratio of stop distance
S	The Sutherland interpolation constant; Stopping distance
S_{tk}	Stokes number
S_{tk50}	Stoke number at d_{50}
t	The charging time (s)
τ	The relaxation time (s)
Т	The absolute temperature (Kelvin)
T_r	The standard condition (20°C or 293.15 K)
\overline{u}_p	The particle velocity vector (m/s)
v, V, U	The velocity (m/s)
Vout	The output voltage (V)
V_p	The particle velocity (m/s)
VTE	The terminal electrostatic velocity, m/s
V _{TS}	The terminal settling velocity, m/s
X	The mass thickness of the sample, g/cm ²
x(y)	x on y in the Linear Regression Analysis
y(x)	y on x in the Linear Regression Analysis
<i>y</i> ₁ (<i>x</i>)	y_1 on x in the Linear Regression Analysis
$y_2(x)$	y_2 on x in the Linear Regression Analysis
Z_i or Z_{ion}	Electrical mobility of ion
Z_i^+	The electrical mobility of positive ion $1.15 \times 10^{-4} \text{ m}^2/\text{V} \text{ s}$
Z_i^-	The electrical mobility of positive ion $1.425 \times 10^{-4} \text{ m}^2/\text{V} \text{ s}$

GLOSSARY

22D1180	Diaphragm Vacuum Pump from GAST
5014i	The continuous PM monitor model 5014i Beta Ray
ADAM-4017	Analog to Digital 8 channel input 16 bit data
ADD	ADD Diffusion Drying
APS3320	An aerodynamic particle sizer model 3320 from TSI Company
Arduino UNO	Arduino Microcontroller Module
ATM 226	Aerosol Generator from TOPAS Company
BAM 1020	Beta Attenuation Monitor from Met One Instruments
D-analyzer	The DAM for classifying the particle size of EAS
DD250	Diffusion Dryer model DD250 of ATI Company
DDU570	Diffusion Dryer model DDU570 of TOPAS Company
DIAL	Differential Absorption LIDAR
DM-870A	Digital Voltmeter
DRX8533	Continuous PM Monitor from DUSTTRAK
DustDETEC	Electrostatic Sensor for Measuring Airborne Particulate Matter
Dusttrak8520	The continuous PM monitor model DustTrak8520
Dusttrak8533	The continuous PM monitor model DustTrak8533
DustTrak TM	The continuous PM monitor model DustTrak TM
E-Sample	The continuous PM monitor model E-Sample
FH62C14	The continuous PM monitor model FH62C14 Beta Ray
FH62I-N	Beta Attenuation Ambient Particulate Monitor

- GDS-1052-U Digital Oscilloscope from GW-INSTEX
- GFC-1111 Dwyer Mass Flow Controller series GFC 0-15 L/min
- GFC-1144 Dwyer Mass Flow Controller series GFC 0-100 L/min
- GK2.05 KTL Respirable/Thoracic Cyclone
- GRIMM180 The continuous PM monitor model GRIMM180
- JSM-5910LV Scanning Electron Microscope (SEM) from JEOL
- Kimoto180 The beta gauge sampler
- MDTM Series Nafion Dryer
- MiniVol The Air Sampler
- Model289 True RMS Digital Multimeter from Fluke
- Model2025 PM2.5 Sequential Air Sampler from Partisol-Plus
- Model3081 Scanning Mobility Particle Sizer from TSI
- Model3321s the aerodynamic particle sizer from TSI Company
- Model3775 the condensation particle counter from TSI Company
- Model3776 Condensation Particle Counter from TSI Company
- Model521721 DC High Voltage Power Supply from Leybold Didactic
- Model6517A Electrometer from Keithley
- Model80K-40 High Voltage Probe from Fluke
- Partisol-Plus The Sequential Air Sampler
- PDTM Series Nafion Dryer
- PQ2000 The FRM air sampler from BGI Company
- TE-EDM 180 The continuous PM monitor model TE-EDM 180
- TEOM1400 The continuous PM monitor model TEOM

ข้อความแห่งการริเริ่ม

- ๑) ระบบควบคุมและฐานข้อมูลอัลกอลิทึมใหม่ ใช้ระบบฐานข้อมูลแบบคลาวค์และการควบคุม ระยะ ใกลสำหรับการวัคพีเอ็มในคุษฎีนิพนธ์นี้เป็นอัลกอลิทึมใหม่ ในขณะที่เครื่องวัคพีเอ็ม แบบอื่นทั่วไปใช้การบันทึกข้อมูลลงในหน่วยความจำภายในเครื่อง เครื่องวัคที่พัฒนาขึ้นนี้ใช้ ซอฟต์แวร์แลปวิวในการบันทึกข้อมูลการวัคพีเอ็มลงในไฟล์ซีเอสวีในเครื่องคอมพิวเตอร์ (พีซี) และมีการส่งข้อมูลการวัคนี้ไปยังระบบคลาวค์ด้วยซอฟต์แวร์ครอบบ๊อก โดยมีความจำเป็นต้อง เชื่อมต่อเครื่องคอมพิวเตอร์กับระบบอินเตอร์เนต (ไวไฟ หรือ โมเค็มจีเอสเอ็ม) สำหรับส่ง ข้อมูลการวัคไปยังระบบคลาวค์โดยอัตโนมัติ ระบบนี้สามารถแสดงผลการวัคแบบเวลาจริง และสามารถควบคุมระยะใกลจากเครื่องคอมพิวเตอร์เครื่องอื่นหรือสมาร์ทโฟนได้
- ๒) ส่วนการให้ประจุอนุภาคและชุดคักจับอนุภาคแบบ ๒ ใน ๑ เป็นชุดเดียวกัน ชุดให้ประจุอนุภาค แบบยูนิโพลาร์ส่วนใหญ่เป็นการให้ประจุแบบโคโรนาดีสชาร์จ (โดยเฉพาะขั้วอิเล็กโทรดแบบ เข็ม) สำหรับสร้างไอออนให้กับอนุภาคละอองลอย ชุดให้ประจุบางแบบอาจใช้ตะแกรงตัวนำ และแรงดันขับหรือแผ่นแรงดันสูงสำหรับผลักให้ไอออนไปยังพื้นที่ให้ประจุ ในขณะที่ชุดให้ ประจุบางแบบใช้อากาศสะอาดนำไอออนไปผสมกับอนุภาคละอองลอยในพื้นที่ให้ประจุ สำหรับชุดให้ประจุแบบโคโรนาเข็ม-กรวย จำเป็นที่จะด้องมีชุดดักจับไอออนหลังจาก กระบวนการให้ประจุ ส่วนการให้ประจุอนุภาคในดุษฎีนิพนธ์นี้ เป็นการรวมระหว่างชุดให้ ประจุแบบยูนิโพลาโคโรนาและชุดดักจับไอออนเข้าไว้ด้วยกัน ซึ่งสามารถลดผลกระทบจาก ใอออนหลังจากกระบวนการให้ประจุได้ (เช่นการให้ประจุซ้ำนอกพื้นที่การให้ประจุ)

Copyright[©] by Chiang Mai University

๑) ชุดคัดแยกขนาดอนุภาค ชุดถ้วยฟาราเดย์และวงจรอิเล็กโทรมิเตอร์แบบ ๑ ใน ๑ เป็นชุด เดียวกัน อุปกรณ์วัดพีเอ็มในอากาศที่ใช้หลักการทางไฟฟ้าทั่วไปมีการแยกส่วนระหว่างชุดคัด แยกขนาดอนุภาค กับชุดตรวจวัดสัญญาณอนุภาค หรือมีการแยกระหว่างถ้วยฟาราเดย์และ วงจรอิเล็กโทรมิเตอร์ ทำให้มีการสูญเสียที่อนุภาคและที่สัญญาณไฟฟ้า ระหว่างอุปกรณ์ที่ แยกกันนี้ การสูญเสียอนุภาคมักเกิดกับท่ออากาศชนิดที่ไม่เป็นตัวนำไฟฟ้า ในขณะที่ สัญญาณไฟฟ้าระดับต่ำจะสูญเสียที่จุดเชื่อมต่อไฟฟ้า และจากสัญญาณรบกวนภายนอก การ รวมชุดกัดแยกขนาดอนุภาค ชุดถ้วยฟาราเดย์และวงจรอิเล็กโทรมิเตอร์เข้าไว้ด้วยกัน ทำให้การ ใหลอนุภาคภายในมีระยะที่สั้น และสามารถลดการสูญเสียในท่อได้ นอกจากนี้วงจรอิเล็กโทร มิเตอร์ที่อยู่ใต้ชุดถ้วยฟาราเดย์จะมีเสถียรภาพสูง และมีความเหมาะสมต่อการวัดสัญญาณระดับ ต่ำถึง ๑๐°° (เฟมโต)

การหาค่าสหสัมพันธ์ระหว่างความหนาแน่นมวลกับประจุ ตามที่ ยูเอส อีพีเอ กำหนดการวัด ፈ) เปรียบเทียบของเครื่องมือวัคที่จะยื่นขอการรับรองมาตรฐาน ระบว่าการวัคพีเอ็ม ๑๐ จะต้องวัค ในช่วงที่ต่ำกว่าและสูงกว่า ๖๐ ใมโครกรัมต่อลูกบาศก์เมตร สำหรับค่าเฉลี่ยราย ๒๔ ชั่วโมง และในช่วงที่ต่ำกว่าและสูงกว่า ๑๐ ใมโครกรัมต่อลูกบาศก์เมตร สำหรับค่าเฉลี่ยราย ๒๔ ้ชั่วโมงของพีเอ็ม ๒.๕ ตามที่แสดงในตารางที่ ๒.๓ งานวิจัยการเปรียบเทียบการวัคส่วนใหญ่ เป็นการทดสอบเปรียบเทียบในช่วงเวลาที่สั้น และบางงานทดสอบวัดกับฝุ่นที่มีความเข้มข้น ้น้อย สำหรับการทคสอบวัคเปรียบเทียบในคษฎีนิพนธ์นี้ ได้ทำการเปรียบเทียบกับเครื่องมือ มาตรฐานแบบที่ออม เบต้ำเรย์ และเครื่องวัดเทคนิคทางแสงในระยะเวลานาน สำหรับการวัดพื เอ็ม ๑๐ พีเอ็ม ๒.๕ และ พีเอ็ม ๑.๐ ค่าสหสัมพันธ์แบบกำลังของพีเอ็ม ๑๐ ระหว่างเครื่องพีเอ็ม เอ็กกับเครื่องมือวัดมาตรฐานถูกคำนวณจากข้อมุลค่าเฉลี่ยราย ๒๔ ชั่วโมงของการวัด เปรียบเทียบในช่วง ๑๑.๑๕/๒๓.๖๓ ไมโครกรัมต่อถูกบาศก์เมตร ในช่วง ๒๘.๓๔/๑៩๕.๗๒ ไมโครกรัมต่อถูกบาศก์เมตร ในช่วง ๑๓.๓๔/๘๒.๐๙ ไมโครกรัมต่อถูกบาศก์เมตร และในช่วง ๒๐.ธธ/๖ธ.ธ๘ ไมโครกรัมต่อลูกบาศก์เมตร ในขณะที่ค่าสหสัมพันธ์แบบกำลังของพีเอ็ม ๒.๕ คำนวณจากข้อมูลค่าเฉลี่ยราย ๒๔ ชั่วโมงของการวัคเปรียบเทียบในช่วง ๗.๖๒/๓๖.๙๙ ใมโครกรัมต่อถูกบาศก์เมตร และค่าสหสัมพันธ์แบบกำลังของพีเอ็ม ๑.๐ คำนวณจากข้อมูล ค่าเฉลี่ยรายชั่วโมงของการวัดเปรียบเทียบในช่วง ๓๑.๖๓/๕๘.๕๘ ใมโครกรัมต่อลูกบาศก์

A Copyright[©] by Chiang Mai University A I I rights reserved

STATEMENTS OF ORIGINALITY

- 1) New Algorithm for Database and Control System: The cloud database and remote control system of this thesis is a new PM measurement algorithm. Other PM detectors based on internal data logger. This detector used Labview software for write the PM measuring data into CSV file at the personal computer (PC) and upload data to cloud system by Dropbox software. This PC was needed connect to internet system (Wi-Fi, or GSM modem) for upload the data to the cloud system automatically. This system can be real-time monitor and remote control from anywhere by other PC or smart phone.
- 2) Two-in-One Particle Charging Section: Most unipolar chargers that use corona discharge (especially a needle electrode type) for generating the ion charges to aerosol particle has high concentration ion that does not stick with the ion. Some prototypes use a conductive mesh and a driving voltage or high voltage plate for getting an ion in to the charging zone, while some prototypes use the sheath air to get the ion into the charging zone. (Intra and Tippayawong 2009; Kimoto *et al.* 2010; Intra and Tippayawong 2011; Li and Chen 2011; Qi *et al.* 2007; Alguacil and Alonso 2006; Kruis and Fissan 2001; Intra *et al.* 2013). For the needle-cone types of corona charger, the ion trap is needed after charging process (Intra and Tippayawong 2011; Intra *et al.* 2014). The particle charging section of this thesis was a combination between the unipolar corona charger and the ion trap together, which can reduce effect from the ion after the charging process (such as the net charge distribution was charged).
- 3) Three-in-One of a PM Classifier, Faraday Cup and Electrometer: Conventional electrical analyzers for measuring PM in the air have separate units for particle size classifier and sensor (Shimada *et al.* 2000; Intra and Tippayawong 2015; He *et al.* 2007) or Faraday cup and electrometer circuit (Intra and Tippayawong 2008; Laitinen *et al.* 1996; Marjamaki et al. 2000; Jarvinen *et al.* 2014; Yao and Yoon 2000). The particle loss and the electrical loss between these components can be

high. The particle loss may be on the nonconductive air tube, while an ultra-low measuring signal may loss in a connector and has the interference signal. The combination of three parts resulted in a short path for aerosol flow and particle loss on the tube can be reduced. In addition, the electrometer circuit under the Faraday cup was stable (Amin *et al.* 2006) and appropriate for measuring ultra-low current signal in 10^{-15} (Femto) levels.

Regression between Mass Concentration and Charge Concentration: According to 4) US EPA for comparison between a candidate instrument for certification. Acceptable sample sets for PM10 must be under/over 60 μ g/m³ in 24-h average, and under/over 30 μ g/m³ in 24-h average for PM2.5, as shown in Table 2.3. Most research studies involved a short comparison test and low concentration (Mohtar et al. 2013; Lopez et al. 2012; Chung et al. 2001; Wanjura et al. 2008; Zhu et al. 2007; Huang 2007; Venkatachari et al. 2006; Yanoskey et al. 2002; Yanosky and MacIntosh 2001; Cyrys et al. 2001; Ramachandran et al. 2000; Tsai and Cheng 1996). In this thesis, the detector was compared with the standard detectors including TEOM, Beta, and light scattering technique for a long time for PM10, PM2.5, and PM1.0. The power regression of PM10 between the detector and the standard detectors was calculated from the comparative data with 11.15/27.67 $\mu g/m^3$, 28.34/195.72 $\mu g/m^3$, 13.74/82.07 $\mu g/m^3$, and 20.99/69.98 $\mu g/m^3$ in min/max range of 24-h average. While, the power regression relation of PM2. 5 was calculated from the comparative data with 7.62/36.88 μ g/m³ in min/max range of 24-h average. The power regression relation of PM1.0 had $31.63/58.58 \,\mu g/m^3$ in min/max range of an hour average.

All rights reserved