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CHAPTER 2 

Machining Dynamics 

2.1 Cutting Dynamics 

 To understand the dynamic behaviour of the cutting process in milling we must 

consider the interaction of the cutting tool mounted in a holder attached to the spindle 

and the workpiece mounted on the table, as shown in Figure 2.1. Flexibility in the tool-

spindle structure plays an important role in the structural dynamics for tool-workpiece 

interaction, especially if the workpiece is quite rigid. We may consider that the spindle 

vibration is excited only by the cutting force (if unbalance is negligible). Typically, 

there will be one or more dominant vibratory modes for the overall machine-workpiece 

structure. There are several methods to identify the dynamic model for structural 

vibration, such as by finite element methods or from measurement of the frequency 

response by tap testing at the tool tip (measurement from the actual spindle). For all 

these methods, the resulting dynamic response behaviour can be described by a linear 

model which, in state space representation, taking the form 
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Figure 2.1 Schematic of cutting in milling process 
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 The system input is the interaction force w  arising from cutting. The cutting tool 

displacement relative to the workpiece is given by 
ty  and x  is a vector of state 

variables. The spindle structure may be actuated e.g. with piezoelectric, piezo-restrictive 

actuators or magnetic bearings. The system will then involve the active structure 

dynamics which can be described by a similar state space form with the additional input 

which is the actuation force u  as follows 

 

.

w u

t t

m m

x Ax B w B u

y C x

y C x

  





 (2.2) 

Here 
my  is the measured vibration signals that may be available for feedback control. 

This active structure model may be used as a basis for cutting vibration stability 

prediction and control strategy design in order to extend the operating regions for stable 

cutting. 

2.2 Tool-Workpiece Interaction 

 The mechanism for cutting force generation is one of the key factors that 

determines the stability boundary for vibration under cutting. An accurate description of 

the cutting force must account for the cutting tool profile and the corresponding shape 

of the material being removed, as well as the mechanical properties of the material. 

 The square end mill is the most widely used cutting tool in milling processes. 

Generally, the cutting edge has inclined shape and the edge is a helical profile around 

workpiece  

Figure 2.2 Square end mill geometry and a cutting geometry 
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the tool periphery as shown in Figure 2.2. Key geometric parameters for the cutting 

process include the helix angle  , the axial depth-of-cut b  and the actual cutting chip 

width which is / cosb b  . In a basic model for cutting force generation, the cutting 

edge of helical shape may be neglected. In this case, the cutting tool tooth shape is 

considered to be straight and therefore the helix angle   is zero and b b . 

 The workpiece cut profile can be defined by first considering the shape of the 

removed workpiece chip for the case without vibration, as shown is Figure 2.3. The zero 

vibration instantaneous mean chip thickness is denoted 
mh  (that when structure of the 

cutting tool and the spindle is rigid). This depends on the instantaneous cutting tool’s 

rotational angle   and the feed per tooth 
tf  (mm/tooth) which is taken as a constant 

value. The feed per tooth 
tf  depends on the spindle rotational speed   (rpm), the 

number of teeth 
tN  and the linear feed rate f  (mm/sec) of the workpiece relative to the 

cutting tool. Thus, the feed per tooth has the form as /t tf f N   and the zero 

vibration instantaneous mean chip thickness is given by sinm th f  . 



 

16 

 Note that there are three types of milling: up milling, down milling and slot 

milling. For the model presented in this thesis we will focus on up-milling. For simple 

models, the type of milling operation does not affect the prediction of the cutting 

stability boundary. The typical geometry for up milling operation is shown in Figure 

2.4. The periodic profile of 
mh  is dependent on the tool immersion a  which impacts on 

the exit angle of cut 1cose

r a

r
   
  

 
. Thus, the geometry may be written as the 

conditional equation 
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 In actuality, the shape of the removed material chip will also depend on the 

Figure 2.4 Up milling geometry and related parameters 
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Figure 2.5 Physical basis for tool-workpiece interaction model in milling 

 

Previous wavy  
surface  

Current wavy 
surface 

feed  workpiece feed direction zoomed cutting position 

Figure 2.3 The shape of instantaneous chip thickness  for zero vibration and 

related parameters 

 

𝑓𝑡  
𝑟 

ℎ𝑚 
𝜙 

Ω 

𝑓 

𝜙 
𝑓𝑡  

ℎ𝑚 
𝜙 



 

17 

vibration of the cutting tool as shown in Figure 2.5. The actual instantaneous chip 

thickness h  is determined by the profile of the wavy surface of the workpiece during 

the current and the previous cut from sequential tooth passes. We can define the time 

interval between the current and previous tooth passes   (sec or sec/tooth), which in 

milling will be given by 60 / tN   . The tooth-pass frequency 
toothf  (tooth/sec) may 

also be defined as the inverse of  . Thus, the displacement of the cutting tool during the 

previous cut is given by ( )tz t  . For a 2D model, the instantaneous chip thickness can 

be written in the form of a time-delay representation involving two orthogonal mean 

chip thickness descriptions, as follows 

, , , ,( ) ( ) ( ) ( )x y mx my tx ty tx tyh t h t z t z t    . 

 Due to the milling spindle cross section having rotational symmetry, the system 

structure of dynamics is also symmetric and thus it is reasonable to consider a separate 

scalar equation for h  to each orthogonal axis in the form 

 ( ) ( ) ( ) ( )m t th t h t y t y t     (2.4) 

where 
ty  is the cutting tool displacement in the resolved direction of vibration. 

 The cutting force in milling can be related to the cross-sectional area of material 

Figure 2.6 Time-delay feedback structure for active structure of spindle dynamics 
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being removed according ( ) ( )cutA t bh t  ( 2mm ) as shown in Figure 2.5. A material 

cutting coefficient 
cutK  may also be defined ( 2N/mm ). Then, the cutting force is given 

by ( ) ( ) ( )cut cut cutw t K A t bK h t  . Which we can write in a more compact form by using 

a single ‘depth-of-cut’ parameter 
K cutb bK . The cutting force may therefore be 

expressed 

  ( ) ( ) ( ) ( )K m t tw t b h t y t y t    . (2.5) 

 We can now combine the spindle model in (2.2) and the cutting force model (2.5). 

This results in the time-delayed feedback structure for active spindle dynamics as 

shown in Figure 2.6. 

2.3 Stability Prediction in Cutting Processes 

 For the passive structure dynamics in (2.1), the Laplace domain relation for the 

cutting force input w  and the tool deflection 
ty  is 

 
1( ) ( ) ( )t t wY s C sI A B W s  . (2.6) 

Accordingly, we define the tool tip transfer function as 1( ) ( )t wG s C sI A B  . The 

Laplace domain relation for the cutting force model (2.5) can be written as 

 ( ) ( ) (1 ) ( )s

K m tW s b H s e Y s   . Then, the overall transfer function relation from 
mh  

to 
ty  is given by ( ) ( , ) ( )m tH s T s Y s  where the time-delay system transfer function is 

 
( )

( , )
1 ( )(1 )

K

s

K

b G s
T s

b G s e 





 
. (2.7) 

Consequently, the characteristic equation of (2.7) is 

 1 ( )(1 ) 0.s

Kb G s e     (2.8) 

A well-established approach to predict parametric boundaries for vibrational 

stability is based on frequency response analysis [2]. With this approach, measured 

frequency response data can be used to produce so-called stability lobe diagrams (SLD). 

These can then be used to set machine operating conditions to avoid chatter. 
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 To calculate stability boundaries for a given structural model, equation (2.7) may 

be used to find unstable vibratory solutions and corresponding values of 
Kb . This is 

done by seeking solutions of the characteristic equation with j cs   where 
c  

(rad/sec) is the frequency of chatter. The equations for real and imaginary parts are 

i.  j
1 Re (j )(1 ) 0c

K cb G e
  

    

ii.  j
Im (j )(1 ) 0c

cG e
  

   

The second equation implies 2 ( ) 2c c cG j N        where the number 

1, 2, ...cN   is the cycle number of the time-delay. Then, from the first equation, the 

stability limit (maximum) value for the depth-of-cut parameter is 

 
 

,max

1

2Re ( j )
K

c

b
G 


 . (2.9) 

The corresponding time delay   may be found from the second condition:  

2 ( j ) 2c c

c c c

G N  


  


   . 

The rotational frequency corresponding to the stability limit 
,maxKb  is therefore given by 

  
1

60 2 ( j ) 2c
c c

t

G N
N


  


     . (2.10) 

To construct a stability lobe diagram, the calculated values from (2.9) and (2.10) may be 

used to generate a plot of 
,maxKb  versus  . Note that, for each value of 

c , there will be 

multiple values for   corresponding to each integer value of cN . These leads multiple 

overlapping lobes that must be considered together to determine the resulting stability 

boundary for any given value of  . 

2.4 Numerical Example for Stability Prediction in Cutting Processes 

 Consider as an example that the structural dynamics has two resonant frequencies 

and the transfer function from the cutting force to the tool displacement is given by 
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The two natural modes have the natural frequency values 
1 200 rad/secn   and 

2 546 rad/secn  . The frequency response for this system, shown as real and imaginary 

parts is given in Figure 2.7. The SLD for 2tN   can be obtained from the frequency 

response function as described in Section 2.3 and is shown in Figure 2.8. The region for 

stable cutting operation is below all the lobes generated with different values for 
cN  and 

the area above is the unstable cutting region. For this example, the limit (maximum) 

value for the depth-of-cut parameter for stable cutting over all rotational speeds is 

approximately 185 N/mm. 

 An alternative approach to construct the SLD is to use a Padé approximation for 

the time delay transfer function. This involves using the Taylor series form for the 

exponential time-delay transfer function: 

 
2( ) ( ) ( )

1 ... ( 1)
1! 2! !

n
sT nsT sT sT

e
n

        (2.12) 

where n is the order of the approximation. Considering the characteristic equation as 

Figure 2.7 Frequency response of a numerical example 



 

21 

given by (2.8), the term se   is replaced by using the Padé approximation transfer 

function which is a finite order polynomial fraction in s. Then, we can determine the 

corresponding root locus for the finite order system as shown Figure 2.9. The critical 

value of 
Kb  can be obtained from the root locus as it corresponds to the gain value 

when the locus crosses the imaginary axis. We can see that it has many critical values 

for crossing the imaginary axis for a given spindle rotational speed  . In this case, it is 

the lowest value of 
Kb  that determines the stability limit. This occurs near to the real 

axis as shown in the zoomed area. From one root locus diagram was obtain the 

minimum gain 
Kb  for instability for a given rotor speed   (and hence time-delay value 

 ). 

 

Figure 2.8 Stability lobe diagram for numerical example 
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Figure 2.9 Example of Root locus for time-delay Padé approximation. Tool 

rotational speed is 60 Hz ( ms for  teeth) 
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