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CHAPTER 3 

Robust Control Approach 

 This chapter presents the relevant theory and fundamental aspects for the 

controller design problem. For model-based controller design there is always error in 

the system mathematical model relative to the actual system. A robust control approach 

is one that guarantees that a synthesized controller will work well on the actual system 

despite the fact that there are errors in the model. Firstly, a review of relevant robust 

control theory is given. Then a novel controller formulation is introduced based on a 

delay-dependent Lyapunov-Krasovskii functional (LKF). This leads to a robust stability 

condition in linear matrix inequality (LMI) form that can be solved to obtain optimized 

controller solutions. 

3.1 Robust Control Approach

3.1.1 Basic concepts [84] 

 The section presents the basic theory for robust control of linear time invariant 

(LTI) finite-dimensional systems, described in the state-space as 

 
0, (0)x Ax Bu x x

y Cx Du

  

 
 (3.1) 

where x  is the system state vector, u  is the input signals, y  is the output measurement 

signals and the matrices , , ,A B C D  of suitable size. The signals of , andx y u  are the 

functions of time  0,t  .  

 The system responds to the input (.)u  with the output (.)y  which can be 

computed according to the relation 

( )

0
0

( ) C ( ) ( ) for 0
t

At A ty t e x Ce Bu d Du t t      . 
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To determine if a system can be controlled using feedback some basic properties are 

needed: 

 The system (3.1) or  ,A B  is said to be stabilizable if there exists a feedback 

matrix F  such that A BF  has all its eigenvalues in the open left-half plane

.  The Hautus test for stabilizability is  ,A B  is stabilizable if and only if the 

matrix 

 A I B  

has full row rank for all 0   . 

 The system (3.1) or  ,A C  is said to be detectable if there exists an L  such 

that A LC  has all its eigenvalues in the open left-half plane .  According 

to the Hautus test for detectability  ,A C  is detectable if and only if the matrix 

A I

C

 
 
 

 

has full row rank for all 0   . 

The transfer function matrix of the system (3.1) is 

 
1

( )G s C sI A B D


    

and is a matrix whose elements consist of real-rational and proper functions. 

 Suppose the input signal (.)u  has the Laplace transform 

0
ˆ( ) ( )stu s s u t dt


  . 

Then the output (.)y  of (3.1) does also have a Laplace transform that can be calculated 

as 

   
1 1

0
ˆ ˆ( ) ( ).y s C sI A x C sI A B D u s

      
 

 

For 
0 0x   (such that the system starts at time 0 at rest), the relation between the 

Laplace transform of the input and the output signals is given by the transfer matrix as 

follows: 
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ˆ ˆ( ) ( ) ( )y s G s u s . 

 The fundamental relation between the state-space and frequency domain 

representation is investigated in the so-called realization theory. Going from the state-

space to the frequency domain just requires to calculate the transfer matrix ( )G s . 

 Conversely, suppose ( )H s  is an arbitrary matrix whose elements are real-

rational proper functions. Then there always exist matrices , , , ,H H H HA B C D  such that 

 
1

( ) H H HH s C sI A B D


    

holds true. This representation of the transfer matrix is called a realization. Realizations 

are not unique. Even more importantly, the size of the matrix 
HA  can vary for various 

realizations. However, there are realizations where 
HA  is of minimal size, the so-called 

minimal realization. There is a simple answer to the question of whether a realization is 

minimal: This happens if and only if  ,H HA B  is controllable and  ,H HA C  is 

observable. 

 Pictorially, the system representations in the time-domain and frequency domain 

and the interpretation as a mapping of signals can be shown as follows:  

 The stability of LTI systems will be described as follows: recall the any matrix 

( )H s  whose elements are rational functions is stable if 

𝑥 = 𝐴𝑥 + 𝐵𝑢 

𝑦 = 𝐶𝑥 + 𝐷𝑢 
𝐺(𝑠) 

𝑦(𝑡) =  𝐶𝑒𝐴(𝑡−𝜏)𝐵𝑢(𝜏)𝑑𝜏
𝑡

0

+ 𝐷𝑢(𝑡) 𝑦 (𝑠) = 𝐺(𝑠)𝑢 (𝑠) 

Figure 3.1 The mapping representations of the time and frequency domain for LTI 

system 

h 

Realization 

Laplace transform 
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i) ( )H s  is proper (there is no pole at infinity) 

ii) ( )H s  has only poles in the open left half   plane (there is no pole in the 

closed right half plane \  ). 

 On the other hand, the system (3.1) is said to be stable if A has all its eigenvalues 

in the open left-half plane  . We may denote the set of eigenvalues of A  by ( )A , the 

spectrum of A . Then stability of (3.1) is simply expressed as 

(A) .   

We say as well that the matrix A  is stable if it has this property. The relationship 

between the system stability in (3.1) and the corresponding stability of the transfer 

matrix ( )G s  is that if (3.1) (or A ) is stable, then ( )G s  is stable. 

Note that all these definitions are given in terms of properties of the 

representation. Nevertheless, these concepts are closely related to the so called 

bounded-input bounded-output stability properties. 

 A vector valued signal (.)u  is bounded if the maximal amplitude or peak 

0

sup ( )
t

u u t




  

is finite. Note that ( )u t  just equals the Euclidean norm ( ) ( )Tu t u t  of the vector ( )u t . 

The symbol u


 for the peak indicates that the peak is, in fact, a norm on the vector 

space of all bounded signals; it is called the normL  . 

The system (3.1) is said to be bounded-input bounded-output (BIBO) stable if it 

maps all arbitrary bounded inputs (.)u  into outputs that are bounded as well. In short, 

u

   implies y


  . For LTI systems, BIBO stability is equivalent to the 

stability of the corresponding transfer matrix as defined earlier. 

Theorem 3.1 

 The system in (3.1) maps bounded inputs (.)u  into bounded output (.)y if and 

only if the corresponding transfer matrix ( )G s  is stable. 
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 To summarize, for a stabilizable and detectable realization 
A B

C D

 
 
 

 of an LTI 

system, the following notions are equivalent: stability of the system (3.1), stability of 

the corresponding ( )G s , and BIBO stability of the system (3.1) viewed as an input-

output mapping. 

 Stability is a qualitative property. Another important aspect of system behaviour is 

to quantify how far signals are amplified or attenuated by a system. If we look at one 

input (.)u , and if we take u


 and y


 as a measure of size for the input and the 

output of the system (3.1), the amplification for this specific input signal is  

.
y

u





 

The worst possible amplification is obtained by finding the largest of these quotients if 

varying (.)u  over all bounded signals: 

 
0

suppeak
u

y

u






  


 . (3.2) 

This is the so-called peak-to-peak gain of the system (3.1). Then it just follows from the 

definition that 

peaky u
 
  

holds for all bounded input signals (.)u : Hence 
peak  quantifies how the amplitudes of 

the bounded input signals are amplified or attenuated by the system. Since 
peak  is, in 

fact, the smallest number such that this inequality is satisfied, there does exist an input 

signal such that the peak amplification is actually arbitrarily close to peak . (The 

supremum in (3.2) is not necessarily attained by some input signal. Hence we cannot 

say that peak  is attained, but we can come arbitrarily close.) 

 Besides the peak, we could also consider the energy of a signal (.)x  defined as 

2

2 0
( ) ,x x t dt



   
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to measure its size. This norm is called the L2 norm of a signal. Note that a signal with a 

large energy can have a small peak and vice versa and so it is important to think about 

different physical motivations if deciding for .


 or for 
2

.  as a measure of size. 

 Now the question arises when a system maps any signal of finite energy again into 

a signal of finite energy; in short: 

2 2
impliesu y   . 

For the system (3.1), this property is again equivalent to the stability of the 

corresponding transfer matrix ( )G s . Hence the qualitative property of BIBO stability 

does not depend on whether one chooses the peak .


 or the energy 
2

.  to 

characterize boundedness of a signal. 

 Although the qualitative property of stability does not depend on the chosen 

measure of size for the signals, the quantitative measure for the system amplification, 

the system gain, is highly dependent on the chosen norm. The energy (peak-RMS) gain 

of (3.1) is analogously defined as for the peak-to-peak gain defined by 

2

2

0
2

supenergy
u

y

u


  

 . 

 Contrary to the peak-to-peak gain, one can relate the energy gain of the system 

(3.1) to the transfer matrix of the system. In fact, one can prove that 
energy  is equal to 

the maximal value that is taken by 

 max ( ) ( )G j G j    

over the frequency  . Let us hence introduce the abbreviation 

 max: sup ( ) sup ( ) .G G j G j
 

  


 

   

As indicated by the symbol, this formula defines a norm on the vector space of all real 

rational proper and stable matrices k lRH 


; it is called the H -norm. We can conclude 

that the peak energy gain of the stable LTI system (3.1) is just equal to the H -norm of 

the corresponding transfer matrix: energy G


   
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3.1.2 Small gain theorem 

 Consider a system with two subsystems with feedback interconnection as shown 

in Figure 3.2. Then the small gain theorem can be applied to establish that the overall 

system is stable, as follows: 

Small gain theorem [85]: Suppose that two systems 
1G  and 

2G  are stable, i.e. 

1 2,G H G H   , then the closed-loop system is internally stable if 

 
1 2 1G G


  and 

2 1 1G G

 .  

 Note that, the small gain theorem provides a sufficient condition for stability but 

not necessary condition. This theorem is has many useful applications. In this thesis we 

will use it to treat uncertain systems with control feedback that require consideration of 

model error when trying to establish stability. When used in this way the stability 

condition is referred to as a robust stability condition. 

3.1.3 Uncertainty 

 Robustness is particular important aspect to design the controller to use for the 

actual engineering system. The difference between the mathematical models used to 

design the controller and the actual system dynamics always can’t be avoided. A robust 

control strategy is one for which the performance and/or stability of the system is less 

sensitive to the likely errors in a system model. 

𝐺1 

𝐺2 

Figure 3.2 Feedback interconnection configuration 

+ 
+ 

+ 

+ 
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 In reality, it is impossible to identify the mathematical model for any actual 

dynamic system with total accuracy. The possible errors between the actual dynamics of 

the system and the identified model can be called uncertainty. Generally, we can 

describe two versions of a dynamic system in Laplace domain: ( )actG s  is the dynamics 

of the actual system and ( )mG s is the nominal/identified model. In our case, the nominal 

model will be represented by the finite-dimension active structure model given by (2.2). 

Thus: 

 
1

( )m

uG s sI A B


  . 

 The identified model can be obtained by the numerical modelling approach such 

as finite element method or by using the system identification methods (eg. using 

toolbox in MATLAB® software program). The actual dynamics can be measured directly 

by testing the real system such as by tap test or frequency sweep. However, the 

measured response functions may still be subject to measurement error or the effects of 

system nonlinearity. Consequently, for model-based stability analysis or controller 

design it is important to consider potential errors, both known and unknown, in the 

system model. A key aspect is how best to represent the model uncertainty and, in this 

sense, there are a number of possible approaches to achieve robust control [86]. For the 

present situation, a key issue is dealing with neglected/unmodelled high frequency 

dynamics that tend to occur with finite order descriptions of continuous structures. For 

this reason, a frequency domain non-parametric uncertainty model is introduced. To this 

end, the absolute error (difference) in the system model may be defined as: 

 ( ) ( ) ( )act m

a s G s G s    (3.3) 

where ( )a s  is the additive uncertainty which is the difference in the transfer functions. 

Thus 
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( ) ( ) ( )act m

aG s G s s   . 

Then, another uncertainty representation can be described in the form of the 

relative error. The relative error is expressed as a multiplicative factor which may 

premultiply the transfer matrix (input multiplicative uncertainty) or post-multiply it 

(output multiplicative uncertainty). 

 

 

( ) ( ) ( )

( ) ( ) ( ).

act m in

m

act out m

m

G s G s I s

G s I s G s

  

  
 

The choice can be selected depending on the formulation of the controller design 

problem. The output and input multiplicative uncertainty can be defined as 

 
   

  

1

1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .

in m act m

m

out act m m

m

s G s G s G s

s G s G s G s





  

  

 (3.4) 

 This definition is only valid for square plant ( G  invertible) and an alternative 

definition must be used when the plant transfer matrix is non-square (see Section 3.1.4). 

𝐺𝑎𝑐𝑡(𝑠) 
𝐺𝑚(𝑠) 

Δ𝑎(𝑠) 

+ 
+ 

Figure 3.3 Additive uncertainty representation 

 

𝐺𝑚(𝑠) 

Δ𝑚(𝑠) 

+ 

Figure 3.4 Multiplicative uncertainty representations (a) input multiplicative 

uncertainty (b) output multiplicative uncertainty 

 

𝐺𝑚(𝑠) 

Δ𝑚(𝑠) 

+ 
+ 

(a) (b) 

+ 
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3.1.4 Robust stability conditions using small gain theorem 

1) Basic condition for square plant 

For given actual plant dynamics and approximate model we may define the input 

multiplicative error as in (3.4). The actual closed-loop system with controller 

( )cH s  is shown in Figure 3.5a. We may assume that the closed-loop transfer 

function for the system model  
1

m m

ud c cT H G I H G


   is stable. To determine 

whether the actual system is stable we may apply the small gain theorem [86] for 

the interconnection from u  to d . Thus we consider breaking the loop to obtain 

the system shown in Figure 3.5b. The sufficient condition for stability is that the 

2L  gain from d  to u  is less than 1. This condition may also be expressed in terms 

of the H
-norm: 

 1ud m udT T
 
   . (3.5) 

Hence stability of the actual closed-loop system can be checked by considering 

the closed-loop transfer matrix 
udT  calculated from the plant model. This transfer 

function is referred to as the input complementary sensitivity function which can 

be written as:  
1

m m

ud c cT H G I H G


  . As 
m  is not usually known exactly we 

may instead consider a scalar bounding function ( )r mW s    and apply the 

robust stability criterion 1r udW T

 . If this holds then we may conclude that the 

closed-loop system will always be stable. Stability conditions may be similarly 

derived for the other uncertainty representations.  
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2) Modified condition for non-square plant 

The typical situation for MIMO systems is that there are more outputs than inputs. 

To use a state feedback control law, the number of outputs must be the same (or 

more than) the number of states. In this case, ( )a s  has many elements and so 

considering each element explicitly may introduce considerable complexity in the 

controller synthesis problem. One possible alternative approach is to try to map all 

errors to a multiplicative perturbation at the plant input, as shown in Figure 3.6f 

(where ( )cH s  is a designed controller). By using this representation, however, the 

implication is that all states are affected by the same multiplicative error (matched 

error). This is typically the case for model error associated with actuators, sensors 

and control calculation delays. Suppose again that we have a controller for which 

the following H -norm specification is satisfied 

 1ud m udT T
 
    (3.6) 

Figure 3.5 Application of small gain theorem to establish stability of system in (a) by 

checking -norm for system in (b) 

𝐺𝑚 

𝐻𝑐 

Δ𝑚 

+ 
𝑦𝑚 𝑢 

+ 
𝑑 

𝐺𝑚 

𝐻𝑐 

Δ𝑚 

+ 
𝑦𝑚 𝑢 

𝑢  𝑑 

+ 

(a) (b) 
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where 
udT  is the input complementary sensitivity function which can be written 

as:  
1

m m

ud c cT H G I H G


  . In this case, the stability with unmatched errors is 

also guaranteed if the controller is chosen such that 

  
1

1c a c a udH I H T




    . (3.7) 

This can be shown by basic block diagram manipulation, as the system in Figure 

3.6a can be transformed to the form in Figure 3.6f with  
1

m c a c aH I H


     . 

Hence, a controller synthesis may still be based on (3.6) and then robustness to 

unmatched model error checked following synthesis by evaluating whether 

condition (3.7) holds for the controller solution 
cH . If not, 

m  can be modified 

accordingly and a revised controller synthesized. 
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Δ𝑎 

𝐺𝑚 

𝐻𝑐 

+ 
+ 

𝑢 

Figure 3.6 Steps for constructing equivalent input multiplicative perturbation from 

the additive perturbation 

𝑦𝑚 

𝐻𝑐Δ𝑎 

𝐻𝑐𝐺
𝑚  

+ 
+ 

(a) (b) 

+ 

+ 

(c) (d) 

(e) 

+ 

+ 

𝐺𝑚 

𝐻𝑐 

Δ𝑚 

+ 
𝑦𝑚 𝑢 

𝑢  𝑑 

(f) 

+ 

𝐻𝑐Δ𝑎 

𝐻𝑐𝐺
𝑚  

𝐻𝑐𝐺
𝑚  (𝐼 − 𝐻𝑐Δ𝑎)

−1 

𝐻𝑐Δ𝑎(𝐼

𝐻𝑐𝐺
𝑚  
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 For both cases described, the set of design constraints necessary to account for the 

multiplicative uncertainty can be defined in terms of the weighting function ( )rW s  that 

satisfies ( ) ( )m rj W j    for all frequencies of  . Then, if 

 1m ud r udT W T
 

    (3.8) 

the actual closed-loop system is always stable. The weighting function can be defined in 

the form of Laplace domain, ( )rW s  which also can be described by the state-space 

model as: 

 
.

r r r r

r r r

x A x B u

u C x D u

 

 
 (3.9) 

3.2 Linear Matrix Inequalities (LMIs) and Lyapunov Stability Theory 

3.2.1 LMI’s Definition [43] 

A linear matrix inequality (LMI) is any set of constraints in the form 

 0 1 1 2 2 1 1 0

1

( ) ... 0
n

n n n n i i

i

F x F x F x F x F x F F x F 



          (3.10) 

where  1, ... , nx x  is a vector of unknown scalars (the optimization variable) and 

0, ... , nF F  are real symmetric matrices. The inequality ( 0 ) means that “negative 

definite”, i.e., ( ) 0F x   means the biggest eigenvalue of ( )F x  is negative. This is the 

general definition of an LMI. 

 For most applications, LMIs do not naturally arise in the canonical form (3.10), 

but rather in the form 

 1 1( ,..., ) ( ,..., )n nL X X R X X  (3.11) 

where ( )L   and ( )R   are affine functions of some constructed matrix variable 

1,..., nX X . Consider, as an example, the Lyapunov inequality 

  0TA P PA   (3.12) 
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where P  is an unknown symmetric matrix. Defining 
1, ... , nx x  as the dependent scalar 

entries of P , this LMI could be rewritten in the form (3.10). Yet it is more convenient 

and efficient to describe it in its natural form in (3.12). 

 An LMI defines a convex constraint on the optimization variables. That is the set 

of  : ( ) 0x F x   is convex. Indeed, if 
1 2,x x   and (0,1)   then 

 1 2 1 2(1 ) ( ) (1 ) ( ) 0F x x F x F x          

where in the first equality we used the fact that F  is affine. The last inequality follows 

from the fact that 0   and 1 0  . This is an important property since powerful 

numerical solution techniques are available for problems involving convex solution sets. 

3.2.2 Generic problem 

There are three generic problems that arise involving LMIs. 

i) Feasibility problem: finding a solution x  to the LMI by the form  

( ) 0F x   

ii) Minimization problem: minimizing a convex objective function under some 

LMI constraint is also a convex problem. In particular, the linear objective 

minimization problem is 

Minimize  Tc x   subject to  ( ) 0F x   

iii) The generalized eigenvalue minimization problem: This amounts to minimize 

a scalar R  with constraints in the form 

 

Minimize

subject to ( ) 0, ( ) 0

( ) ( )

A x B x

F x B x





 



 (3.13) 

which is quasi-convex and can be solved by similar techniques. It owes its 

name to the face that   is related to the largest generalized eigenvalue of the 

pencil ( )A x  and ( )B x . 
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3.2.3 Lyapunov stability [87] 

 Lyapunov stability theory has an importantly role in dynamic systems and control 

theory. The most relevant aspects relate to system stability with regard to an equilibrium 

point which this can be established using Lyapunov theory. It can be briefly stated that 

if the solutions starting out near an equilibrium point 
0x  stays near 

0x  forever then 
0x  is 

Lyapunov stable. If not then it is unstable. For a stronger stability condition we may ask 

if the solutions starting out near 
0x  converge to 

0x . If so then 
0x  is asymptotically 

stable. 

 For autonomous systems, the basic Lyapunov stability theorem is applied to a 

system in the form 

 ( )x f x  (3.14) 

where : nf D  is a local Lipschitz map from a domain nD   into n . Suppose 

xD  is an equilibrium point of (3.14) that is ( ) 0f x  . Without loss of generality, all 

definitions and theorems for the case when the equilibrium point is that the origin of n

, that is 0x  , because any equilibrium point can be shifted to the origin via a change of 

variables. Suppose 0x   and consider a change of variables y x x  . The derivative 

of y  is given by 

 ( ) ( ) ( )y x f x f y x g y     , where (0) 0g  . (3.15) 

 In the new variable y , the system has equilibrium at the origin. Therefore, 

without loss of generality, we will always assume that ( )f x  satisfies (0) 0f   and 

study the stability of the origin 0x  . 

Definition 3.2 

 The equilibrium point 0x   of (3.14) is 

 stable if, for each 0  , there is ( ) 0     such that 

(0) ( )x x t    , 0t   
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 unstable if it is not stable 

 asymptotically stable if it is stable and   can be chosen such that 

  (0) lim ( ) 0
t

x x t


     

Theorem 3.3  

Let 0x   be an equilibrium point for (3.14) is and nD  be a domain 

containing 0x  . Let :V D  be a continuously differentiable function such 

that 

(0) 0V   and ( ) 0V x   in {0}D   

( ) 0V x   in D  

then, 0x   is stable. Moreover, if  

( ) 0V x   in {0}D  

then, 0x   is asymptotically stable.  

Theorem 3.4  

Let 0x   be an equilibrium point for (3.14). Let : nV   be a continuously 

differentiable function such that 

(0) 0V   and ( ) 0V x  ,  0x   

( )x V x     

( ) 0V x  ,  0x   

then, 0x   is globally asymptotically stable.  

3.2.4 Lyapunov stability via LMI 

Consider a linear time invariant dynamic system described by 
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 x Ax . (3.16) 

A quadratic Lyapunov function may then be defined having the form 

 ( ) 0TV x x Px   (3.17) 

where P is positive symmetry definite matrix, 0TP P  . The time derivative of the 

Lyapunov function ( ) ( )
d

V x V x
dt

 
 

 
 is 

  ( ) 2 T T TV x x Px x PA A P x   . (3.18) 

 From Theorem 3.4 the system in (3.16) is globally asymptotically stable if 

( ) 0V x  , 0x  . That means the symmetric matrix in (3.18) must be negative 

definite: 

 0TPA A P  . (3.19) 

 The LMI in (3.19) is also called Lyapunov inequality [43]. The feasible solution 

for P  must be obtain in order to confirm that the dynamic system in (3.16) is globally 

asymptotically stable. 

3.2.5 System norm-bound via LMIs 

Given, a dynamics system has the form: 

 
d

z

x Ax B d

z C x

 


 (3.20) 

where d  is the exogenous perturbation and z  is the output signals. An upper bound on 

the H  norm for this system may be determined using a quadratic Lyapunov function 

as stated in the following Theorem. 

Theorem 3.5 

 For the dynamic system in (3.20), if there exists a quadratic Lyapunov function 

( ) , 0TV x x Px P   and 0  , such that for all t  and all admissible x  and d , 
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1

( ) 0T Td
V x z z d d

dt



    (3.21) 

then, the induced 
2L  gain for this system is less that  .  

 Note that if the induced 
2L  gain is less than   then, by definition, 

2 2L L
z d  

2 [0, )d L    where the 
2L  norm is 

2

0

( ) ( ) T

L
t t dt  



   as previously defined. 

For linear systems the peak 
2L  gain is given by the H

 norm and so the quadratic 

constraint is equivalent to 
zdT 


 . 

 For the Lyapunov function in (3.17), the time derivative is ( ) 2 TV x x Px . Then 

the inequality in Theorem 3.5 becomes 

 
1

2 0T T Tx Px z z d d


   . (3.22) 

This leads to the LMI constraint 

 

1

0

T T

z z dPA A P C C PB

sym I





 
   

 
  

. (3.23) 

 So, if there exist positive definite matrices 0P  and 0Q   such that (3.23) holds 

then the system in (3.20) is asymptotically stable (for 0d  ) and the H  norm from d  

to z  is less than  . In order to prove that (3.22) implies that the H
 norm-bound holds, 

we can integrate (3.22) from [0, )t   . This yields 

0

1
( )  0T TV x z z d d dt




 

   
 
  

so 

0 0

1
( ) (0)   0T TV V z z dt d d dt



 

       
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for the zero initial condition (0) 0V  , hence 

0 0

1
( )   T TV z z dt d d dt



 

    . 

Since ( ) 0V   , therefore 

0 0 0

1 1
 ( )   T T Tz z dt V z z dt d d dt

 

  

      . 

That means, 

0 0

1
  T Tz z dt d d dt



 

  . 

According to 
2L  norm definition, the H

 norm-bounded criterion of 

2 2L L
z d , 

2[0, )d L    

is satisfied. 

3.3 Lyapunov-Krasovskii Functional 

Suppose that the time-delay system has the form 

 0 ( )x A x A x t    . (3.24) 

 For this system, a Lyapunov-Krasovskii functional (LKF) can be used in the same 

way as a quadratic Lyapunov function can be used with non-time-delay systems in order 

to establish stability and input-output properties. See the review papers [42] and [47] for 

further background. Furthermore, the approach can be used to synthesize controllers for 

time-delay systems. Here we choose (among other possibilities) an LKF involving a 

time-delay-dependent integral quadratic form: 

 ( , ) ( ) ( ) ( ) ( )

t

T T

t

V x t x t Px t x Qx d


  


    (3.25) 

where 0TP P   and 0TQ Q  . The time derivative of (3.25) with a constant time-

delay   is 
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( , ) 2 (t ) ( )T T TV x t x Px x Qx x Qx t      . 

Therefore, 

 0 0( , )
( ) ( )

T T

D
x xPA A P Q PA

V x t
x t x tsym Q 

     
     

     
. (3.26) 

If there exist positive matrices 0P   and 0Q   such that 

 
0 0 0

TPA A P Q PA

sym Q


  

 
 

 (3.27) 

then the time-delay system is asymptotically stable. Note that although the LKF (3.25) 

is delay-dependent, the final stability condition (3.27) is not. Therefore, LKF is suitable 

for establishing a delay-independent stability limit. For an application to the machining 

vibration problem, this will allow us to determine stable conditions which are 

independent of tool speed (rotational frequency). 

3.3.1 Application of LKF to chatter stability limits 

 For milling operations, the cutting force involves a time-delayed feedback effect 

from the previous tooth-pass, as described in Chapter 2. The cutting force model (2.5) 

may be combined with the passive structure dynamics in (2.1) leading to the time-delay 

system in the form 

 0 0( ) wx A x A x t B w      (3.28) 

where 0 K w tA A b B C  , K w tA b B C  , and the zero-vibration cutting force is 
0 K mw b h . 

 The LMI stability criterion (3.27) can be used to calculate the stability limit in 

terms of the value of Kb . If the LMI problem is feasible for a given value of Kb , which 

can be checked using a standard LMI solver (e.g. “feasp” in MATLAB®), then the 

system is asymptotically stable and chatter will not occur. To find the maximum depth-

of-cut, ,maxKb , we can repeatedly solve the feasibility problem with iteration over Kb  to 

find the maximum stable value, e.g. using a bisection algorithm. 
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 Consider as a numerical example, the system given in Section 2.4 with transfer 

function (2.11). This system can also be described in the state space form (2.1) for 

which the values of constant matrices are  

0 0 1 0

0 0 0 1

-135526 50792 -149 0.33

322230 -212343 -25.3 46.3

A

 
 
 
 
 
 

, 

0

0

1.55

54.5

wB

 
 
 
 
 
 

,  0 1 0 0tC  . 

 Constructing the time delay system model in the form (3.24) and checking for 

feasibility of (3.27), as previously described, allows us to determine the stability limit in 

terms of 
Kb . For this example, the obtained value was 

,max 184.18Kb  N/mm which is in 

close agreement with the value obtained by the frequency response method used to 

construct the SLD in Figure 2.8. 

 Consider now the case of a time-delay system with exogenous input and output 

variables: 

 
0 ( ) d

z z

x A x A x t B d

z C x D d

    

 
 (3.29) 

where z  is the output and d  is the input signals. To establish whether the system 

satisfies a H
 norm-bound criterion, the following equivalent condition is considered: 

2 2L L
z d , 2 [0, )d L    with 0  . According to Theorem 3.5, this condition 

may be proved by the existence of an LKF ( , )V x t  such that 

 
1

( , ) 0T T

DV V x t z z d d


    . (3.30) 

 Adopting the form of LKF given by (3.25), if there exist positive matrices 0P 

and 0Q   then the time-delay system (3.29) is stable and the H  norm from d  to z  is 

less than  . 

 For the nominal time-delay system in (3.29), equation (3.30) can be written in the 

quadratic form 
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0 0

1

( ) 0 ( ) 0

T T
T z z d

D

PA A P Q C C PA PB
x x

V x t Q x t

d sym I d




 



 
      

    
        

        
  

. 

Consequently T

DV     where ( )T T T Tx x t d      and  

 

0 0

1

0 0

T T

z z dPA A P Q C C PA PB

Q

sym I






 
   

 
    

 


 
  

. (3.31) 

The term 
1 T

z zC C


 here is quadratic in 
zC . Therefore, if 

zC , is an optimization variable 

then (3.31) is not in the LMI form. To obtain an equivalent condition in LMI form, 

Schur complements may be used, as given in the following Lemma. 

Lemma 3.1. Schur complement [43] 

 Suppose there are positive definite matrices, 0TQ Q   and 0TR R   for 

which a bilinear matrix inequality (BMI) is defined 1 0TQ S R S  . We can transform 

BMI to equivalent LMI as: 

 
1 0 0.

T

T Q S
Q S R S

S R


 

    
 

  

To apply Lemma 3.1, we note that an equivalent condition to equation (3.31) is 

    
0 0

1
0 0 0 0 0

0

T T

d z

z

PA A P Q PA PB C

Q I C

sym I









    
   

      
      

. (3.32) 

Hence, from Lemma 3.1, an equivalent condition to (3.31) may be obtained as 
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0 0

0 0
0

0

T T

d zPA A P PA PB C

Q

I

sym I







 
 

   
 
 

 

. (3.33) 

The final LMI form for the H
 norm-bound in (3.33) is suitable for various controller 

synthesis problems will be shown in Section 3.4. 

3.4 LKF Controller Designs 

 For milling operations, a time delay system with active control and exogenous 

inputs can be formulated as, 

 

0 ( )

.

d u

z z

x A x A x t B d B u

z C x D u

y Cx

     

 



  (3.34) 

 For this system, the exogenous (disturbance) input is d , the control input is u , 

and the output y  is measured signals that can be used for feedback. The output z  is 

defined for use in H
 norm-bound criterion for controller design. For the robust control 

approach described in Section 3.1.3, robust stability is achieved if we can synthesize 

controllers such that the closed-loop system satisfies an H  norm-bound criterion in the 

form 
zdT 


 . 

3.4.1 State feedback control 

 If all the system states can be measured continuously, the state vector, x , in (3.29) 

can be used by the feedback controller. In this case, a standard linear state feedback 

controller would take the form 0u K x  where 0K  is the constant controller gain matrix 

which must be suitably chosen to match the system. For a time-delay system, there are 

already feedback effects involving the delayed states. As an extension to the basic state 

feedback approach, it is natural to consider additional delayed state feedback in the 

general form: 
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 0 ( )u K x K x t    . (3.35) 

Using the control law (3.35) for the nominal time-delay system (3.34), yields 

 
   

 
0 0

0

( )

( ) .

u u d

z z z

x A B K x A B K x t B d

z C D K x D K x t

 







     

   
 (3.36) 

In order to establish an H
 norm-bound for this system, the steps described in Section 

3.3.1 that led to the LMI condition (3.31) may be applied. By comparing (3.29) and 

(3.36) we see that 
0 0 0uA A B K   , 

uA A B K     and so the required condition is  

     0 0 0 0

0

T

u u u dP A B K A B K P Q P A B K PB

Q

sym I

 



     
 

 
 
 

 

 

 

     

0

1

0 0 0

0

T

z z

T

z z z z

C D K

D K I C D K D K 


 
 
      
 
 
 

. 

So, from Lemma 3.1, the equivalent condition is 

0 0 0 0 0

0
0

0

T T T T T T

u u u d z z

T T

z

PA A P PB K K B P Q PA PB K PB C K D

Q K D

I

sym I

 







      
 

   
 
 

 

. (3.37) 

 The matrix   in (3.37) has terms that are bilinear and involve P ,
0K , and K . In 

order to recover an LMI that can be solved for both control gains. We can apply a 

change of variables by first using the following Lemma. 

Lemma 3.2. Equivalent condition 

 For any symmetric positive definite matrix 0TN N   the following conditions 

are equivalent  

 0 X 0TN N    .  
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Thus, we can apply the congruence transformation in Lemma 3.2 to (3.36) with the 

matrix 

1 1diag P P I I      . 

So we may consider the equivalent condition * 0T   . Using a substitution of 

variables 1L P , TS L QL , *

0 0K K L  and *K K L  , leads to the LMI feasibility 

problem: 

 If there exist positive definite matrices 0L  , 0S   and matrices *

0K  and *K  

such that the following LMI holds: 

 

* * * *

0 0 0 0 0

*

* 0
0

0

T T T T T T

u u u d z z

T T

z

A L LA B K K B S A L B K B LC K D

S K D

I

sym I

 







     


  





 
 
 
 
 
 

 (3.38) 

then, the time-delay system with controller in (3.36) is stable and the H
 norm from the 

d  to z  is less than  . 

 An optimized solution to (3.38) can be obtained via a generalized eigenvalue 

problem (GEVP) defined as 

 

* *

0

*

Minimize over , , , ,

subject to 0, 0, ,0

0X

L S X K K

L > S X

X I







 



  (3.39) 

where 

* * * *

0 0 0 0 0

*

* 0

0

T T T T T T

u u u d z z

T T

z

X

A L LA B K K B S A L B K B LC K D

S K D

X

sym X

 



      
 

  
 
 

 

. 

Note that 0A  and A  depend on Kb . Therefore, for controller synthesis based on (3.39), 

the value of the depth-of-cut parameter Kb  is fixed and must be selected first. For 
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improved stability limits the chosen value should exceed the stability limit without 

control. The state feedback control law is then given by * 1 * 1

0( ) ( ) ( )u t K L x t K L x t     . 

3.4.2 Output feedback control 

 Suppose that the system state x  cannot be measured completely, but there is some 

set of measured output variables y  that may be used for feedback. The control approach 

in this case is referred to as output feedback control. A LTI dynamic output feedback 

controller will have a state space realization:  

K K K K

K K K

x A x B y

u C x D y

 

 
 

where 
KA , 

KB , 
KC  and 

KD  are chosen controller matrices and 
kx  is the controller 

states. For the time-delay system (3.29), we may consider a more general controller 

structure involving delayed feedback terms in the form 

 
( ) ( )

( ) ( ).

K K K K K K

K K K K K

x A x A x t B y B y t

u C x C x t D y D y t

 

 

 

 

     

     
 (3.40) 

The closed-loop system may be defined in terms of the combined state vector 

 
T

cl kx x x as 

 

,0 , , , 0

, ,

( )

( )

cl cl cl cl cl d cl w

cl z cl cl z cl

cl cl

x A x A x t B d B w

z C x C x t

y C x









    

  



 (3.41) 

where 
0

,0

u K u K

cl

K K

A B D C B C
A

B C A

 
  
 

, ,

u K u K

cl

K K

A B D C B C
A

B C A

  



 

 
  
 

, ,
0

d

cl d

B
B

 
  
 

, 

,
0

w

cl w

B
B

 
  
 

,  ,cl z z z K z KC C D D C D C  ,  ,cl z z K z KC D D C D C   ,  0clC C   

 In order to synthesize an output feedback controller for the closed-loop system we 

consider the robust stability condition based on the LKF in the same form as (3.25), as 

defined by 
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 ( , ) ( ) ( ) ( ) ( )

t

T T

cl cl cl cl cl

t

V x t x t Px t x Qx d


  


   . (3.42) 

Then, the robust stability is established as follows: 

If there exist positive matrices 0P  and 0Q   such that 

 
1

( , ) 0T T

D clV V x t z z d d


     (3.43) 

then the time-delay system is stable and the H
 norm from d  to z  is less than  . The 

constraint (3.43) leads to the matrix inequality 

 

,0,0 , , ,

,0
0.

0

cl

T T

cl cl cl d cl z

T

cl z

PA A P Q PA PB C

Q C

I

sym I









  
 

   
 
 
  

 (3.44) 

 The matrix   is in a bilinear form involving many optimization matrix variables 

( P , 
KA , 

KA  , 
KB , 

KB  , 
KC , 

KC  , 
KD  and 

KD  ) which must be solved for to obtain the 

output feedback controller solution. To obtain an LMI condition in all the optimization 

variables, the equivalent condition in Lemma 3.3 is applied together with a change of 

free variables. This technique was first proposed in [44] for LMI-based controller 

synthesis and has been used extensively for multi-objective controller design. The 

application of this approach to time-delay systems based on LKFs is a novel aspect of 

the work in this thesis. 

Lemma 3.3. Equivalent condition for output feedback controller synthesis [44] 

 Rewriting P  using sub-matrix variables 
T

Y N
P

N

 
  

 
 then the inverse of P  is 

also defined in sub-matrix form as 
1

T

X M
P

M 

  
  
 

 where X  and Y  are symmetric 

positive definite matrices. The multiplication 1PP I   leads to the following 

constraints: 
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TYX NM I   and 0T TN X M  . 

Then, we define the matrix 1 T

X I

M




 
  
 

 so that 

1
0

T

T T TT T T

Y N X I I YYX NM Y
P

N M NN X M N




      
        

       
 

Also 2 1
0 T

I Y
P

N
 

 
   

 
. 

 Now we may apply a congruence transformation to the matrix inequality in (3.44) 

using 

  1 1diag I I      

From Lemma 3.2, ΓΦΓ 0 Φ 0    and so the equivalent condition of (3.44) is 

1 ,0 1 1 ,0 1 1 1 1 , 1 1 , 1 ,

1 1 1 ,0
0

0

T T T T T T T T

cl cl cl cl d cl z

T T T

cl z

PA A P Q PA PB C

Q C

I

sym I





         

  







  
 

   
 
 

 

. 

From the definition of 
1  and 2 , 

       

2 ,0 1 1 ,0 2 1 1 2 , 1 2 , 1 ,

1 1 1 ,0
0

0

T T T T T T T T

cl cl cl cl d cl z

T T T

cl z

A A Q A B C

Q C

I

sym I





         

  







  
 

   
 
 

 

 

where 

0

2 ,0 1

0 u K u KT

cl T

K K

A B D C B CI X I
A

B C AY N M
 



    
     
    

 
   

0 0

0 0

T

u K K u K

T T

u K K u K K u K K

A X B D CX C M A B D C

Y A B D C X NB CX YB C M NA M YA YB D NB C

   
  

       
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2 , 1

0 u K u KT

cl T

K K

A B D C B CI X I
A

B C AY N M

  



 

 


    
     
    

 
   

T

u K K u K

T T

u K K u K K u K K

A X B D CX C M A B D C

Y A B D C X NB CX YB C M NA M YA YB D NB C

    

       

   
  

       

 

 1 ,
0

TT T

cl z z z K z K

X M
C C D D C D C

I


 
  
 

 T T T T T

z K K z

T T T T

z K z

XC XC D MC D

C C D D

  
  

  

 

 1 ,
0

TT T

cl z z K z K

X M
C D D C D C

I
  

 
  
 

 T T T T

K K z

T T T T

z K z

XC D MC D

C C D D

 



 
  

  

. 

 

We now define new variables as 

 

 

 

0

11 12

1 1

12 22

.

T T

K u K K u K K

K u K K

T

K K K

K K

T T

K u K K u K K

T

K u K K

T

K K K

K K

T

T

A Y A B D C X NB CX YB C M NA M

B YB D NB

C D CX C M

D D

A Y A B D C X NB CX YB C M NA M

B YB D NB

C D CX C M

D D

Q Q
Q

Q Q

     

  

  

 

 

    

 

 



    

 

 



 
  

 

 

When we rewrite   in terms of the new variables it becomes a linear matrix 

inequality: 

 

11 12 13 14

22 240
0

0I

sym I







    
 

 
   
 
 

 

 (3.45) 

where 
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10 0 01 12

1

22

1

0 0

T

K

T T

u u u

T

K K

T

K K

T

KX X C C Q A D Q

Y Y

A A B B A B C

sym A QC CB BA

       
   

    
,  

12

K Ku

K K

uA B A B CX C D

A YA CB

 



 

 

  
   

 
, 13

d

d

B

BY

 
   

 
, 

14

T T

z z

T T

z K z

T

K

T

C D

C C D

X C

D

 
   

 
, 

11 12

22

22
sy

Q Q

m Q

 
   

 
 and 

24

T

z

T

T

K

T

K z

D

C D

C

D





 
   

 
. 

Therefore, if there exists positive matrices 0X  , 0Y   and 
11 12

22

0
Q Q

sym Q

 
 

 
  

satisfying (3.45) then the time-delay system in (3.29) is stable and the H
 norm from d  

to z  less than  . This is an LMI problem in the new optimization variables. 

 The controller matrices in (3.40) can be calculated by reconstructing from the 

solution to (3.45) as follows: 

 

 

 

  

 

 

  

1

1

0

1

1 .

K K

T

K K K

K K u K

T T

K K u K K u K

K K

T

K K K

K K u K

T T

K K u K K u K

D D

C C D CX M

B N B YB D

A N A Y A B D C X NB CX YB C M M

D D

C C D CX M

B N B YB D

A N A Y A B D C X NB CX YB C M M

 

  

  

     





 





 



 

 

    



 

 

    

 

 The unknown matrices of N  and M can be solved using a singular value 

decomposition approach. Considering the relationship of the matrices N , M , X and Y  

given by TYX NM I  , then 

  1/2 1/2T T

N MNM I YX       . 

Therefore, 1/2

NN    and 1/2T T

MM    . 
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 An optimized solution to (3.45) can be obtained via a generalized eigenvalue 

problem (GEVP) defined as 

 

11 12

22

11 12

22

*

Minimize over  , , ,

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, , , , , , ,

subject to 0, 0, 0, 0

0

K K K K K K K K

Q Q
X Y Z

sym Q

A B C D A B C D

Q Q
X Y Z

sym Q

Z I

   







 
 
 

 
    

 

 



  
(3.46) 

where 

11 12 13 14

22 24*
0

0
0Z

sym Z



    
 

 
   
 
 

 

. 

As for the state feedback synthesis, the value of the depth-of-cut parameter is embedded 

in (3.46) and a fixed value must be chosen before solving the LMI synthesis problem.  

 Note that, for the controller in (3.40), we can consider a more simple controller 

form by omitting the delayed input/output terms, i.e. setting 
KB  , 

KC   and KD   to zero. 

In this case, the output feedback controller has the form 

 
( )

.

K K K K K

K K K

x A x A x t B y

u C x D y

    

 
  

Note that the controller state delay matrix 
KA   cannot be eliminated as it is required to 

transfer the BMI form to the LMI form by allowing the bilinear term of YA X  to be 

eliminated using the additional free variable.  
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