
 

72 

CHAPTER 1 

Introduction 

CHAPTER 2 

Machining Dynamics 

CHAPTER 3 

Robust Control Approach 

CHAPTER 4 

Hardware-in-the-Loop Test System for Machining Emulation 



 

73 

CHAPTER 5 

Structural Dynamics: Modelling and Identification 

 A mathematical model of the test system was developed in order to predict the 

vibration behaviour prior to construction. In particular, it was necessary to be able to 

predict the natural frequencies of the test system structure for the dominant modes. By 

using finite element methods, a complete model for structural vibration was obtained. 

As well as using this model for verification of the system design, the model can be 

converted to state space form for use later in the controller design. This chapter 

describes the modelling process. To improve the modelling of the system, system 

identification methods were considered, and these are also described. 

5.1 Finite Element Method 

 For modelling purposes, the structure, as shown in Figure 5.1 [88], can be 

subdivided into several beam elements which are identified by number i

 1, 2, 3, ...,i n . The element i  has length 
il , cross section area 

iA , mass per volume 

(density) 
i , Young’s modulus 

iE  and cross-section area moment of inertia . Note that 

the structure is made from two types of material: steel (for spindle and cutting tool) and 

aluminium (for both flexure pivots). 

 The structure elements are treated as simple beam elements for vibration 

modelling (Figure 5.2). We adopt the Euler-Bernoulli model of beam bending. By using 

Galerkin method [89], the finite element formulation with the consistent mass and 

stiffness matrices are obtained. Considering each beam element, there iI  are two nodes 

for element i  indexed by i  and 1i  . Hence, for n  elements the final node will be 

numbered 1n  . Let iv  and i  be the linear displacement and angular displacement at 

the nodal point of the element. 



 

74 

 

 

The element equation of motion may be expressed [89]: 

 
( ) ( ) ( ) ( ) ( ) ( )i i i i i i

R extM K f f     (5.1) 

where superscript ( )i  indicates the element number and ( )iM  is the consistent mass 

matrix and ( )iK  is the stiffness matrix as given by 
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Figure 5.1 Test rig finite element model 
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Figure 5.2 Deflection of beam element in  plane 
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The reactive/internal nodal force vector is 

( )

1 1

T
i R R R R

R i i i if S M S M 
      

where RS  is the nodal internal shearing force and RM  is the nodal internal bending 

moment. An additional external nodal force vector may act on the element and can be 

written 

( )

1 1

T
i ext ext ext ext

ext i i i if S M S M 
      

where extS  is the nodal external shearing force and extM  is the nodal external bending 

moment. 

 To obtain the overall system mass and stiffness matrices and the internal/external 

force vectors the following steps are undertaken: 

 FE model example: Two element system 

 Consider the combination of two element which are element i =1 and element i

=2. The external forces and bending moments act on the nodes as shown in Figure 5.3. 

The mass and stiffness matrices for each element are given by (5.1) and have the 

general form 
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 The combined system equation of motion for element 1 and element 2 can be 

written in the form 

 
( ) ( ) ( ) ( ) ( ) ( )sys sys sys sys sys sys

R extM K f f    . (5.2) 

Where, for the assembled system, the mass and stiffness matrices are 
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and 

Figure 5.3 FE model elements for two-element system with external forces 
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The system nodal displacement vector is 

 ( )

1 1 2 2 3 3

Tsys v v v    . 

The summed (internal) system force vector is 

1 1

1 1
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   

      

. 

The external system force vector acting on the system can be written 

( )

1 1 2 2 3 3

T
sys ext ext ext ext ext ext

extf S M S M S M     . 

For the example case in Figure 5.3, there are two external forces: the external moment 

extM  acting on node 2 and the external force extF  acting on node 3. Thus, the external 

system force vector may written 

( ) 0 0 0 0
T

sys ext ext ext ext

ext M Ff M F E M E F      

where 
/M FE  are chosen to allocate the forces at the appropriated nodes. For the present 

example  0 0 0 1 0 0
T

ME   and  0 0 0 0 1 0
T

FE  .  

 According to the FE modelling example, a complete model for the test system 

structure comprises 2( 1)n   equations of motion for n  elements. With the previously 

defined external (actuation) forces (see Figure 5.1), the resulting model has the matrix 

form 
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 R R u u wM K E f E f E w     . (5.3) 

The nodal coordinate vector for the system has the form 

 1 1 1 1...
T

n nv v     

where the vector dimension will be (2 2) 1n   . Thus, the mass and stiffness matrices 

of the system are square with dimensions (2 2) (2 2)n n   . If the structure is assumed 

to be fixed at the end of the base flexure, linear and angular displacements at the first 

node are zero (
1 0v  , 

1 0  ). Then, the number of coordinates and equations of motion 

can be reduced by 2. 

 The final model includes an additional damping matrix C  to account for material 

damping, as follows 

 u u wM C K E f E w      . (5.4) 

Typically, for structural vibration modelling it is convenient to assume that proportional 

damping arises in the form C M K    where,   and   are constant values [90]. 

5.2 Local PD Feedback Control 

 Consider the external force due to actuator 1, which appears in the term u uE f  in 

(5.4). The force 
uf  can be treated as a summation of three components due to (1) 

negative stiffness (
negf ), (2) PD feedback of local position measurements (

PDu ) and (3) 

additional control force which is from the optimized control design ( u ). Hence, we may 

write 

u neg PDf f u u   . 

The negative stiffness force negf  depends on the linear displacement at the actuator 1, 

which can be written in terms of the nodal displacement vector so that u neg sE f K  

where 
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0

1

0

s s u a sK k E C k

 
 
 
  
 
 
  

 

where the 1 appears on the 45
th

 diagonal matrix entry. The displacement at the actuator 

is 
a ay C   and the negative stiffness value 

sk  may be calculated as shown.in Section 

4.3.1. Therefore, the system equation of motion with control inputs can be written in the 

form 

 ( ) .s u PD u wM C K K E u E u E w         (5.5) 

 As described in Chapter 4, an initial stabilizing controller is implemented which 

uses PD feedback of measured displacements close to the actuators. This control 

scheme is shown in Figure 4.12. Note that the negative stiffness effects from actuator 2 

are not included in the model as it is assumed that PD feedback is implemented to 

exactly cancel these effects. Hence, the net force from the actuator under PD control is 

zero and w  is the additional force applied to emulate the cutting force excitation. 

 The system model in (5.5), can be changed to the state-space form by defining 

state variables as 
T

T T      . Then 

 
u PD u w

a a

A B u B u B w

y C

   



 



   


 (5.6) 

where 
 1 1

0

s

I
A

M K K M C
  

 
  

   
, 

1

0
u

u

B
M E

 

 
  

 
, 

1

0
w

w

B
M E

 

 
  

 
. 

 The PD control force for the magnetic actuator may be expressed 

 PD P a D au K y K y   . For implementation, a filtered derivative is employed so that, 

in the Laplace domain, the PD controller is 

 ( ) ( )
1

D
PD P a

D

K s
U s K Y s

s

 
   

 
. (5.7) 

This can be realized in the state space form 



 

80 

 
.

PD PD PD PD a

PD PD PD PD a

x A x B y

u C x D y

 

 
 (5.8) 

Combining (5.6) and (5.8), the system model with PD control is 

 u wA B u B w       (5.9) 

where 
u PD a u PD

PD a PD

A B D C B C
A

B C A

   





 
  
 

, 
0

u

u

B
B





 
  
 

, 
0

w

w

B
B





 
  
 

, and the state vector 

is [ ]T T T

PDx  . The system outputs are the displacements at the actuators, expressed 

in terms of state variables as 
a ay C   and 

t ty C  where 
ay  is the displacements at 

the control actuator (actuator 1) and 
ty  is the displacement at the tool tip (actuator 2). 

 The steps for the FEM modelling process for the flexible structure under PD 

control can be summarized as follows: 

a) Segment the ‘spindle’ structure into elements according to the cross-section 

and the type of material, for which the element equations of motion are given 

by (5.1). 

b) Combine elements by considering interaction forces to obtain the flexible 

structure model in the form (5.3). 

c) Eliminate the zero vibration nodes at the clamped end and include a linear 

damping property to give the form in (5.4). 

d) Consider the components of the force from actuator 1 to account for the 

negative stiffness effect, leading to the state space model as shown in (5.6). 

e) Combine the PD controller with filter derivative in state space form (5.8) 

leading to the model of flexible structure under PD control as (5.9). 

5.3 FE Method with PD Control: Numerical Results 

 According to the flexible structure details shown in Figure 5.4 with the parameter 

values given in Table 5.1, and with the actuator and sensor properties already described 

in Section 4.2, a complete system model was obtained in the form of (5.9). From the 

eigenvalues of the matrix A  in (5.9) the natural frequencies for the first three modes 
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are 
1 204n   rad/sec, 

2 546n   rad/sec and 
3 1503n   rad/sec. From the 

corresponding eigenvectors of A  the mode shapes for the flexible structure vibration 

are determined and are shown in Figure 5.5. From the three mode shapes, we can 

describe that the st1  mode is the main pitching mode with bending mainly at the base 

flexure and only small deflection of the tool end. This will be referred to as the ‘rigid 

body mode’. The nd2  mode involves significant deflection of the tool end, and for this 

reason will be referred to as the ‘tool bending mode’. The other higher frequency modes 

involve more complex distortion of the flexures with significant shearing. 

 The frequency response of the system under PD control may be calculated based 

on the state space description (5.9). The output measurement must be defined according 

to the sensor positions, as previously described. Thus, the transfer function for the 

complete structure model has the form similar to (4.8) with 
1f u  and 

2f w . So we 

have 

 
( ) ( )

( )
( ) ( )

a

FE

t

Y s U s
G s

Y s W s

   
   

  
. (5.10) 

Where the transfer function matrix (based on FE modelling) is 

   
1

.a a

t t

FE FE

y u y wa

FE u w FE FE
t y u y w

g gC
G sI A B B

C g g



  




  

     
    

 

 The frequency response plot of the flexible structure covering the first six 

resonant modes is shown in Figure 5.6. It can be seen that the natural frequency values 

are quite well matched with the experimental data given in Chapter 4 (Figure 4.15). 

According to Figure 5.6, the cutting transfer function 
t

FE

y wg , shows two significant 

modes of vibration within a nominal range of frequencies for operation and vibration 

control of 0-1000 rad/s (which corresponds to tooth-pass frequencies 0-160 Hz). 

 We can investigate the effectiveness of the PD controller to improve the cutting 

stability boundary by considering the cutting transfer function 
t

FE

y wg  as described for 

( )G s  in Section 2.3. The derivative gain  DK  is varied to maximize the damping ratio 

for the tool bending mode (see feedback structure shown in Figure 5.7). Note that it is 

the tool bending mode that has the main impact on the form of the stability lobe 
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boundary for stable cutting. The main drawback for applying PD control to a flexible 

structure, is that there is a pinning effect of localized control that will limit the 

achievable damping. This can be seen from the root locus diagram for varying 
DK , as 

shown in Figure 5.8. High gain values drive the closed-loop poles toward the open loop 

zero locations. The frequency response for 
t

FE

y wg  is shown is Figure 5.9 for a range of 

DK  values. This result demonstrated the effect of the resonance peak for the tool 

bending mode for 5 20DK   Ns/m which is in accordance with the root locus 

diagram in Figure 5.8. For the optimal damping value the stability limit was predicted to 

be 
,max 339 N/mmKb  . This is, however, a significant improvement over the base-level 

PD control for which 
,max 180 N/mmKb  . 
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Table 5.1 Parameters value of the flexible structure 

parts mane symbol 
length 

(mm) 

number 

of 

element 

area, 

b h  

( 2mm )  

material 

flexure pivot 1  

6l  5 1 25 35  

aluminum 7l  30 6 2.5 35  

8l  5 1 25 35  

spindle 

1l  187.5 8 45 45  

steel 

2l  10 2 45 45  

3l  15 2 25 45  

4l  25 6 25 45  

5l  10 2 25 45  

flexure pivot 2 

6l  5 1 25 25  

aluminum 7l  30 6 2.5 25  

8l  5 1 25 25  

tool tip 

9l  10 2 25 35  aluminum 

10l  25 6 25 35  steel 

11l  10 2 25 35  aluminum 
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Figure 5.4 Detail of the flexible structure element 
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Figure 5.5 Mode shape of flexible structure for first three modes 
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Figure 5.6 Frequency response of FE model with PD controller 
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Figure 5.7 Changing derivative gain  plant scheme 
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5.4 Modal Analysis and Model Reduction 

 A main issue for numerical analysis and controller synthesis is the computational 

complexity for high order models. Therefore, it is advantageous if the flexible structure 

model with PD controller in (5.9), which is very high order (186 states), can be 

transformed to a reduced order representation. This model must be accurate over a 

frequency range covering the natural frequencies modes of the rigid body mode and tool 

bending mode. 

5.4.1 Similarity transformations 

 Consider a general state space model in the form 

.

x Ax Bu

y Cx

 


 

The transfer function is  
1

( )H s C sI A B


  . Now, define the arbitrary invertible 

matrix T , and the new state vector 

x̂ Tx . 

So that the new states in the vector x̂  are simply a linear combination to the old states 

in vector x . Due to T  is a constant matrix and 1 ˆx T x , we have 

1

1

ˆ ˆ

ˆ.

x Tx TAx TBu TAT x TBu

y Cx CT x





    

 
 

Define the new variables, 1Â TAT  , B̂ TB  and 
1Ĉ CT   then the new state space 

model has the form as 

ˆ ˆˆ ˆ

ˆ ˆ.

x Ax Bu

y Cx

 


 

The transfer function corresponding to this model is given by 

   

 

 

 

1 1
1 1

1
1 1 1

11 1

1

ˆ ˆˆ ˆ( )

( ).

H s C sI A B CT sI TAT TB

CT sTT TAT TB

CT T sI A T TB

C sI A B

H s

 
 


  

 



   

 

 

 


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 So that, the transfer function of the old model ( )H s  is the same as the transfer 

function of the new model ˆ ( )H s . The transformation 1Â TAT   is called a similarity 

transformation. Since, both of the matrices set of    ˆ ˆˆ, ,  and , ,A B C A B C  produce the 

same transfer function ( )H s  and the poles of ( )H s  are the eigenvalues of ˆ and A A  thus 

the following relationship holds: “The eigenvalues of A  are the same as the eigenvalues 

of 1Â TAT   for invertible matrix T ”. This is a well know result in matrix theory. 

5.4.1 Modal form transformation 

 For analysis, it is useful to apply a similarity transformation (as in Section 5.4.1) 

to obtain a Jordan canonical form. There are three types of Jordan canonical form as 

follows [91]: 

1) If the matrix A  has distinct and real eigenvalues 
1 2 ... n   then we can find 

the transformation matrix T  such that 

1

21

0

ˆ

0 n

A TAT









 
 
  
 
 
  

 

where T  is formed from the eigenvectors of the matrix of A : 

 1 2 ... nT v v v  

with the column vector 
iv   being the eigenvector corresponding to the 

eigenvalue i  satisfying i i iAv v . 

2) If the matrix A  has repeated and real eigenvalues (for which it may be 

assumed that the repeated eigenvalue 1  is repeated k  times), then there are 

two cases which must be considered according to  1rank I A l   : 

2.1) If n l k   that means the eigenvector matrix has the form 

 1 2 ... nT v v v  
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where 
1 ... kv v  are independent eigenvectors corresponding to 

1 . The 

Jordan canonical form is given by 

1

21

0

ˆ

0 n

A TAT









 
 
  
 
 
 

 

where 
1 2 ... k     . 

2.2) If n l k    there are less than k  independent eigenvectors corresponding 

to 
1 .We can solve this case by let 0v  be an the eigenvector of 

1  then the 

generalized eigenvector can be obtain by solving by 

 

 

 

1 0

1

2 1

1

1

1 .k k

A I v v

A I v v

A I v v





 

 

 

 

 

Therefore, the generalized eigenvector has the form 

0 1 1... ...k

nT v v v v    . 

The obtained Jordan canonical form is no longer diagonal, and has some 

terms of value 1 above the diagonal 

1

2

1

1 0

1
ˆ

0

0

k

n

A TAT











 
 
 
 

   
 
 
 
  

. 

3) If the matrix A  has complex conjugate eigenvalues given by 1 2, j     . 

Then the corresponding eigenvector must also appear as the complex conjugate 

pair 1 2,v v p jq  . Then, the transformation matrix has the form 

 3 nT p q v v . 
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Giving the Jordan canonical form as follows 

1
3

0

ˆ

0 n

A TAT

 

 







 
 

 
  
 
 
 
 

. 

 Consider the test system model as presented in (5.9), with 
u wA B u B w      . 

A set of output measurements may be defined according to sensor location (at actuator 1 

and 2) in the form 
m my C   where 

 
T

m a t a ty y y y y . 

The eigenvalues calculated for the matrix A  with size n n  include both complex 

conjugate pairs and real values and can be written in the form 

1 1 2 2 1, ,..., , ,...,i k k k nj j j             

and the corresponding eigenvectors also appear as the complex conjugates: 

1 1 2 2 1, ,..., , ,...,i k k k nv p jq p jq p jq v v    . 

Then, the transformation matrix has the form 

 1 1 2 2 1... ...k k k nT p q p q p q v v . 

Consequently, the Jordan canonical form is 

1 1

1 1

2 2

2 2

1

1

0

ˆ

0

k k

k k

k

n

A TA T

v

v

 

 

 

 

 

 

 





 
 

 
 
 

 
 

   
 
 
 
 
 
 
  

. 
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This gives the modal form model defined as 

 
ˆ ˆ ˆˆ ˆ

ˆ ˆ

u w

m m

A B u B w

y C

  



 



  


 (5.11) 

where 1Â TA T 

 , ˆ
u uB TB   and 1ˆ

m mC C T 

 . 

5.4.2 Reduced order model 

 From the modal form system in (5.11) there is a clear decoupling of states for 

each mode. Therefore, model reduction can be performed by a direct elimination of 

states i.e. by retaining sub-matrices of 1Â TA T 

 , ˆ
u uB TB   and 1ˆ

m mC C T 

 . 

 As the operational frequencies for control on the test system are restricted to 

below 700 rad/sec approximately, we consider the map of pole values and enclosing 

circle of radius 700 rad/s, as shown in Figure 5.10. Therefore, we will retain only the 

two lowest frequency modes (rigid body mode and tool bending mode) in the model 

which is defined as 

 
.

R R R Ru Rw

m mR R

x A x B u B w

y C x

  


 (5.12) 

Figure 5.10 Poles location of  with the operating frequency limit of the test rig 

  

1st mode 

rigid body mode 

2nd mode 

flexible mode 

circle of operating 

frequency limit 
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The reduced state vector 
Rx  has size 4 1  and the model matrices having 

compatible dimensions. Note that the number of states matches the size of the 

measurement output 
my  and thus the matrix 

mRC  is a square matrix. 

 As a further transformation, we may transform the system states so that they 

match the measured variables  mx y  by using the transformation 1

R Rx C x . In this 

case, 

1 1

1 .

mR R mR Ru Rw

m mR mR

C x A C x B u B w

y C C x

 



  


 

And so the reduced system form with direct state measurement is 

 
u wx Ax B u B w

y Cx

  


 (5.13) 

where 1

mR R mRA C A C , 
u mR RuB C B , 

w mR RwB C B  and C  is the 4 4  identity matrix. 

For the test system, the numerical values for the model matrices in (5.13) are 

 

0 0 1 0

0 0 0 1

-135526 50792 -149 0.33

322230 -212343 -25.3 46.35

A

 
 
 
 
 
 

 , 

0

0

24.1

5.26

wB

 
 
 
 
 
 

 and 

0

0

1.55

54.5

uB

 
 
 
 
 
 

. (5.14) 

 We can now compare the full order model in (5.9) and the final model to be used 

for analysis and controller synthesis in (5.13) in terms of the frequency response. For 

the reduced model (5.13) we define the transfer function matrix as follows 

 
(s) ( )

( )
(s) ( )

a

t

Y U s
G s

Y W s

   
   

  
 (5.15) 

The transfer function matrix is 

   
1 a a

t t

y u y wa

u w

t y u y w

g gC
G sI A B B

C g g

   
     

    

. 

  A comparison of the frequency responses to confirm the final model accuracy 

with the full order model is shown in Figure 5.11. It is clear that a good match is 
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obtained over the frequency range of operation. For further validation it is necessary to 

compare the reduced order model with the measured test system frequency response as 

shown in Figure 5.12. It can be seen that the resonant frequencies of the reduced order 

model are consistent with the measurements from the test system. Some errors can be 

seen in the frequency response which may be due to various factors including 

 the dynamics of FE model is a linear model which cannot account for some 

nonlinear effects on the test rig 

 test rig dimension errors 

 material property errors 

 neglected dynamics of actuators and drives 

Even though the basic parameters within FE model can be adjusted, it is difficult to 

completely eliminate this error. However, the FE model is considered acceptable for 

further use in the synthesis of controllers (Chapter 6). 
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Figure 5.11 Frequency response from FE modelling comparing the full order model 

versus the reduced order model 

 

full order model 

reduced model 
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Figure 5.12 Frequency response comparing reduced order FE model and experimental 

results from direct testing 

 

Reduced order FE model 

Experimental measurement 
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5.5 System Identification and Model Improvement 

 Preliminary modelling and design work for the test system was done using FEM 

as described in Section 5.1. After the test system was built, the comparative results in 

Figure 5.12 were obtained. In order to obtain an improved accuracy of the system model 

it is possible to use the test system frequency response data and apply system 

identification methods. Although the physical basis for the model is then lost, the 

potentially higher accuracy is of benefit when synthesizing the designed controllers. 

The methods used to identify the system model were based on the system identification 

toolbox in the MATLAB® software program [92]. 

 The complete set of output measurements considered for analysis and control 

include the displacement and velocity of the test system structure at the actuator 

locations. We can write the I/O relation of the test system in matrix transfer function 

form as 

  
( )

( ) ( ) ( )
( )

T ID

a t test

U s
Y s Y s G s

W s

 
  

 
 (5.16) 

where the transfer function here relates to an identification model and has the form 

 
a a

t t

y u y wID

test

y u y w

g g
G

g g

 
  
  

 (5.17) 

 The frequency response data corresponding to testG  as already presented in 

Section 4.6 by (4.8). The identification model can be obtained directly from the 

frequency response data using the system ID toolbox in MATLAB® [92]. For the system 

ID model we define the state space representation as: 

 
, ,

.

id id id id u id w

id id

x A x B u B w

y C x

  


 (5.18) 

Now, we can also use the similarity transformation in order to transform the reduced 

model to the state-output model by the state transformation 1

id idx C x , which yields 
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.

u wx Ax B u B w

y Cx

  


 (5.19) 

where 1

id id idA C A C , 
,u id id uB C B , 

,w id id wB C B  and C I . The matrix values in 

(5.19) are 

 

-70.4 10 1.02 0.02 0 0

-19.5 -18.7 -0.041 1.08 0 0
, and

-79943.3 29002.2 -15.9 -4.72 19.2 8.93

293904.4 -239228.2 -13.6 24.43 7.2 45.38

u wA B B

     
     
       
     
     
     

 (5.20) 

 The comparison of the frequency responses for the 4
th

 order and 8
th

 order 

identified models and (5.19) are shown in Figure 5.13. These results show that the 8
th

 

order model from system ID has very low error compared with the measured frequency 

response data. The reduced system ID model shows larger errors, particularly for higher 

frequencies but would have advantages for controller synthesis and implementation, in 

terms of numerical complexity. Furthermore, it can be seen that the system ID models 

have higher accuracy than the FE model. Therefore, the system ID models are the most 

suitable for synthesizing the designed controllers. 
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Figure 5.13 Frequency response results for three cases, (i) 8
th

 order system ID model, 

(ii) reduced 4
th

 order system ID model, (iii) test system measured data 

System ID 8th order model  

System ID 4th order model 

Test system 
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