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CHAPTER 6 

Optimized Controller Designs 

6.1 Introduction 

 This chapter will present the detailed design of the optimized controllers for the 

experimental system. The necessary theory for the controller formulations and synthesis 

problems was given in Chapter 3. The system models that will be used to synthesize the 

controllers were also obtained in suitable form in Chapter 5. Two versions of the model 

with different values for the system matrices were obtained, as defined by (5.14) for the 

FE model and (5.20) for the system ID model. For all cases, the general form for the 

system state space model is 

 

.

u w

t t

m m

x Ax B u B w

y C x

y C x

  





 (6.1) 

6.1.1 Stability boundary in cutting process with control feedback 

 As some of the controller designs in this thesis involve time-delayed feedback, 

basic calculation of the cutting stability boundary, as given by (2.9) and (2.10) is not 

appropriate (if there are multiple time-delayed feedback loops as for the general time-

delay system model). The time-delayed feedback structure for active control scheme is 

shown in Figure 6.1. The controller input is the set of measured variables 
my  as already 

described in Section 3.1.4. Active control is achieved by a linear dynamic feedback that 

depends on the time-delay  . In practice,   would be known from the measured 

rotational speed and so such a controller can always be implemented. A general Laplace 

domain representation of the feedback control law has the form ( ) ( , ) ( )c mU s H s Y s  

and the closed-loop transfer function from cutting force 𝑤 to the tool deflection ty  is 



 

99 

  
1

( , ) ( , )t u c wG s C sI A B H s B 


   . (6.2) 

Combining ( ) ( , ) ( , )tY s G s W s   with the Laplace domain version of the cutting force 

in (2.5) we obtain the transfer function from the zero-vibration mean chip thickness 
mh  

to the cutting tool displacement vibration 
ty  as ( , ) ( ) / ( )yh t mT s Y s H s  , for which 

  
( , )

( , )
1 ( , ) 1

K
yh s

K

b G s
T s

b G s e 




 


 
. (6.3) 

 In order to predict the cutting stability for the time-delay system with 

implementation of a delay-dependent control feedback, a numerical optimization must 

be used to find unstable solutions based on the transfer function (6.3). The problem then 

is to determine the solution to the characteristic equation with j cs  . Thus, the 

conditions are 

(i)  j
1 Re (j , )(1 ) 0c

K cb G e
   

    

(ii)  j
Im (j , )(1 ) 0c

cG e
   

   

Figure 6.1 The time-delayed feedback structure for active control 
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From (i) and (ii) we obtain, as before 

 
   

,max

Im ( , ) 0

1
( ) 0

min Re ( , )
c

c

K

c G

b
G


  


 




   

(6.4) 

where  j
( , ) ( j , ) 1 c

c cG G e
 

     
  . A stability lobe diagram may be constructed as 

follows: 

1. Choose a rotational speed   and set 2 / tN   . 

2. Numerically find all zeros of  Im ( , )cG    over an interval  1 2,c c c    

condition (ii). 

3. For the solutions from step 2, find   
 Im 0

min Re ( , ) 0c
G

g G


  


  . 

4. The stability limit is given by 1/Kb g   (condition (i)) and can be plotted 

against  . 

5. Choose the new spindle speed and return to step 1. The rotational speed is 

varied within a range of values of interest  1 2,   . 

6.1.2 Model errors for controller synthesis 

 This section presents the evaluation of model error results for the test system 

model, as required for robust control synthesis. As we consider two main types of 

controller design, which are state feedback controller and output feedback controller, 

the model error definition must be different for each controller type and is described in 

the following. 

 The absolute additive error in the test system model a  was already defined in 

Chapter 3, (3.3): 

( ) ( ) ( )act m

a s G s G s   . 
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The additive error can be established from the frequency response matrices ( j )actG  , 

as measured from the test system, and ( j )mG   for the identified model (5.14). Note 

that for these models the input signal is the control force (u ): 

 ( j )

a

t

a

t

y u

y uact

v y u

v y u

g

g
G

g

g



 
 
 

  
 
 
 

 and  
1

( j ) jm

uG I A B 


   (6.5) 

where ( j )actG   is defined pointwise over   for test frequencies used in the 

experimental frequency response measurements. Using these values, we may construct 

the difference error compared with the system ID model, which we define as 

1

2

1

2

a

v

v









 
 
  
 
 
 

. 

 The additive error results are shown in Figure 6.2. We can see that the errors 

 1 2and   for the displacement outputs looks smaller than that for the velocity outputs 

 1 2andv v  . This is because the velocities are not directly measured values but are 

obtained by real-time differentiation of the displacement signals. 
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 We now focus on the input multiplicative error in

m m   . For state feedback 

control, the effective multiplicative error is not independent of the controller 
cH  (see 

Section 3.1.4 in (3.7)) and in this case  
1

m c a c aH I H


     . For output feedback 

control law the plant becomes square (SISO) and so 
m  can be calculated from 

a as in 

(3.4). The results are shown in Figure 6.3. We can see that there are certain frequencies 

where the error is large and these potentially can limit the synthesized controller gain 

Figure 6.2 Additive error for state output model 

Figure 6.3 Multiplicative uncertainty for displacement output model 
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and performance. 

Weighting function determination 

 To determine the required weighting function (
rW ), the multiplicative uncertainty 

must first be estimated and then ( )rW s  chosen as a stable bounding transfer function, as 

described in Section 3.1.4. Accordingly 

( ) ( )m rj W j   . 

For the case studies in this chapter, the weighting function is chosen as a second order 

domains  transfer function in the form 

 

2 2

1 1 1

2 2

2 2 2

( )r w

s s
W s K

s s

  

  

 


 
 (6.6) 

where, the designed values of 
1 2 1 2, , and     are chosen according to the anticipated 

multiplicative error, as shown in Figure 6.3, and 
wK  is an overall scaling factor. A state 

space realization of (6.6) may also be readily obtained for inclusion in the augmented 

plant definition, as in (3.9). 

 
 .

r r r r

w r r r

x A x B u

u K C x D u

 

 
 (6.7) 

6.1.3 Problem formulation and the augmented system 

 The augmented plant, as defined for specification of the robust stability/perfor-

mance objectives for the controller design is shown in Figure 6.4. The weighted output 

that will be used for the robust stability criterion is u . The robust stability criterion with 

respect to multiplicative errors in the plant model is in the form of an H  norm-bound: 

 1r udW T

  (6.8) 

where the complementary sensitivity function udT  is the closed-loop transfer function 

from d  to u  and rW  is the multiplicative error-bound. Alternatively, we can seek to 
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maximize robustness for a given overall form of uncertainty (given shape of ( j )rW  ) 

by imposing 

 r udW T 

  (6.9) 

and then minimizing the value of   in the synthesis  routine. 

 Note that, the particular type of optimization used (Equation (6.8) or (6.9)) will 

depend on the controller design approach. For (6.8) the value of 
wK  must be set 

appropriately prior to synthesis, whereas for (6.9) the initial value of 
wK  is not critical. 

 The system model to use for synthesizing the controller combines the test system 

structure model (6.1) and the weighting function model with the exogenous perturbation 

input d  adding to u  as follows: 

 
 

d w u

w r r

t t

m m

x Ax B d B w B u

u K C x D u

y C x

y C x

   

 





 (6.10) 

where 
0

0 r

A
A

A

 
  
 

, 
0

u

d

B
B

 
  
 

, 
0

w

w

B
B

 
  
 

, 
u

u

r

B
B

B

 
  
 

,  0m mC C ,  0t tC C , 

Figure 6.4 Augmented system structure for robust control 
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 0r rC C , 
r rD D  and the augment state vector 

r

x
x

x

 
  
 

. Next, considering the 

cutting force model (2.4) gives 

 ( )K m t tw b h C x t C x    , 

which can be combined with (6.10), leading to the augmented time-delay system model 

 
 

0 0( ) d w u

w r r

t t

m m

x A x A x t B d B w B u

u K C x D u

y C x

y C x

      

 





 (6.11) 

where 
0 K w tA A b B C  , 

K w tA b B C  . 

6.2 State Feedback Controllers 

 Considering the augmented system in (6.10) with full state measurement 
my x , 

(implying 
mC I ), this section presents the design synthesis for a state feedback 

control law in the form 

 0 0( ) ( )m mu K x K x t K y K y t         (6.12) 

where state feedback gains 
0K  and K  are to be determined. The controlled system is 

given by 

 

   

 

0 0 0

0

( )

( )

.

u u d w

r r u r u

t t

x A B K x A B K x t B d B w

u C D B K x D B K x t

y C x

 







      

   



 (6.13) 

 To ensure that the system (6.13) satisfies the H  norm-bounded criterion in (6.9), 

the following equivalent condition is considered 

 
2 2

2, 0,
L L

u d d L    . 

The method of controller synthesis based on the LMI formulation with LKF follows the 

theory in Section 3.1.4. The details are now given: 
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6.2.1 LMI formulation for state feedback synthesis 

 If there exist positive definite matrix 0, 0L S   and matrices *

0K  and *K  such 

that the following LMI holds: 

 

* * * *

0 0 0 0 0

*

* 0
0

0

T T T T T T

u u u d r r

T T

r

A L LA B K K B S A L B K B LC K D

S K D

I

sym I

 







     


  





 
 
 
 
 
 

 (6.14) 

where 1L P , TS L QL , *

0 0K K L  and *K K L   then, the time-delay system with 

controller in (6.10) is stable and the H
 norm from the d  to u  is less than  . 

 An optimized solution to (6.14) can be obtained via a generalized eigenvalue 

problem (GEVP) defined as 

 

* *

0

*

Minimize  over  , , , ,

subject to 0, 0, 0

0X

L S X K K

L S X

X I





  

 



  (6.15) 

where 

 

* * * *

0 0 0 0 0

*

* 0
0

0

T T T T T T

u u u d r r

T T

r

X

A L LA B K K B S A L B K B LC K D

S K D

X

sym X

 



     


  





 
 
 
 
 
 

.  

 We can also design some different versions of the state feedback controllers in 

order to compare the effect of the delayed state feedback on cutting stability. The three 

design versions considered in this study are as follows: 

LKF-SFC1 

For feedback of current state values only, the control law can be written as 

u Kx  
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LKF-SFC2 

Control with feedback of current and time-delayed state values with optimization as 

already described in Section 6.2 

0 ( )u K x K x t     

LKF-SFC3 

A two-step optimization of gain values for current and time-delayed states in which the 

time-delayed state gains are optimized and the current state feedback gains are those 

from LKF-SFC1. 

6.2.2 Linear quadratic regulator design (LQR-SFC) 

 For comparison, an optimal Linear Quadratic Regulator (LQR) controller design 

is also introduced here. Note that LQR controller design has been applied previously for 

chatter control e.g. in [30], [37]. Here we consider a quadratic regulator having similar 

robustness properties to the previous designs, in terms of the treatment of model 

uncertainty. In this case, however, the design is based on the linear delay-free model 

with 0Kb  , i.e. without any direct account of the cutting model. Instead, we seek a 

controller that minimizes the 
2H  norm from w  to 

ty  subject to the robustness 

constraint 
udT 


 . To this end we seek a solution   TV x x xP  satisfying 

 
   

  2

0T T T

t t

w

V x u u d d y

B

y

V 

   


 (6.16) 

for some 0  . By standard arguments [43], the system is then stable for all 

2 2L L
d u  and the 

2H  norm from w  to 
ty  is less than  . The state-feedback 

synthesis problem can be cast as a standard LMI problem involving minimization of   

subject to (6.16). The derivation of the LMI equations follows a similar procedure to 

that in Section 3.1.4. 
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6.3 Output Feedback Controllers 

6.3.1 Optimized designs based on previous techniques  

 Three controller design cases are considered based on using different concepts to 

account for the cutting force effects. These techniques have been used in previous 

studies and are referred to as OFC 1-3. 

OFC1: Dynamics compliance minimization 

 The dynamic compliance minimization approach was introduced by previous 

researchers and used in optimal controller design for AMB milling spindles, e.g. as in 

[31]. For this approach, the cutting force equation is not included specifically as part of 

the system model, which is shown in Figure 6.5. The inputs d  and output u  are 

included for the robustness specification as before, with the weighting function chosen 

according to the multiplicative error. An additional design constraint for this control 

approach is for the cutting stability which can be specified by 

 
ty wT 


 . (6.17) 

This criterion ensures that  Re
ty wT   and, hence, according to (2.9), we also can 

conclude that ,max

1

2
kb


 . The H

 norm-bound constraint (6.17) can be treated via the 

standard dissipation inequality (Theorem 3.5): 

 
1

0T T

t tV y y w w


    (6.18) 

which leads to the LMI constraint, as in Section 3.4.2: 

 

, ,

1 0

T T

cl cl cl w cl t

C

PA A P PB C

I

sym I





 
 

    
  

. (6.19) 

Both stability constraints, 
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1

ty w

ud

T

T









 

must be treated simultaneously and so a two-channel LMI formulation is appropriate, 

where a single quadratic Lyapunov function is used to establish both constraints via 

simultaneous solution of two LMIs: 
0 0   and 

1 0C  . For the minimization 

problem for this case, we can set 1   (for given value of 
wK ) and then the minimize 

the value of   within the optimization routine. Next, the controller matrices are 

obtained as described in Section 3.4.2. 

OFC2: Norm-Bound treatment of delay 

 In order to better describe the cutting dynamics we may instead account for the 

time-delay effect by a norm-bound constraint as previously considered in [28], [32]. In 

this case, the time-delay block in the cutting force model is omitted, as shown in Figure 

6.6. The cutting force equation can then be written in the form: 

  ( ) ( ) ( )K tw t b q t y t   (6.20) 

where ( ) ( )tq t y t   . Or, in the Laplace domain ( ) ( )s

tQ s e Y s . Hence, the time 

delay transfer function may be treated as an external uncertainty ( ) ss e 



  . It is easy 

to show that 1 
  . Hence, the specification for stability during cutting follows from 

Figure 6.5 System plant for dynamics compliance minimization 
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the small gain theorem [43] applied to the closed-loop system, where the effects of 

( )s  are treated via the exogenous input q : 

 1
ty qT


 . (6.21) 

This H
 norm-bound constraint can again be treated via the standard dissipation 

inequality (Theorem 3.5): 

 0T T

t tV y y q q   . (6.22) 

So that, the LMI form for this case can be defined as 

 

, ,

2 0

KbT T

cl cl cl w cl t

C

PA A P PB C

I

sym I

 
 

    
  

. (6.23) 

Again there are two design constraints 

1
t

ud

y q

T

T









 

which must be treated simultaneously via a two-channel LMI formulation. A single 

quadratic Lyapunov function is used to establish both constraints via simultaneous 

solution of the two LMIs: 0 0   and 1 0C  . For the minimization problem in this 

Figure 6.6 System plant for norm-bound treatment of delay 
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case, we can minimize   for a given value of 
Kb  (which is embedded in the LMIs). 

OFC3: Padé approximation of delay 

 A Padé approximation of time delay effects has been considered previously for 

chatter prediction and control in a number of studies [20], [21], [28]. In this case, the 

time-delay in the cutting force model is treated by using a Padé approximation in the 

form ( ) sE s e 



 . The system plant is shown in Figure 6.7. Thus the cutting force can 

be written 

   ( ) ( ) ( ) 1 ( )K m tW s b H s E s Y s   . (6.24) 

 The Padé approximation has the presented form in (2.12) which can be realized in 

the state space form 

 
, .

P P P P t

t P P P t

x A x B y

y C x D y 






 (6.25) 

Firstly, we have to combine the system model in (6.1) and (6.25) to obtain the linear 

system with time-delay approximation. This yields 

 

, , 0

,

,

,d w u

t t

a a

A B d B w B

y C

y C

u  







 















 (6.26) 

where 
 1K w P t K w P

P t P

A b B D C b B C
A

B C A


   
  
 

, ,
0

u

d

B
B

 
  
 

, ,
0

w

w

B
B

 
  
 

, ,
0

u

u

B
B

 
  
 

, 

 , 0a aC C  ,  , 0t tC C   and the state vector for the system is 
P

x

x


 
  
 

. 

In this case a one channel LMI optimization for 0 0   can be used to obtain the 

controller solution satisfying 

udT 

 . 
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6.3.2 Optimized designs based on LKF approach 

 Considering, again, the augment system in (6.11) with measured output being 

m ay y . The output feedback control law with time-delayed feedback has the form 

 
( ) ( )

( ) ( )

K K K K K K a K a

K K K K K a K a

x A x A x t B y B y t

u C x C x t D y D y t

 

 

 

 

     

     
 (6.27) 

where controller matrices KA , KA  , KB , KB  , KC , KC  , KD , KD   are to be 

determined. The closed-loop system is given by 

Figure 6.7 System plant for Padé approximation of delay 
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,0 , , , 0

, ,

,

( )

( )

cl cl cl cl cl cl d cl w

cl r cl cl r cl

t cl t cl

x A x A x t B d B w

u C x C x t

y C x









    

  



 (6.28) 

where 

0

,0

u K a u K

cl

K a K

A B D C B C
A

B C A

 
  
 

, 
,

u K a u K

cl

K a K

A B D C B C
A

B C A

  


 

 
  
 

, ,
0

u

cl d

B
B

 
  
 

, 

, , , ,, 0 , ,
0

w

cl w cl t t cl r r r K a r K cl r r K a r K

B
B C C C C D D C D C C D D C D C  

 
                

 
 

and the state vector of the close-loop system is cl

K

x
x

x

 
  
 

. 

 To ensure that the system (6.28) satisfies the H
 norm-bound criterion in (6.9), 

the following equivalent condition is considered 

 
2 2

2, 0,
L L

u d d L    . 

The method of controller synthesis based on the LMI formulation with LKF follows the 

theory in Section 3.4.2. The main steps are as follows: 

LMI formulation for output feedback synthesis 

 If there exist positive matrices 0X  , 0Y  , 
11 12

22

0
Q Q

sym Q

 
 

 
 and the matrices 

KA , 
KA  , 

KB , 
KB  , 

KC , 
KC  , 

KD , 
KD   such that the following LMI holds: 

 

11 12 13 14

22 240
0

0I

sym I







    
 

 
   
 
 

 

 (6.29) 

where 

11 120 0 0

11

0 0 22

T

K K K K

T T

u u u a

T

aK a

T

K

T

A A B B A B C

sy

X X C C Q A D Q

Y Ym A A C CB B Q

       
   

    
, 
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a

a

X C D

A Y B

A B A B C

A C

  

  

  
   

 
, 13

d

dY

B

B

 
   

 
, 

14

T T

r r

T T

r

T

r

K

T

a K

C D

C C

X C

D D

 
   

 
, 

11 12

22

22
sy

Q Q

m Q

 
   

 
 and 

24

T

r

T

a

T

K

T

K r

C

D

D

C D





 
   

 
. 

Then the time-delay system in (6.28) is stable and the H
 norm from d  to u  less than 

 . 

 The controller matrices can be calculated by a reconstruction from the new 

variables as follows 

 

 

 

  

 

 

  

1

1

0

1

1 .

K K

T

K K K a

K K u K

T T

K K u K a K a u K

K K

T

K K K a

K K u K

T T

K K u K a K a u K

D D

C C D C X M

B N B YB D

A N A Y A B D C X NB C X YB C M M

D D

C C D C X M

B N B YB D

A N A Y A B D C X NB C X YB C M M

 

  

  

     





 





 



 

 

    



 

 

    

 

The solution for the unknown matrices of N  and M is not unique. However, a suitable 

method is to use a singular value decomposition based on the constraint equation for the 

matrices N , M , X and Y  which is TYX NM I  . Therefore, 

  1/2 1/2T T

N MNM I YX        

and so we can assign 1/2

NN    and 1/2T T

MM    . 

 An optimized solution to (6.29) can be obtained via a generalized eigenvalue 

problem (GEVP) defined as 
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11 12
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11 12

22

*

Minimize over  , , ,

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, , , , , , ,

subject to 0, 0, 0, 0

0

K K K K K K K K

Q Q
X Y Z

sym Q

A B C D A B C D

Q Q
X Y Z

sym Q

Z I
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





 
 
 

 
    

 

 



 
(6.30) 

where 

 

11 12 13 14

22 24*
0

0
0Z

sym Z



    
 

 
   
 
 

 

.  
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