CONTENTS

ACKNOWLEDGEMENT	ผิดพลาด! ไม่ได้กำหนดที่คั่นหน้า
Abstract in Thai	ผิดพลาด! ไม่ได้กำหนดที่ลั่นหน้า
Abstract in English	ผิดพลาด! ไม่ได้กำหนดที่ลั่นหน้า
List of Tables	m m
List of Figures	n N
List of Abbreviations and Symbols	s
Statement of Originality Thai	u a
Statement of Originality English	v
Chapter 1 Introduction	1 2 1
1.1 Vibration in Machining Processes	2 1
1.2 Objective	10
1.3 Scope	10
1.4 Thesis Outline	10
Chapter 2 Machining Dynamics	1880lnj ₁₃
2.1 Cutting Dynamics	i University 13
2.2 Tool-Workpiece Interaction	served ¹⁴
2.3 Stability Prediction in Cutting Processes	18
2.4 Numerical Example for Stability Prediction in C	Cutting Processes 19
Chapter 3 Robust Control Approach	22
3.1 Robust Control Approach	22
3.2 Linear Matrix Inequalities (LMIs) and Lyapunov	v Stability Theory 34
3.3 Lyapunov-Krasovskii Functional	40

3.4 LKF Controller Designs	44
Chapter 4 Hardware-in-the-Loop Test System for Machining Emulation	53
4.1 Active Control Architecture	53
4.2 Test System Flexible Structure	59
4.3 Actuators	60
4.4 Instrumentation and Data Acquisition	64
4.5 Stabilizing Local PD Control	65
4.6 Experimental Results with PD Feedback Control	67
Chapter 5 Structural Dynamics: Modelling and Identification	73
5.1 Finite Element Method	73
5.2 Local PD Feedback Control	77
5.3 FE Method with PD Control: Numerical Results	80
5.4 Modal Analysis and Model Reduction	86
5.5 System Identification and Model Improvement	95
Chapter 6 Optimized Controller Designs	98
6.1 Introduction	98
6.2 State Feedback Controllers	104
6.3 Output Feedback Controllers	107
Chapter 7 Optimized Controller Performance	115
7.1 Closed-Loop Behaviour without Cutting	115
7.2 Cutting Stability Boundaries	125
7.3 Cutting Emulations	129
Chapter 8 Conclusions and Future Work	141
8.1 Conclusions	141
8.2 Future Work	144
Bibliography	146
Curriculum Vitae	156

LIST OF TABLES

Table 1.1 Published of researches and brief summarized		8
Table 4.1 Parameters values of actuator		63
Table 5.1 Parameters value of the flexible structure	10	82
Table 7.1 State feedback optimal control gain values	3.31	117
Table 7.2 Summary of the stability limits in terms of b	for all controllers	126

 K, \max

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure 1.1	Exaggerated view of the current and previous wavy surface of the cut	
	workpiece with examples of phase profile: (a) in-phase and (b) out-	
	of-phase	2
Figure 1.2	Dynamic model of milling with two degrees of freedom: the first	
	regeneration of waviness in milling [5]	3
Figure 1.3	Chatter control strategies researching lines [3]	4
Figure 2.1	Schematic of cutting in milling process	13
Figure 2.2	Square end mill geometry and a cutting geometry	14
Figure 2.3	The shape of instantaneous chip thickness h_m for zero vibration and	
	related parameters	15
Figure 2.4	Up milling geometry and related parameters	16
Figure 2.5	Physical basis for tool-workpiece interaction model in milling	16
Figure 2.6	Time-delay feedback structure for active structure of spindle	
	dynamics	17
Figure 2.7	Frequency response of a numerical example	20
Figure 2.8	Stability lobe diagram for numerical example	21
Figure 2.9	Example of Root locus for time-delay Padé approximation. Tool	
	rotational speed is 60 Hz ($\tau = 8.33$ ms for $N_t = 2$ teeth)	21
Figure 3.1	The mapping representations of the time and frequency domain for	
	LTI system	24
Figure 3.2	Feedback interconnection configuration	28
Figure 3.3	Additive uncertainty representation	29
Figure 3.4	Multiplicative uncertainty representations (a) input multiplicative	
	uncertainty (b) output multiplicative uncertainty	30
Figure 3.5	Application of small gain theorem to establish stability of system in	31

(a) by checking H_{∞} – norm for system in (b)

Figure 3.6	Steps for constructing equivalent input multiplicative perturbation	
	from the additive perturbation	33
Figure 4.1	Illustration of milling machine configurations with different types of	
	support (a) radial ball bearing, (b) AMBs, (c) radial ball bearings	
	with actuator [16], [68], (d) test system structure supported by	
	flexure pivot and electromagnetic actuator	56
Figure 4.2	Main components of test system for experiments on active vibration	
	control of machine structures	57
Figure 4.3	Operating principle of test system for experiments on active vibration	
	control of machine structures	58
Figure 4.4	Test system concept and input/output measurement signals	
	representa-tions	58
Figure 4.5	Test system flexible structure assembly detail	59
Figure 4.6	Close-up view of strain gauge bridge circuit	60
Figure 4.7	Actuator detail	61
Figure 4.8	Actuator control concept	61
Figure 4.9	Differential driving mode of the actuator	62
Figure 4.10	xPC Target system and test system connecting diagram	64
Figure 4.11	Test system and xPC target computer system	65
Figure 4.12	The preliminary stabilizing control scheme for the test system	66
Figure 4.13	Control scheme for initial testing	67
Figure 4.14	Frequency sweep testing inputs and output	68
Figure 4.15	Frequency response of the test rig with PD controller	70
Figure 4.16	Stability regions from experiment with local PD control	71
Figure 4.17	Mean chip thickness profile function used in cutting simulation	71
Figure 4.18	Close-up of stability boundary and selected rotational frequency for	
	cutting simulations	71
Figure 4.19	Cutting emulation on test system for 16 Hz rotational frequency	72
Figure 5.1	Test rig finite element model	74
Figure 5.2	Deflection of beam element in $X - Z$ plane	74

Figure 5.3	FE model elements for two-element system with external forces	75
Figure 5.4	Detail of the flexible structure element	83
Figure 5.5	Mode shape of flexible structure for first three modes	83
Figure 5.6	Frequency response of FE model with PD controller	84
Figure 5.7	Changing derivative gain K_D plant scheme	85
Figure 5.8	Root Locus for changing derivative gain feedback K_D	85
Figure 5.9	Flexible structure frequency response with PD derivative gain varied	
	$K_D = 5 - 20 \text{ Ns/m}$	85
Figure 5.10	Poles location of \hat{A}_{ν} with the operating frequency limit of the test rig	90
Figure 5.11	Frequency response from FE modelling comparing the full order	
	model versus the reduced order model	93
Figure 5.12	Frequency response comparing reduced order FE model and	
	experimental results from direct testing	94
Figure 5.13	Frequency response results for three cases, (i) 8th order system ID	
	model, (ii) reduced 4th order system ID model, (iii) test system	
	measured data	97
Figure 6.1	The time-delayed feedback structure for active control	99
Figure 6.2	Additive error for state output model	101
Figure 6.3	Multiplicative uncertainty for displacement output model	102
Figure 6.4	Augmented system structure for robust control	103
Figure 6.5	System plant for dynamics compliance minimization	108
Figure 6.6	System plant for norm-bound treatment of delay	109
Figure 6.7	System plant for Padé approximation of delay	111
Figure 7.1	Input complementary sensitivity function for optimal controller	
	designs. All controller are seen to satisfy the same robustness	
	criterion, as specified by W_r^{-1}	116
Figure 7.2	Input complementary sensitivity function for optimal controller	
	designs for output feedback controller for OFC1: Dynamics	
	compliance minimization and OFC2: Norm-bounded treatment of	
	delay	118

p

Figure 7.3	Input complementary sensitivity function for optimal controller	
	designs for output feedback controller for OFC3: Padé	
	approximation of delay and the LKF-OFC	119
Figure 7.4	Overview of test system control implementation in Simulink	121
Figure 7.5	Disturbances acting on input/output signals	121
Figure 7.6	Signals induced by noise for different state feedback controllers	122
Figure 7.7	Signals induced by noise for different output feedback controllers	123
Figure 7.8	Frequency response of the closed-loop system from sensor noise to	
	the system control force T_{un}	124
Figure 7.9	Test system SLD for the state feedback controllers	127
Figure 7.10	Test system SLD for the output feedback controllers	128
Figure 7.11	Close-up of experimental stability boundaries showing rotation	
	frequency selected for cutting simulations based on Figure 7.9	131
Figure 7.12	Cutting emulation on test system of LKF-SFC1 for 16 Hz rotational	
	frequency	132
Figure 7.13	Cutting emulation on test system of LKF-SFC2 for 16 Hz rotational	
	frequency	133
Figure 7.14	Cutting emulation on test system of LKF-SFC3 for 16 Hz rotational	
	frequency	134
Figure 7.15	Cutting emulation on test system of LQR-SFC for 16 Hz rotational	
	frequency	135
Figure 7.16	Close-up of experimental stability boundaries showing rotation	
	frequency selected for cutting simulations based on Figure 7.10	136
Figure 7.17	Cutting emulation on test system of OFC1 for 17 Hz rotational	
A	frequency field for the serve of	137
Figure 7.18	Cutting emulation on test system of OFC2 for 17 Hz rotational	
	frequency	138
Figure 7.19	Cutting emulation on test system of OFC3 for 17 Hz rotational	
	frequency	139
Figure 7.20	Cutting emulation on test system of LKF-OFC for 17 Hz rotational	
	frequency	140

Figure 8.1 Improvement in cutting stability boundary relative to base-level PD control 143

Copyright[©] by Chiang Mai University All rights reserved

LIST OF ABBREVIATIONS AND SYMBOLS

- Time-delay τ
- Depth-of-cut parameter b_{κ}
- Maximum stable depth-of-cut parameter $b_{K,\max}$
- Ω Tool rotational speed
- Zero vibration mean chip thickness h_m
- Instantaneous mean chip thickness h(t)
- 2104279 Linear feed rate of the workpiece to the cutting tool f

 f_t Feed per tooth

- Instantaneous cutting tool's rotational angle ø
- **Designed Control force** и
- Cutting force w
- Zero vibration cutting force W_0
- System state vectors х
- Weighting function state vector X_r
- Augmented system state vector ñ
- Closed-loop system state vector X_{cl}
- Output measurement signals y_m
- Displacement signals of a control actuator y_a
- Displacement signals of a cutting actuator y_t
- Strain signals Е
- Chatter frequency ω_{c}
- Flexible structure natural frequency ω_n
- λ Eigenvalues
- Т Transformation matrix
- Additive uncertainty Δ_a

- Δ_m Multiplicative uncertainty
- W_r Weighting function
- K_P Proportional feedback gain of PD controller
- K_D Derivative feedback gain of PD controller
- *K* State feedback controller gain
- K_0 Current state feedback controller gain
- K_{τ} Delayed state feedback controller gain

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ข้อความแห่งการริเริ่ม

- 1) การออกแบบตัวควบคุมที่เหมาะสมแบบใหม่สำหรับการควบคุมแบบแอ็กทิฟเพื่อควบคุม เสถียรภาพของการสั่นที่เกิดจากกระบวบการขึ้นรูปชิ้นงานภายใต้แบบจำลองของระบบหน่วง เวลา แง่มุมใหม่ที่ได้คือการสร้างเกณฑ์เสถียรภาพแบบโรบัสภายใต้ฟังก์ชันนัลของเลอปูนอฟ-คราซอฟสกี ซึ่งนำไปสู่เงื่อนไขของอสมการเมทริกซ์เชิงเส้น ที่สามารถสังเคราะห์ตัวควบคุม แบบสัญญาณป้อนกลับ วิธีการออกตัวควบคุมยังมีการใช้เงื่อนไขความโรบัสของความ คลาดเคลื่อนของแบบจำลองในช่วงของโครงสร้างพลศาสตร์ที่ย่านความถี่สูง ซึ่งถูกพิจารณาให้ เป็นความไม่แน่นอนเชิงโดเมนความถี่โดยผ่านพลศาสตร์ส่วนเพิ่มเติม ถึงแม้ว่าเทคนิคเหล่านี้ จะเคยมีการประยุกต์ใช้โดยแยกกันในงานวิจัยที่มีมาก่อนหน้านี้ แต่การใช้งานที่มีการรวม เทคนิคดังกล่าวเพื่อมาประยุกต์ใช้กับพลศาสตร์ของกระบวนการขึ้นรูปจริงยังคงเป็นสิ่งใหม่ที่ ยังไม่มีการศึกษามาก่อน
- แท่นทคสอบการกัดขึ้นรูปแบบใหม่ได้ถูกออกแบบสำหรับใช้ทคสอบตัวควบคุมแบบแอ็กทิฟ แท่นทคสอบถูกออกแบบภายใต้แบบจำลองพื้นฐานของโครงสร้างยืดหยุ่นของสปินเดิลและ คอกกัดชิ้นงาน และสามารถวัดข้อมูลได้อย่างครบถ้วนโดยผ่านเซนเซอร์ที่ถูกติดตั้งบนแท่น ตัวกระตุ้นแม่เหล็กไฟฟ้าถูกใช้เพื่อจำลองผลของการกัดชิ้นงานตามสมการพลศาสตร์ของการ กัดชิ้นงานที่ถูกกำหนด โดยการใช้ฮาร์ดแวร์กวบคุมเวลาทันที (real-time control hardware)

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

STATEMENT OF ORIGINALITY

- 1) New optimized controller designs for active control of vibrational stability in machining processes based on linear time delay system models are proposed. The main novel aspect is the formulation of robust stability criterion based on Lyapunov Krasovskii functionals that lead to Linear Matrix Inequality conditions that can be used to synthesize feedback controllers. The controller design approach incorporates a robustness criterion where model error associated with high frequency structural dynamics is accounted for by a frequency domain uncertainty representation via augmented dynamics. Although similar techniques have been used separately in previous work by other researchers, their combined use and application to realistic machining dynamics is believed to be novel.
- 2) A new test facility has been designed and realized for the experiments on active control of machining vibration. This test system involves a simplified representation of a flexible milling spindle/tool structure that allows full monitoring via multiple sensor integration. An electromagnetic actuator can be used to emulate cutting effects according to any given cutting dynamics equations which are implemented by real-time control hardware.

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved