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1)

2)

STATEMENT OF ORIGINALITY

New optimized controller designs for active control of vibrational stability in
machining processes based on linear time delay system models are proposed. The
main novel aspect is the formulation of robust stability criterion based on
Lyapunov Krasovskii functionals that lead to Linear Matrix Inequality conditions
that can be used to synthesize feedback controllers. The controller design
approach incorporates a robustness criterion where model error associated with
high frequency structural dynamics is accounted for by a frequency domain
uncertainty representation via augmented dynamics. Although similar techniques
have been used separately in previous work by other researchers, their combined

use and application to realistic machining dynamics is believed to be novel.

A new test facility has been designed and realized for the experiments on active
control of machining vibration. This test system involves a simplified
representation of a flexible milling spindle/tool structure that allows full
monitoring via multiple sensor integration. An electromagnetic actuator can be
used to emulate cutting effects according to any given cutting dynamics equations

which are implemented by real-time control hardware.



