APPENDIX A

Material Properties of Solar Water Heater

Evacuated tube length	1800 mm
Outer tube diameter	58 mm
Inner tube diameter	47 mm
Glass thickness	1.6 mm
Thermal expansion	3.3x10 ⁻⁶ °C
Material	Borosilicate Glass 3.3
Absorptive coating	Graded Al-N/Al
Absorptance	> 92 % (AM 1.5)
Inner emittance	< 4.4 % (80 °C)
Outer emisstance	< 6 %
Vacuum	$P < 5x10^{-3}$ Pa
Heat loss	0.8 W/(m^2-°C)
Maximum strength	0.8 MPa

Table A-1 Specification of evacuated tube (Apricus Solar, 2015)

Table A-2	Specification	of copper tube
-----------	---------------	----------------

Nominal Size	Outside 1	Diameter		'E – K hickness)	TYPE – L (Wall Thickness)		
(Inch)	Inch	mm	Inch	mm	Inch mm		
1/4	1/4	9.52	0.035	0.89	0.030	0.76	
3/8	3/8	12.70	0.049	1.24	0.035	0.89	
1/2	1/2	15.88	0.049	1.24	0.040	1.02	
5/8	5/8	19.05	0.049	1.24 e	0.042	d 1.07	
3/4	3/4	22.22	0.065	1.65	0.045	1.14	
1	1	28.58	0.065	1.65	0.050	1.27	
1 1⁄4	1 1⁄4	34.92	0.065	1.65	0.055	1.40	
1 1/2	1 1⁄2	41.27	0.072	1.83	0.060	1.52	
2"	2	53.98	0.083	2.11	0.070	1.78	

APPENDIX B

Experimental Data of Solar Water Heater

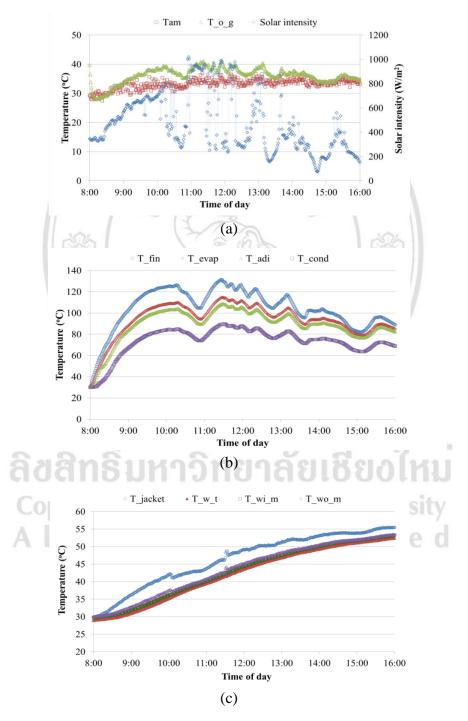


Figure B-1 Experimental data on 18 August 2016

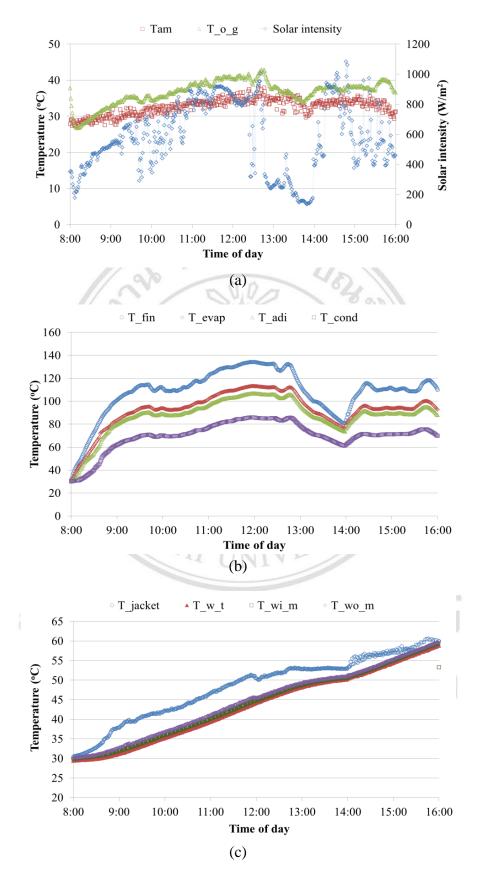


Figure B-2 Experimental data on 22 August 2016

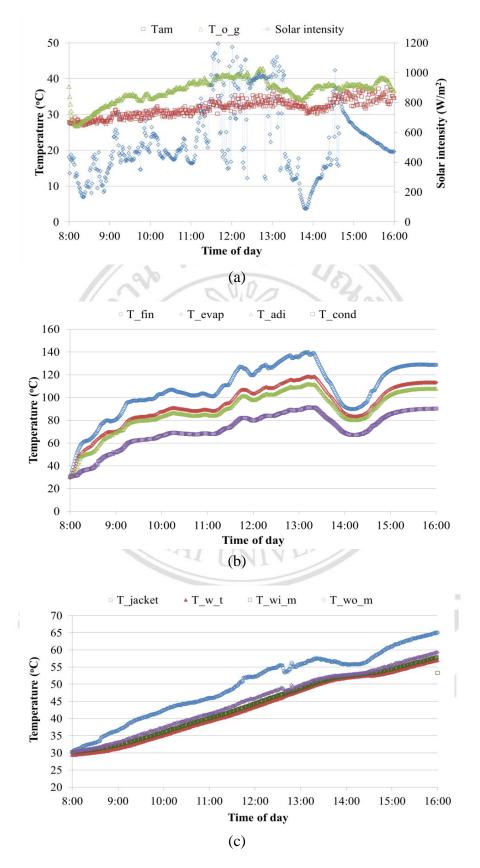


Figure B-3 Experimental data on 30 August 2016

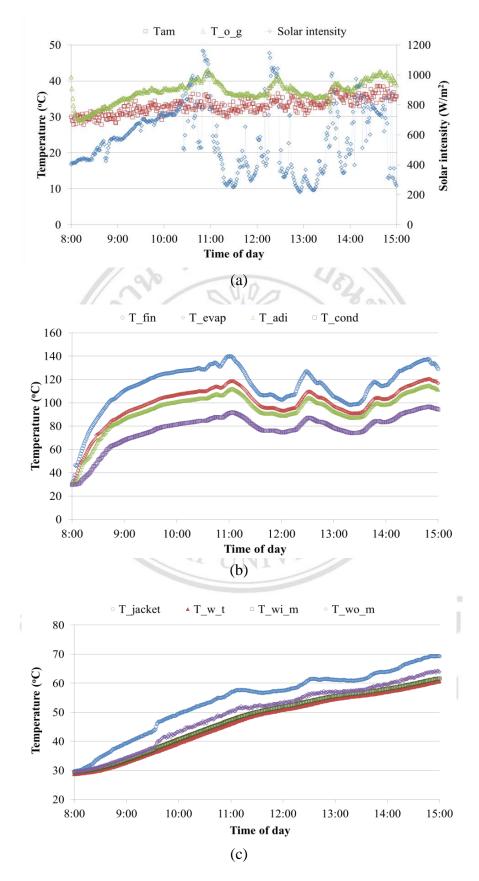


Figure B-4 Experimental data on 31 August 2016

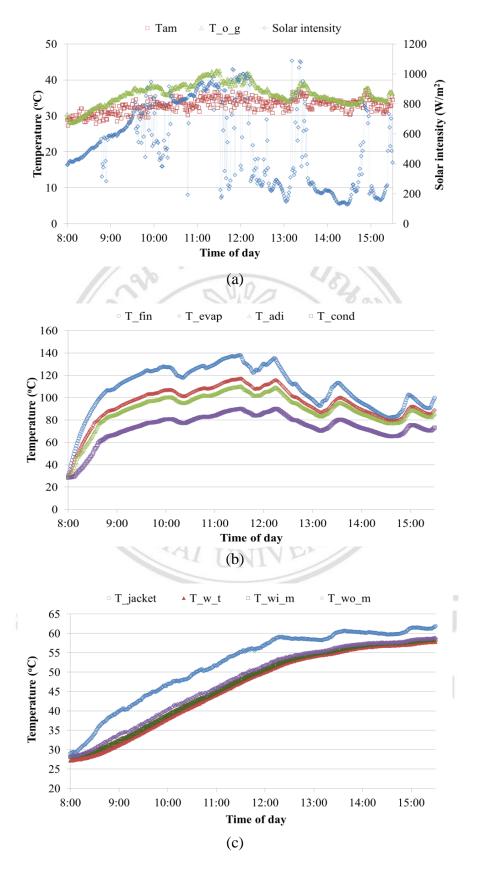


Figure B-5 Experimental data on 3 September 2016

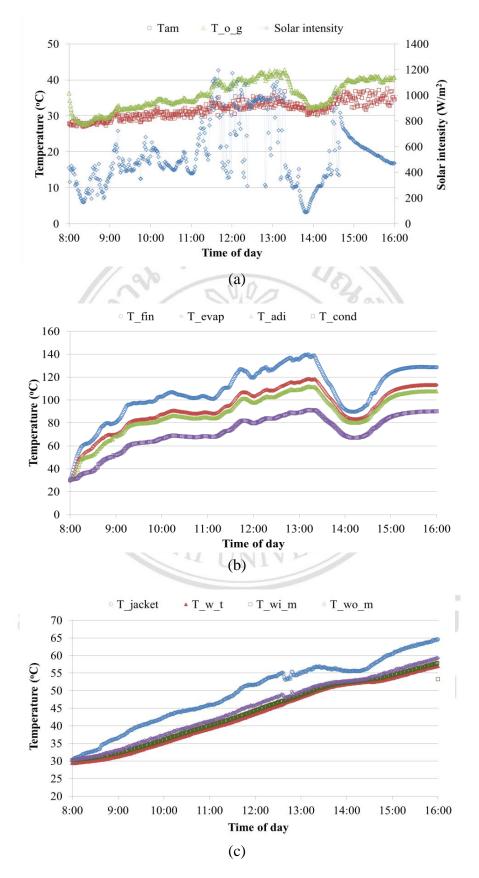


Figure B-6 Experimental data on 4 September 2016

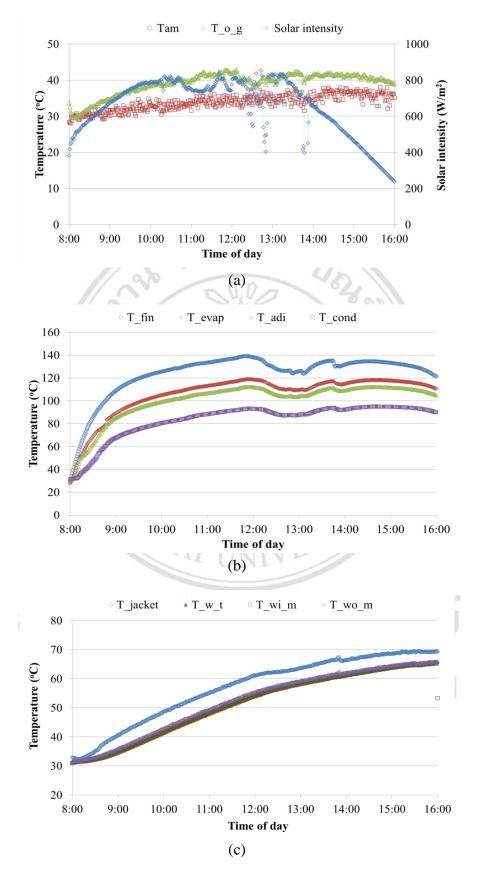


Figure B-7 Experimental data on 10 October 2016

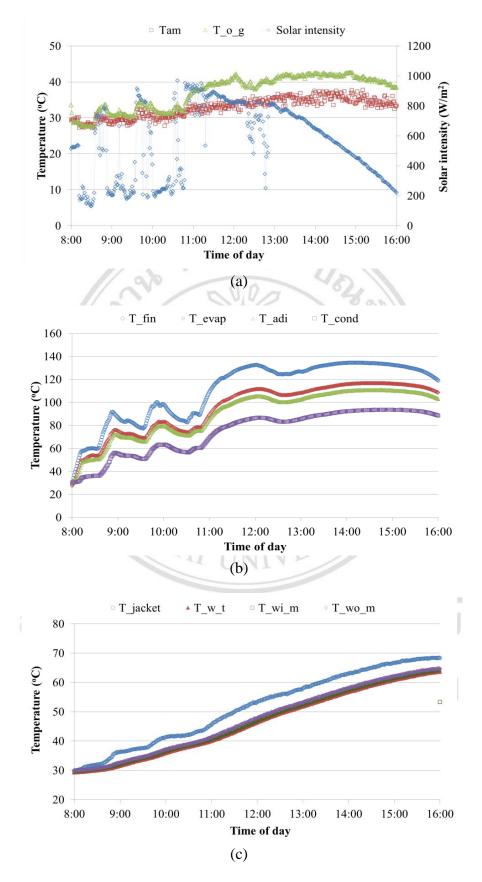


Figure B-8 Experimental data on 11 October 2016

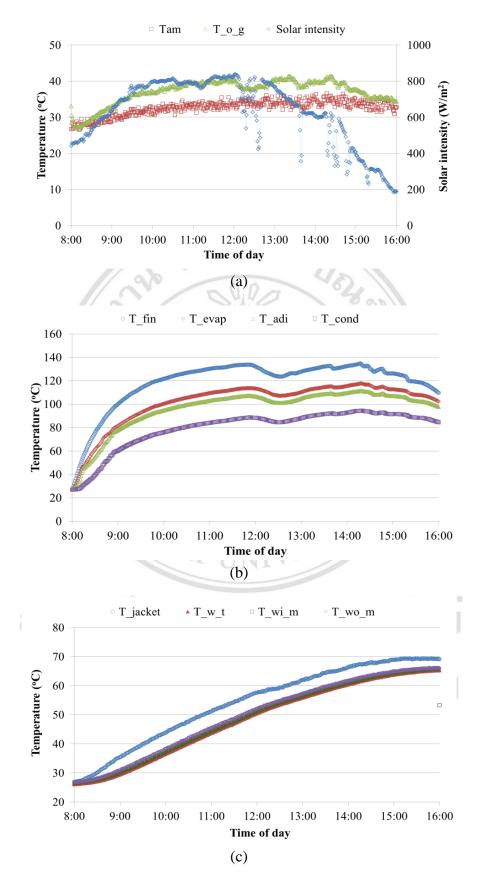


Figure B-9 Experimental data on 14 October 2016

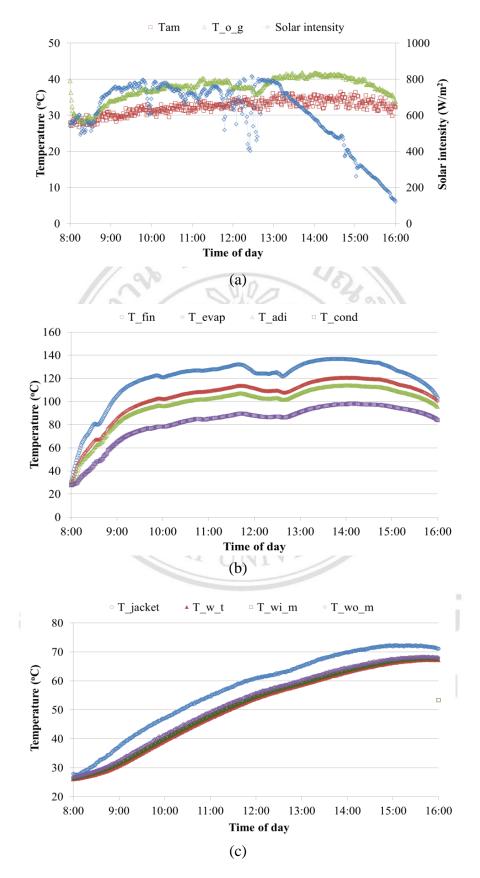


Figure B-10 Experimental data on 18 October 2016

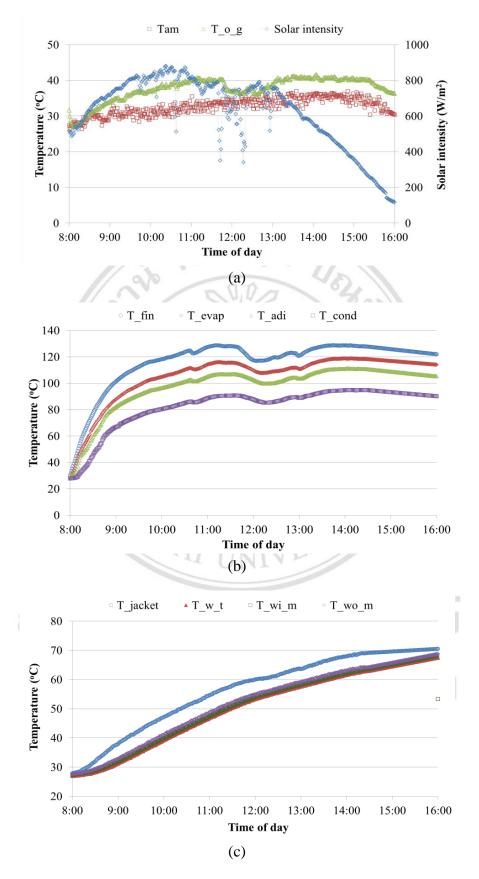


Figure B-11 Experimental data on 19 October 2016

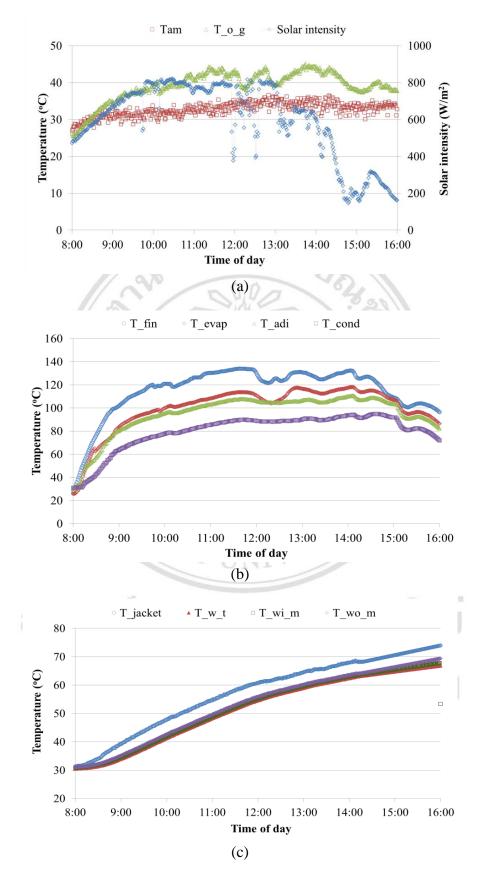


Figure B-12 Experimental data on 20 October 2016

APPENDIX C

Physical Properties of Working Fluid

Temp.,*	Pres- sure,	Density, kg/m ³	Volume, m ³ /kg	Enthalpy, kJ/kg		Entr kJ/(k		Specifi c _p , kJ/		Veloc Sound	ity of 1, m/s	Visco µP:		Thermal Cond. mW/(m·K)	
°C	MPa	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
-80	0.00013	1709.6	83.6670	123.92	335.98	0.6712	1.7691	0.924	0.520	1133	108.3	2093.0	6.68	107.4	3.22
-70	0.00034	1687.4	32.8420	133.17	341.25	0.7179	1.7422	0.927	0.537	1091	110.8	1680.0	7.09	104.8	3.79
60 50	0.00081 0.00177	1665.1 1642.6	14.3330 6.84600	142.46 151.81	346.66 352.21	0.7625 0.8054	1.7206 1.7034	0.932 0.939	0.553 0.569	1049 1006	113.3 115.6	1383.0 1160.0	7.50 7.91	102.0 99.1	4.35 4.92
-40	0.00358	1620.0	3.53190	161.25	357.88	0.8468	1.6901	0.948	0.585	964	117.9	986.4	8.31	96.1	5.49
-30	0.00675	1597.0	1.94700	170.78	363.65	0.8868	1.6800	0.958	0.601	923	120.0	848.0	8.70	93.0	6.05
-20	0.01200	1573.8	1.13640	180.41	369.52	0.9256	1.6726	0.968	0.617	881	122.0	735.4	9.09	89.8	6.61
$-10 \\ 0$	0.02025 0.03265		0.69690 0.44609	190.15 200.00	375.45 381.44	0.9633	1.6675 1.6642	0.979 0.990	0.634 0.651	841 801	123.8 125.4	642.4 564.6	9.47 9.84	86.7 83.7	7.18 7.74
2	0.03203		0.40991	201.98	382.64	1.0072	1.6638	0.993	0.654	793	125.7	550.6	9.91	83.1	7.86
4	0.03907	1516.4	0.37720	203.97	383.84	1.0144	1.6634	0.995	0.658	785	126.0	537.0	9.99	82.5	7.97
6	0.04264		0.34759	205.97	385.05	1.0216	1.6631	0.997	0.661	777	126.3	523.8	10.06	81.9	8.08
8 10	0.04647 0.05057	1506.6 1501.6	0.32075 0.29637	207.96 209.97	386.25 387.46	1.0287 1.0358	1.6628 1.6626	0.999 1.002	$0.665 \\ 0.668$	769 761	126.6 126.8	511.1 498.8	10.13 10.20	81.3 80.7	8.20 8.31
12	0.05495		0.29037	209.97	388.66	1.0338	1.6625	1.002	0.672	754	120.8	486.8	10.20	80.7	8.43
14	0.05963	1491.7	0.25401	213.99	389.87	1.0499	1.6624	1.006	0.675	746	127.3	475.3	10.35	79.5	8.54
16	0.06463	1486.7	0.23559	216.00	391.08	1.0569	1.6623	1.009	0.679	738	127.6	464.0	10.42	79.0	8.66
18	0.06995		0.21877	218.02	392.29	1.0638	1.6623	1.011	0.682	730	127.8	453.2	10.49	78.4	8.77
20 22	0.07561 0.08163	1476.6 1471.5	$0.20338 \\ 0.18929$	220.05 222.08	393.49 394.70	$1.0707 \\ 1.0776$	$1.6624 \\ 1.6625$	$1.014 \\ 1.016$	0.686 0.690	723 715	$128.0 \\ 128.2$	442.6 432.4	$10.56 \\ 10.63$	77.8 77.3	8.89 9.01
24	0.08802	1466.4	0.17637	224.12	395.91	1.0845	1.6626	1.018	0.693	707	128.4	422.4	10.70	76.7	9.12
26	0.09480	1461.3	0.16451	226.16	397.12	1.0913	1.6628	1.021	0.697	700	128.6	412.8	10.77	76.1	9.24
27	0.10133	1456.6	0.15453	228.03	398.22	1.0975	1.6630	1.023	0.701	693	128.7	404.2	10.84	75.6	9.35
28 30	0.10198 0.10958	1456.2 1451.0	0.15360 0.14356	228.21 230.26	398.32 399.53	1.0981 1.1049	1.6630 1.6633	1.023 1.026	0.701 0.705	692 684	128.7 128.9	403.4 394.3	10.84 10.91	75.6 75.0	9.36 9.48
32 ^b	0.11762	1445.8	0.13431	232.31	400.73	1.1116	1.6635	1.028	0.709	677	128.9	385.4	10.91	74.5	9.60
34	0.12611	1440.6	0.12577	234.38	401.93	1.1183	1.6639	1.031	0.712	669	129.1	376.8	11.05	74.0	9.72
36	0.13507	1435.4	0.11789	236.44	403.14	1.1250	1.6642	1.033	0.716	662	129.3	368.4	11.12	73.4	9.84
38	0.14452	1430.1	0.11060	238.51	404.34	1.1317	1.6646	1.036	0.720	654	129.4	360.3	11.19	72.9	9.96
40 42	0.15447 0.16495	1424.8 1419.4	0.10385 0.09759	240.59 242.67	405.54 406.73	1.1383 1.1449	1.6651 1.6655	1.038 1.041	0.724 0.728	647 639	129.5 129.5	352.4 344.7	11.26 11.33	72.4 71.8	10.08 10.20
44	0.17597		0.09739	242.07	400.73	1.1515	1.6660	1.041	0.728	632	129.5	337.2	11.33	71.3	10.20
46	0.18755	1408.7	0.08641	246.86	409.12	1.1581	1.6665	1.046	0.736	624	129.7	329.9	11.46	70.8	10.45
48	0.19971	1403.3	0.08140	248.95	410.31	1.1646	1.6670	1.049	0.741	617	129.7	322.8	11.53	70.3	10.57
50	0.21246	1397.8	0.07674	251.06	411.50	1.1711	1.6676	1.052	0.745	610	129.7	315.9	11.60	69.8	10.70
52 54	0.22584 0.23985	1392.3 1386.8	0.07240 0.06836	253.17 255.28	412.69 413.87	1.1776 1.1840	1.6682 1.6688	1.055 1.058	0.749 0.753	602 595	129.7 129.7	309.1 302.6	11.67 11.74	69.3 68.8	10.82 10.95
56	0.25451	1381.2	0.06458	257.41	415.05	1.1905	1.6694	1.060	0.758	588	129.7	296.2	11.80	68.3	11.08
58	0.26985	1375.6	0.06106	259.53	416.23	1.1969	1.6701	1.063	0.762	580	129.7	289.9	11.87	67.8	11.21
60	0.28589	1370.0	0.05777	261.67	417.40	1.2033	1.6707	1.066	0.767	573	129.6	283.9	11.94	67.3	11.34
62	0.30264	1364.3 1358.6	0.05469	263.81 265.95	418.57	1.2096	1.6714	1.069	0.771	566 558	129.6 129.5	277.9 272.1	12.01 12.07	66.8 66.3	11.47 11.61
64 66	0.32013 0.33838	1358.6	0.05180 0.04910	265.95 268.10	419.73 420.89	1.2160 1.2223	1.6721 1.6728	1.072 1.076	0.776 0.781	551	129.5	272.1	12.07	65.9	11.01
68	0.35740	1347.0	0.04656	270.26	422.05	1.2286	1.6735	1.079	0.785	544	129.3	261.0	12.21	65.4	11.88
70	0.37722	1341.2	0.04418	272.42	423.20	1.2349	1.6743	1.082	0.790	536	129.2	255.6	12.28	64.9	12.01
72	0.39787	1335.3	0.04195	274.60	424.35	1.2411	1.6750	1.085	0.795	529	129.0	250.4	12.35	64.5	12.15
74 76	0.41936 0.44171	1329.3 1323.4	0.03985 0.03787	276.77 278.96	425.50 426.63	1.2474 1.2536	1.6758 1.6766	1.089 1.092	0.800	522 515	128.9 128.7	245.2 240.2	12.42 12.49	64.0 63.5	12.29 12.44
78	0.46494	1323.4	0.03787	278.90	420.03	1.2598	1.6774	1.092	0.800	507	128.7	235.3	12.55	63.1	12.58
80	0.48909	1311.2	0.03426	283.35	428.89	1.2660	1.6781	1.100	0.816	500	128.3	230.5	12.63	62.6	12.73
82	0.51416	1305.1	0.03261	285.55	430.01	1.2722	1.6789	1.103	0.822	493	128.1	225.9	12.70	62.2	12.87
84	0.54019	1298.9	0.03105	287.77	431.13	1.2783	1.6797	1.107	0.827	486	127.8	221.3	12.77	61.7	13.02
86 88	0.56720 0.59520	1292.6 1286.3	0.02958 0.02819	289.99 292.22	432.23 433.33	1.2845 1.2906	1.6806 1.6814	1.111 1.115	0.833 0.839	478 471	127.6 127.3	216.8 212.5	12.84 12.91	61.3 60.8	13.17 13.33
90	0.62423	1279.9	0.02687	294.45	434.43	1.2967	1.6822	1.120	0.845	464	127.0	208.2	12.98	60.4	13.48
92		1273.5	0.02563	296.70	435.51	1.3028	1.6830	1.124	0.851	457	126.6	204.0	13.06	59.9	13.64
94	0.68544		0.02445	298.95	436.59	1.3089	1.6838	1.129	0.858	449	126.3	199.9	13.14	59.5	13.80
96 98	0.71768		0.02334	301.21	437.66	1.3150	1.6846	1.133	0.864	442 435	125.9 125.5	195.9 191.9	13.21 13.29	59.1 58.6	13.96 14.13
		1253.7 1246.9		303.49 305.77	438.72 439.77	1.3211 1.3271	1.6854 1.6862	1.138 1.143	0.871 0.878	435	125.5	191.9	13.29	58.0	14.13
	0.97603		0.02128	317.32	444.88	1.3572	1.6902	1.172	0.917	391	122.8	169.9	13.80	56.0	15.17
	1.19900	1174.4	0.01361	329.15	449.67	1.3872	1.6938	1.207	0.964	354	119.8	153.4	14.29	53.9	16.14
130	1.45780		0.01094	341.32	454.07	1.4173	1.6969	1.254	1.026	317	116.0	138.1	14.89	51.7	17.22
	1.75630		0.00879	353.92	457.94	1.4475	1.6992	1.318	1.111	279	111.5	123.8	15.65	49.5 47.2	18.44
	2.09870 2.49010		0.00703 0.00555	367.10 381.13	461.05 463.01	1.4782 1.5101	1.7003 1.6991	1.415 1.584	1.240 1.473	239 198	106.0 99.3	110.2 96.8	16.68 18.19	47.2	19.87 21.63
	2.93720		0.00425	396.61	462.89	1.5443	1.6939	1.979	2.033	154	91.1	82.7	20.71	42.3	24.05

Table C-1 Thermo physical properties of R141b

Temp.,* P	Pres-	Density, kg/m ³	Volume, m ³ /kg			Entropy, kJ/(kg·K)		Specific Heat c_p , kJ/(kg·K)		Veloc Sound	ity of l, m/s	Viscosity, µPa∙s		Thermal Cond., mW/(m·K)	
	sure, MPa			Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
0.01 ^a	0.00061	999.8	205.990	0.00	2500.92	0.0000	9.1555	4.220	1.884	1402	409.0	1791.2	9.22	561.0	17.07
5	0.00087	999.9	147.010	21.02	2510.06	0.0763	9.0248	4.205	1.889	1426	412.6	1518.3	9.34	570.5	17.34
10	0.00123	999.7	106.300	42.02	2519.21	0.1511	8.8998	4.196	1.895	1447	416.2	1306.0	9.46	580.0	17.62
15	0.00171	999.1	77.8750	62.98	2528.33	0.2245	8.7803	4.189	1.900	1466	419.7	1137.6	9.59	589.3	17.92
20	0.00234	998.2	57.7570	83.91	2537.43	0.2965	8.6660	4.184	1.906	1482	423.2	1001.6	9.73	598.4	18.23
25	0.00317	997.0	43.3370	104.83	2546.51	0.3672	8.5566	4.182	1.912	1497	426.6	890.1	9.87	607.2	18.55
30	0.00425	995.6	32.8780	125.73	2555.55	0.4368	8.4520	4.180	1.918	1509	430.0	797.4	10.01	615.5	18.89
35	0.00563	994.0	25.2050	146.63	2564.55	0.5051	8.3517	4.180	1.925	1520	433.4	719.3	10.16	623.3	19.24
40	0.00738	992.2	19.5150	167.53	2573.51	0.5724	8.2555	4.180	1.931	1529	436.7	653.0	10.31	630.6	19.60
45	0.00959	990.2	15.2520	188.43	2582.43	0.6386	8.1633	4.180	1.939	1536	440.0	596.1	10.46	637.3	19.97
50	0.01235	988.0	12.0270	209.34	2591.29	0.7038	8.0748	4.182	1.947	1542	443.2	546.8	10.62	643.6	20.36
55	0.01576	985.7	9.5643	230.26	2600.09	0.7680	7.9898	4.183	1.955	1547	446.4	504.0	10.77	649.2	20.77
60	0.01995	983.2	7.6672	251.18	2608.83	0.8313	7.9081	4.185	1.965	1551	449.5	466.4	10.93	654.3	21.19
65	0.02504	980.5	6.1935	272.12	2617.50	0.8937	7.8296	4.187	1.975	1553	452.6	433.2	11.10	659.0	21.62
70	0.03120	977.7	5.0395	293.07	2626.10	0.9551	7.7540	4.190	1.986	1555	455.6	403.9	11.26	663.1	22.07
75	0.03860	974.8	4.1289	314.03	2634.60	1.0158	7.6812	4.193	1.999	1555	458.5	377.7	11.43	666.8	22.53
80	0.04741	971.8	3.4052	335.01	2643.02	1.0756	7.6111	4.197	2.012	1554	461.4	354.3	11.59	670.0	23.01
85	0.05787	968.6	2.8258	356.01	2651.33	1.1346	7.5434	4.201	2.027	1553	464.2	333.3	11.76	672.8	23.51
90	0.07018	965.3	2.3591	377.04	2659.53	1.1929	7.4781	4.205	2.043	1550	466.9	314.4	11.93	675.3	24.02
95	0.08461	961.9	1.9806	398.09	2667.61	1.2504	7.4151	4.210	2.061	1547	469.6	297.3	12.10	677.3	24.55
99.97 ^b	0.10133	958.4	1.6732	419.06	2675.53	1.3069	7.3544	4.216	2.080	1543	472.2	281.8	12.27	679.1	25.09
100	0.10142	958.3	1.6718	419.17	2675.57	1.3072	7.3541	4.216	2.080	1543	472.2	281.7	12.27	679.1	25.10
105	0.12090	954.7	1.4184	440.27	2683.39	1.3633	7.2952	4.222	2.101	1538	474.7	267.6	12.44	680.5	25.66
110	0.14338	950.9	1.2093	461.42	2691.06	1.4188	7.2381	4.228	2.124	1533	477.1	254.7	12.61	681.7	26.24
115	0.16918	947.1	1.0358	482.59	2698.58	1.4737	7.1828	4.236	2.150	1527	479.5	242.9	12.78	682.6	26.85
120	0.19867	943.1	0.89121	503.81	2705.93	1.5279	7.1291	4.244	2.177	1520	481.7	232.1	12.96	683.2	27.47
125	0.23224	939.0	0.77003	525.07	2713.10	1.5816	7.0770	4.252	2.207	1512	483.9	222.1	13.13	683.6	28.11
130	0.27028	934.8	0.66800	546.38	2720.08	1.6346	7.0264	4.261	2.239	1504	486.0	212.9	13.30	683.7	28.76
135	0.31323	930.5	0.58173	567.74	2726.87	1.6872	6.9772	4.272	2.274	1496	487.9	204.4	13.47	683.6	29.44
140	0.36154	926.1	0.50845	589.16	2733.44	1.7392	6.9293	4.283	2.311	1486	489.8	196.5	13.65	683.3	30.14
145	0.41568	921.6	0.44596	610.64	2739.80	1.7907	6.8826	4.294	2.351	1476	491.6	189.2	13.82	682.8	30.86
150	0.47616	917.0	0.39245	632.18	2745.93	1.8418	6.8371	4.307	2.394	1466	493.3	182.5	13.99	682.0	31.60
155	0.54350	912.3	0.34646	653.79	2751.81	1.8924	6.7926	4.321	2.440	1455	494.8	176.1	14.16	681.1	32.35
160	0.61823	907.4	0.30678	675.47	2757.44	1.9426	6.7491	4.335	2.488	1443	496.3	170.2	14.34	680.0	33.13
165	0.70093	902.5	0.27243	697.24	2762.81	1.9923	6.7066	4.351	2.540	1431	497.6	164.7	14.51	678.6	33.93
170	0.79219	897.5	0.24259	719.08	2767.90	2.0417	6.6650	4.368	2.594	1419	498.9	159.6	14.68	677.0	34.75
175	0.89260	892.3	0.21658	741.02	2772.71	2.0906	6.6241	4.386	2.652	1405	500.0	154.7	14.85	675.3	35.59
180	1.00280	887.0	0.19384			2.1392	6.5840	4.405	2.713	1392	501.0	150.1	15.03	673.3	36.45
185	1.12350	881.6	0.17390			2.1875	6.5447	4.425	2.777	1378	501.9	145.8	15.20	671.1	37.33
190			0.15636			2.2355	6.5059	4.447	2.844	1363	502.7		15.37	668.8	38.24
195			0.14089			2.2832	6.4678	4.471	2.915	1348	503.4		15.54	666.1	39.16
200	1.55490	864.7			2792.01	2.3305	6.4302	4.496	2.990	1332	503.9		15.71	663.3	40.11
205	1.72430	858.8	0.11508			2.3777	6.3930	4.523	3.068	1316	504.3		15.89	660.3	41.09
210	1.90770	852.7			2797.27	2.4245	6.3563	4.551	3.150	1299	504.6		16.06	657.0	42.09
215	2.10580	846.5			2799.32	2.4712	6.3200	4.582	3.237	1282	504.8		16.24	653.4	43.11
220	2.31960	840.2			2800.95	2.5177	6.2840	4.615	3.329	1264	504.8		16.41	649.7	44.17
225	2.54970				2802.15	2.5640	6.2483	4.650	3.426	1246	504.6		16.59	645.6	45.26
230	2.79710	827.1	0.07150	990.19	2802.90	2.6101	6.2128	4.688	3.528	1228	504.4	116.0	16.76	641.3	46.38

 Table C-2 Thermo physical properties of water

APPENDIX D

Electric Water Heater Data Sheet

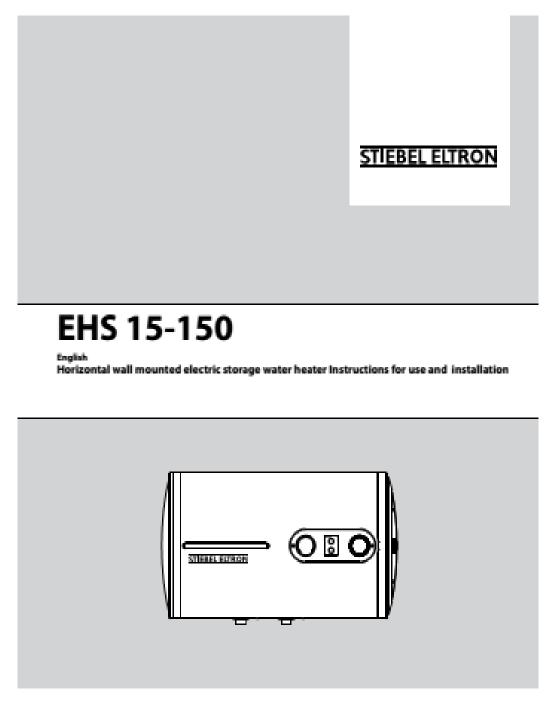


Figure D-1 Electric water heater models

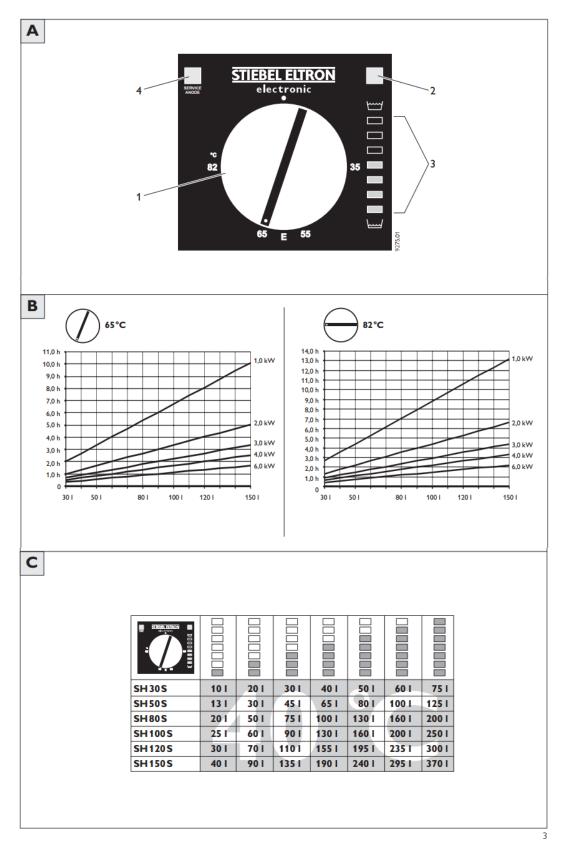
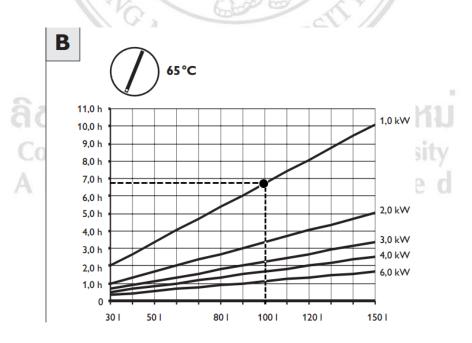



Figure D-2 Electric consumption of water heater

			•	_							
Туре			SH 30 S	SH 50 S	SH 80 S	SH 100 S	SH 120 S	SH 150 S			
Capacity		I	30	50	80	100	120	150			
	lixed water quantity I 59 0°C (15 °C / 65 °C)		97	159	198	235	292				
Weight empty kg			23.5	30	44	45	50	62.5			
Connectable sources	to p	power			3 - 4 kW	1/N/PE ~ 230 2/N/PE ~ 400 3/N/PE ~ 400	V				
Permissible o	per	ating p	ressure	0.6 MPa (6 bar)							
Protection cl	ass	EN 60	529		IP 2	25 D					
Test marking	g			See unit rating plate							
Water conne	ectio	n			G ½ (exte	rnal thread)					
Flow rate			max. 18 l/min								
Dimensions	a	mm	420	510	510	510	510	510			
D	Ь	mm	410	510	510	510	510	510			
	h	mm	750	720	1030	1030	1190	1425			
	i	mm	-	-	-	-	300	300			
	k	mm	700	600	900	900	900	1100			
	T	mm	70	140	150	150	310	345			
			1 194	14	Junit	Server and a server a	1				

Table D-1Technical data of electric water heater.

Example: To calculating the performance of the electric water heater from data sheet, the cold water inlet about 15°C and the hot water is desire about 65°C, From Figure D-2 (B), if supply the electric power at 1kWh for the electric water heater volume is 100 liters as following;

Figure D-3 Electric consumption at 1 kWh of water heater volume with 100 liters for producing hot water at 65°C.

From Figure D-3, the electric water heater volume 100 liters using the electric power at 1 kWh in the period time about 6.8 hours, it can be produced the hot water at 65° C, Applying the conservation of energy as

$$Q_{in} = Q_{out}$$

Where Q_{in} is the electric power (W)

$$Q_{out} = \left(\frac{M_{water}c_{p_water}(T_{end} - T_{start})}{\Delta t}\right)$$

$$Q_{out} = \left(\frac{100(kg) * 4180(J/kg - K) * (65 - 15)(K)}{6.8 * 60 * 60}\right)$$

$$Q_{out} = 853.75 \quad Watt$$

Calculate the performance of the electric water heater

APPENDIX E

Economics Analysis

E.1 Simple Payback Period (SPP)

Simple Payback Period is calculated by power consumption of electric water heater that produces hot water at 65°C. With this, 6.8 hours is spent for the electric consumption for 1 kWh. the average electric cost for producing hot water when considered electric rates is equal to 3.35 Baht/kWh, referred to Provincial Electricity Authority of Thailand, as follow

Cash flow per period = 6.8 (hrs) x 1.0(kWh) x 3.35 (Baht /kWh) = 22.78 Baht/day = 18.90 (Baht/day) x 365 (days) = 8,314.70 Baht/year

Cash flow per period = 8,314.70 Baht /year

The evacuated tube solar water heater has yearly maintenance cost is about 10% of investment cost. It is equal to 2,324 Baht/year. Therefore, the net cash inflow per year, as follow

Net cash inflow = 8,314.70 - 2,324.00= 5,990.70 Baht/year

The simple payback period of the evacuated tube solar water heater system as:

Simple Payback Period = (23,240) / (5,990.70)= 3.88 years = 3 years and 11 months.

E.2 Net Present Value (NPV)

From Equation (2.59) and Table 6.1, the net present value can be calculated as follow:

$$NPV = -23,240 + \frac{5,990.70 - 2,324}{(1 + 0.065)^1} + \dots + \frac{5,990.70 - 2,324}{(1 + 0.065)^{10}} + (0.15 \times 23,240)$$

From the results, it can be concluded that the net present value is positive at 23,312.13 Baht which indicates the solar water heater system earnings generated by investment exceed the anticipated costs.

E.3 Internal Rate of Return (IRR)

Year	Investment cost	Net cash inflow	Cash inflow	Discount rate (r ₁ =20%)	NPV (r ₁ =20%)	Discount rate $(r_2 = 25\%)$	NPV (r ₂ =25%)	
0	23,240	11-2	-23,240	00-	-23,240	1	-23,240	
1		5,991	5,991	0.83333	4,992	0.80000	4,793	
2		5,991	5,991	0.69444	4,160	0.64000	3,834	
3		5,991	5,991	0.57870	3,467	0.51200	3,067	
4		5,991	5,991	0.48225	2,889	0.40960	2,454	
5	15	5,991	5,991	0.40187	2,408	0.32768	1,963	
6		5,991	5,991	0.33489	2,006	0.26214	1,570	
7		5,991	5,991	0.27908	1,672	0.20971	1,256	
8		5,991	5,991	0.23256	1,393	0.16777	1,005	
9		5,991	5,991	0.19380	1,161	0.13421	804	
10		5,991	5,991	0.16150	968	0.10737	643	
	-		MAT	$\Sigma NPV =$	1,876	$\Sigma NPV =$	-1,850	

 Table E-1 Internal Rate of Return calculation

The discount rate can be calculated by:

$$\% \, discount \, rate = \frac{1}{(1 + (\% discount \, rate\,))^{year}}$$
The NPV can be calculated by:

$$NPV = \frac{Cash \ inf \ low}{(1 + (\% discount \ rate \))^{year}}$$

The IRR can be calculated by:

$$IRR = (r_{1}) + ((r_{2} - r_{1})) \left(\frac{\sum NPV_{r_{1}}}{(\sum NPV_{r_{1}} - \sum NPV_{r_{2}})} \right)$$
$$IRR = (20) + ((25 - 20)) \left(\frac{1,876}{(1,876 - (-1,850))} \right)$$
$$IRR = 22.25\%$$

IRR = 22.35%

IRR is calculated at 22.35%. It means that the investment cash flow has an interest rate lower than an IRR; therefore, the evacuated tube solar water heater will be practicality for the investments.

Copyright[©] by Chiang Mai University All rights reserved

APPENDIX F

List of Publications

- C.Wannagosit, P. Sakulchangsatjatai, N. Kammuang-lue and P. Terdtoon "Experimental Investigation of Evacuated Tube Thermosyphon Solar Water Heater", The Fifth International Conference on Science, Technology and Innovation for Sustainable Well-Being, Luang Prabang, Lao PDR, September 4-6, 2013.
- C.Wannagosit, N. Kammuang-lue, P. Sakulchangsatjatai and P. Terdtoon "Computational Study of Water Heater System with Evacuated Glass Tube Solar Collector", The 8th International Conference on Science, Technology and Innovation for Sustainable Well-Being, Yangon, Myanmar, June15–17, 2016.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

CURRICULUM VITAE

Date of Birth13 January 1985

Educational

2006 B.Eng in Mechanical Engineering, Naresuan University, Phisanulok, Thailand.

2010 M.Eng in Mechanical Engineering, Naresuan University, Phisanulok, Thailand.

Papers in International Journal

[1] C.Wannagosit, P. Sakulchangsatjatai, N. Kammuang-lue and P. Terdtoon "Theoretical and experimental evaluation of evacuated tube solar water heater system"

Papers in International Conferences

- [1] C.Wannagosit, P. Sakulchangsatjatai, N. Kammuang-lue and P. Terdtoon "Experimental Investigation of Evacuated Tube Thermosyphon Solar Water Heater", The Fifth International Conference on Science, Technology and Innovation for Sustainable Well-Being, Luang Prabang, Lao PDR, September 4-6, 2013.
- [2] C.Wannagosit, N. Kammuang-lue, P. Sakulchangsatjatai and P. Terdtoon "Computational Study of Water Heater System with Evacuated Glass Tube Solar Collector", The 8th International Conference on Science, Technology and Innovation for Sustainable Well-Being, Yangon, Myanmar, June15–17, 2016.

