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CHAPTER 2 

PRINCIPLE AND THEORY 

2.1 The Sun 

The sun has temperature about 5777 K. The temperature at the central interior 

regions is estimated at 8×10
6
 to 40×10

6
 K. The temperature of many millions of degrees 

is transferred to the solar sphere surface and then is radiated into space. The sun 

radiation is in the x-ray and gamma-ray of the spectrum, with the wavelengths of the 

radiation increased by increasing the radial distances but the temperature decrease. It is 

estimated that 90% of the energy is produced at 0 to 0.23R (where R is the radius of the 

sun). The convection processes are beginning to important at a distance 0.7R from the 

center, and at from 0 to 1.0R is the convective zone.  

2.1.1 The solar constant   

 Figure 2.1 shows schematically the sun-earth relationships. The eccentricity 

of the earth‟s orbit around the sun is 1.7%. 1.495×10
11

m is the mean earth-sun distance. 

The Gsc is the constant of solar energy on a unit area of a surface perpendicular. Solar 

radiation measurements are Gsc = 1,367 W/m
2
 (Duncan et al., 1981). 

2.1.2 Types of solar radiation 

The total solar radiation, often called as global radiation is the sum of direct, 

diffuse and reflected radiation shown in Figure 2.2. The solar radiation available to us is 

always a mix of the above mentioned three components (Aeron, 2015). 

- Beam radiation, the solar radiation from the sun is not scattered by the 

atmosphere. 

- Diffuse radiation, the solar radiation from the sun after its direction changes 

by scattering in the atmosphere. 
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- Total solar radiation, the sum of the beam and the diffuse solar radiation on 

a surface. The solar radiation measurements of total radiation on a horizontal surface 

which represent to as global radiation on the surface. 

- Irradiance (W/m
2
), the rate of radiant energy is incident on a surface per 

unit area of a surface. The symbol IG is used for solar intensity. 

 

 

Figure 2.1 Sun-earth relationships (Iqbal, 1983) 

 

2.1.3 Direction of beam radiation  

The relationships of the incoming beam solar radiation on the earth can be 

explained of several angles. The angles and a set of consistent sign conventions are as 

follows (Benford & Bock, 1939) :  

- Latitude (φ), the angular location north or south of the equator, north 

positive; −90◦ ≤ φ ≤ 90◦. 

- Declination (δ), the angular position of the sun at solar noon with respect 

to the plane of the equator, north positive; −23.45◦ ≤ δ ≤ 23.45◦. 

- Slope (β), the angle between the plane of the surface in question and the 

horizontal; 0◦ ≤ β ≤ 180◦ 

 2.1.4 Angle for tracking surfaces 

Some solar collectors „„track‟‟ the sun by moving in prescribed ways to 

decrease the incidence angle of solar radiation on their surfaces and thus maximize the 

incident solar radiation. The incidence angles and the surface angles are necessary for 
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these collectors (Marion & Urban, 1995), which in practice is usually horizontal north-

south or parallel to the earth‟s axis shown in Figure 2.3. Thailand, a country bedstead in 

the southeastern part of Asia between 15°00' North latitude and 100°00' East longitude. 

Therefore, the solar water heater has the solar angle between 5-20 degrees to the 

horizontal panel, and the collector facing south because solar radiation is incident on 

collector all day.  

 

 

Figure 2.2 Some of the solar radiation entering the earth                                                      

(source: http://www.windows2universe.org) 

 

Figure 2.3 The Sky dome showing the sun angles for the solstices and equinox  

(source: http://tboake.com/carbon-aia/strategies1a.html) 

http://www.windows2universe.org/
http://tboake.com/carbon-aia/strategies1a.html
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2.2 Solar collectors 

Solar collectors are a special type of heat exchangers which change solar radiation 

energy to internal energy of the intermediary. Solar collector is an equipment that 

absorbs the incoming solar radiation, converts into heat and transfers this heat to a fluid 

(usually water, oil and refrigerant) flow past the collector. The solar energy is collected 

from the circulating fluid directly to the hot water or space conditioning equipment, or 

to a thermal energy storage tank from which can be used at night or cloudy days. 

In this section an exhibit of the various types of collectors currently available will 

be presented. This includes Flat plate collectors (FPC), Evacuated tube collectors 

(ETC), and Stationary compound parabolic collectors (CPC). (ASHRAE, 1995). 

2.2.1 Flat-plate collectors 

 A flat-plate solar collector is shown in Figure 2. When solar radiation passes 

through a glass cover and impinges on the blackened absorber surface of high 

absorptivity, a large portion of this energy is absorbed by the plate and then transferred 

to the transport medium in the fluid tubes to be carried away for storage or use. The 

liquid tubes can be welded to the absorbing plate, or they can be an integral part of the 

plate. (Schweiger, 1997) The liquid tubes are connected at both ends by large diameter 

header tubes.  

 

 

Figure 2.4 Pictorial view of a flat plate collector (source: http://teenet.cmu.ac.th) 

 



 

 28 

 

The glass cover is used to reduce convection losses from the stagnant air layer between 

the absorber plate and the glass (Tripanagnostopoulos et al., 2000). It also relieve 

radiation losses from the collector as the glass to the short wave radiation received by 

the sun but it is nearly opaque to long-wave thermal radiation emitted by the absorber 

plate (Wazwaz et al., 2002; Orel et al., 2002).  FPC is fixed in position and the optimum 

tilt angle of the collector is equal to the latitude of the location with angle variations of 

10–15 more or less depending on the application. 

2.2.2 Compound parabolic collectors 

Compound parabolic collectors (CPC) have the exploit of reflecting to the 

absorber of the solar incident within wide limits. A two parabola trough can be receded 

moving to absorber the changing solar orientation. (Rabl, 1976; Mills & Giutronich, 

1978). CPC can absorb incoming solar radiation over a wide range of angles. By using 

multiple reflections, the absorber surface located at the bottom of the collector as shown 

in Figure 2.5 (Tripanagnostopoulos & Yianoulis, 1996). 

In Figure 2.5, the lower portion of the reflector is circular, while the upper 

portions are parabolic. As the upper part of a CPC, the solar radiation is absorbed and 

truncated thus forming a shorter version of the CPC, which is inexpensive. 

(Tripanagnostopoulos et al., 1999; Xuesong & Yuezhao, 2004). The concentrator of 

CPC can be adjusted with a long axis and an aperture is tilted directly towards the 

equator at an angle equal to the local latitude (McIntire, 1980), the collectors track the 

sun by turning its axis so as to face the sun continuously. 

 

 

Figure 2.5 Schematic of parabolic trough collector (source: http://teenet.cmu.ac.th) 

 

http://teenet.cmu.ac.th/
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2.2.3 Evacuated tube collectors 

Conventional flat-plate collectors are developed for use in sunny and warm 

climates. However, the weather conditions impolitic during cold and cloudy days 

(Nkwetta & Smyth, 2012). Furthermore, influences of weather such as humidity will 

cause depreciation of internal materials will be affected to performance decrease. 

Evacuated tube solar collector with heat pipe operates various than the other collectors 

on the market. ETC consist of a heat pipe inside a vacuum-sealed tube, as shown in 

Figure 2.6  

ETC has presented that the combination of surface selection of coating and 

an effective convection can result in good performance at high temperatures. The 

vacuum cover reduces heat convection losses and heat conduction losses, the ETC can 

operate at higher temperatures than FPC. However, the efficiency of ETC is higher at 

low tilt angles. This effect tends to give ETC a benefit over FPC in day-long 

performance (Lin & Furbo, 1998). 

 

Figure 2.6 Schematic of evacuated glass tube collector                                                    

(source: https://en.wikipedia.org/wiki/Solar_thermal_collector) 

 

ETC with heat pipe use the phase change materials of liquid–vapor for 

transfer heat at high efficiency. The heat pipe is a highly efficient thermal conductor 

and inserted inside a vacuum-sealed tube. The pipe is a closed copper pipe and mounted 

to an aluminum fin. The heat pipe filled a small volume of fluid (e.g. water or 

refrigerant) that can an evaporating-condensing. The evaporating-condensing cycle, 

solar heat evaporates the liquid, and the vapor moves to the heat sink where it 

https://en.wikipedia.org/wiki/Solar_thermal_collector
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condenses and removals its latent heat. The condensed fluid return back to the solar 

collector and the process is repeatedly. The tubes are installed into a heat exchanger 

(manifold) as shown in Figure 2.7. Water flows pass the manifold and removals the heat 

from the tubes. The hot water circulates pass the heat exchanger and water is stored in a 

storage tank. 

 

Figure 2.7 Evacuated tube collector system                                                                

(source: http://www.solarsense.co.za/solar-water-heating-explained.php) 

 

2.3 Two-phase closed thermosyphon 

 Two-phase thermosyphon is a gravity-assistee heat pipe. The condenser section is 

located above the evaporator section so that the condensate is come back by gravity. 

The operation of the thermosyphon is sensitive to the working fluid fill volume. For 

thermosyphons, it has been shown experimentally that the heat transfer rate increases 

with the amount of the working fluid up to a certain value. The capillary limit is the 

problem of the thermosyphon due to the fact that gravity is the driving force for 

condensate return (Faghri, 1995). 

Heat pipe operating below its maximum overall heat transfer ratethe performance 

of a heat pipe can be calculated by overall thermal resistance (Ztot). The overall heat 

transfer rate (Q) and the temperature difference between the heat source and the heat 

sink (∆T) are then related by 

http://www.solarsense.co.za/solar-water-heating-explained.php
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totZ

T
Q


             (2.1) 

The overall thermal resistance can be represented by idealized network of thermal 

resistance, Z1 to Z10, shown in Figure 2.8. The thermal resistance is given in the 

nomenclature (Zuo and Faghri, 1998). 

 

 

Figure 2.8 Thermal resistance of the thermosyphon (Faghri, 1995) 

 

Z1 and Z9 are the thermal resistance between the heat source and the evaporator 

external surface and between the condenser external surface and the heat sink. In these 

both of Z1 and Z9 can be calculated as 

ee Ah
Z

1
1             (2.2) 

cc Ah
Z

1
9 

  

          (2.3) 

Z2 and Z8 are the thermal resistance of wall thickness of the thermosyphon at the 

evaporator and the condenser, respectively can be calculated as 
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Z

e
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)/ln(
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Z3 and Z7 are the thermal resistance of film boiling and film condensation in the 

evaporator and the condenser, respectively 
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Z4 and Z6 are the thermal resistance occurs at the vapor-liquid interfaces of the 

evaporator and the condenser, respectively. 

Z5 is the effective thermal resistance of the vapor. 
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Z10 is the thermal resistance along the axial length of the thermosyphon wall can be 

calculated as 

 
kA

LLL
Z

x

cae 5.05.0
10


                                 (2.13) 

Where Ax = 
 

)(
4

22

io DD 


 

In most practical thermasyphon, axial conduction in the thermasyphon wall is 

negligible compared to the heat transported by vapor. A practical criterion for 

negligible axial conduction is  

20
8765432

10 
 ZZZZZZZ

Z
                (2.14) 

If Equation (2.13) is satisfied, the overall thermal resistance is  

Ztot = Z1+ Z2+ Z3+ Z4+ Z5+ Z6+Z7+ Z8+ Z9                           (2.15) 

But, if Equation (2.14) is not satisfied, the overall thermal resistance is  

Ztot = Z1+ [(Z2+ Z3+ +Z4+ Z5+ Z6+ Z7+ Z8)
-1

+1/ Z10]
-1

+ Z9                         (2.16) 

 

2.4  Heat transfer 

2.4.1 Free convection on the long horizontal  

In the sections, is considered free convection with laminar boundary and 

transition of the laminar flow change to a turbulent state. Grashof number (Gr) and the 

Rayleigh number (Ra), which presented in empirical correlations of free convection 

both laminar and turbulent flow conditions. The geometry has been studied extensively, 

Morgan has been reviewing much existing correlation for an isothermal cylinder as 

shown in Figure 2.9, Morgan expressed the form: 

NuD = 
k

DhD  = 
n

DCRa                               (2.17)                         

Where the Rayleigh number, 
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Where C and n are shown in Table 2.1 and RaD and NuD are based on the cylinder 

diameter. In the other hand, Churchill and Chu have introduced a single correlation for 

a wide Rayleigh number range: 
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Table 2.1 Constant parameters for free convection on a horizontal circular cylinder for 

Equation 2.16 (Holman, 1989) 

RaD C n 

10
-10

 to 10
-2

 0.675 0.058 

10
-2 

 to 10
2
 1.02 0.148 

10
2
 to 10

4
 0.850 0.188 

10
4
 to 10

7
 0.480 0.250 

10
7
 to 10

12
 0.125 0.333 

 

The above correlations are given the average Nusselt number at the 

circumference of the cylinder. As shown in Figure 2.9, for the heat of cylinder, Nusselt 

numbers are ascend by boundary layer development. This decay is dispersed at 

Rayleigh numbers adequately large (RaD 10
9
) to allow transition to turbulence inside 

the boundary layer. If the cylinder is cooled relative to the ambient fluid, boundary 

layer development at  = , the Nusselt number is a maximum at this location, and the 

plume descends from the cylinder (Holman, 1989). 

The effects of free convection clearly count on the extension coefficient  . 

The feature in that   is obtained count on the fluid. For an ideal gas,  = p/RT and 

TRT

p

T

p 111
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Note that the properties are calculated at the film temperature, T =  TTs /2. 
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Figure 2.9 Boundary layer and Nusselt number on a horizontal cylinder 

2.4.2 Flow across cylinder 

Cross flow over a cylinder shows complicated flow patterns as shown in               

Figure 2.10, the fluid nearly the cylinder ramification out and encircles the cylinder, 

forming a boundary layer that wraps around the cylinder. The fluid particles on the mid-

plane beat the cylinder at the stagnation point, the fluid is a stop and increasing the 

pressure at that point. The germination of boundary layer transition, which depends on 

the Reynolds number, strongly influences the position of the separation point. For the 

round cylinder the characteristic length is the diameter, and the Reynolds number is 

defined as 



VD
Red                                 (2.21) 

Where V is the fluid velocity over the tube and D is the tube diameter.  

 

Figure 2.10 Flow cross Flow cylinder 
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Flows across cylinders, relate to flow separation, which is intricate to 

analytically. Therefore, flows must be studied experimentally or numerically. Indeed, 

flow across cylinders has been studied experimentally by several investigators, and 

several empirical correlations are developed the heat transfer coefficient. 

The variation of the Nusselt number (Nu) around the circumference of a 

cylinder. However, the heat transfer calculations require the heat transfer coefficient 

over the entire surface. The several such relations obtainable in the literature for the 

Nusselt number of cross flow over a cylinder, the one proposed by Churchill and 

Bernstein: 
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Table 2.2 Constant parameters for cross flow cylinder (Cengel, 2004) 

Red A n 

0.4 – 4 0.989 0.33 

4 – 40 0.911 0.385 

40 – 4000 0.683 0.466 

4000 – 40,000 0.193 0.618 

40,000 – 400,000 0.0266 0.805 

This relation is comprehensive for Re (Pr>0.2). The fluid properties are 

evaluated at the film temperature, which is the average of the free-stream and surface 

temperatures. The Nusselt number of flow across cylinders can be expressed as:  

3
1

n

d

d

d (Pr))(A)(Re
k

Dh
Nu                   (2.23) 

Where the constants A and n are shown in Table 2.2  
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Figure 2.11 Radiation between two concentric cylinders 

 

2.4.3 Radiation heat transfer in two-surface enclosures  

Consider a radiation between these infinitely long concentric cylinders as 

shown in Figure 2.11. Surfaces 1 and 2 have emissivity ɛ1 and ɛ2, surface areas A1 and 

A2 and uniform temperatures T1 and T2, respectively. That is, the radiation rate of heat 

transfer from surface 1 to surface 2 is equal to the radiation rate of heat transfer from 

surface 1 and the radiation rate of heat transfer to surface 2, uniform temperatures T1 

and T2 (Cengel, 2004) is given by 
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2.5 Performance of evacuated tube solar collectors 

The heat transfer rate of the water at a storage tank can be calculated by the 

different water temperature, taking into the mass of water and its specific heat (Mehmet 

& Hikmet, 2005). 

 12 www,pwuseful TTcmQ                   (2.25) 
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Where mw is the mass of water at a storage tank (kg), cp,w is the specific heat of water 

(kJ/kg-C), 1wT  is the temperature of the water at start of the day while 2wT  is the water 

temperature at the actual time. The solar energy incident on the surface is given by, 

 

2

1

dtIAQ Gincident                      (2.26) 

 

Figure 2.12 Thermal efficiency of solar collector 

 

Where A is the area of surface (m
2
), IG is the solar irradiance (W/m

2
). Heat transfer rate 

of solar collector (Qcollector) is given by 

Quesful  = AFR[IG (τα)  − UL(Twater − Tam)]              (2.27) 

Where FR is the heat removal factor influenced by the heat transfer resistance between 

the heated absorber surface and the collector fluid and UL is the heat loss coefficient. 

Thus, Equation (2.26) is Hottel-Whillier-Bliss‟s correlation. 

The collector efficiency (η) can be calculated as a ratio of heat stored in water to 

the total solar energy incident on the surface is given by, 

incident

useful

Q

Q
                                (2.28) 

From Equation (2.26) and (2.27), the efficiency of solar collector is explained that 

it can convert the solar irradiation to heat energy (Vorayos et al., 2009). The formula is 

as follow.  
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                 (2.29) 

Moreover, the correlation between (Twater -Tam)/IG and thermal efficiency from 

Equation (2.29) are plotted in Figure 2.12. 

 

 

Figure 2.13 Comparisons solar collector efficiency 

 

Where FRUL represents the heat loss coefficient. Due to high value, the solar 

collector has poor thermal protection. So, both solar collector A and B are compared to 

the thermal efficiency as shown in Figure 2.13. It should be noted that the A collector 

can be used appropriately at low temperature while the B collector can be used 

appropriately at high temperature. 

 

2.6 Finite difference 

There are several ways of the numerical formulation of a heat conduction problem, 

such as the finite difference method, the finite element method, the boundary element 

method, and the energy balance (or control volume) method. Each method has its own 

good point and bad point. The numerical methods for calculating differential equations 

are based on Taylor‟s series expanded about point (i ,j) as follows
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Solving
 j,i)x/u(  from Equation (2.29), is obtained

 



 

 40 

 

...
)x(

x

u)x(

x

u

x

uu

x

u

j,ij,i

j,ij,i

j,i

























































 

62

3

3

32

2

2
1

                                  (2.31) 

In Equation (2.31), the derivative evaluated at point (i, j) is given on the left side. The 

first term on the right side, is a finite difference description of the partial derivative.  The 

remaining terms on the right side composed of the truncation error. That is, the approximate 

the partial derivative with the algebraic finite difference, 

j,i

j,ij,i

j,i x

uu

x

u


























 1

 
                              (2.32)

 

The truncation error in Equation (2.32) is neglected in this approximation. In Equation 

(2.31), the lowest-order term in the truncation error involves ∆x to the first power; hence, 

the finite difference expression in Equation (2.33) is call first order, can write Equation 

(2.32) as 
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In Equation (2.33), the O∆x is a symbol mathematical which represents “terms of 

order”.  

In Equation (2.33) uses information to right of grid point (i,j), that is, jiu ,1  and jiu , . 

No information to the left of (i,j) is used. Therefore, the first order difference 

explanation for the derivative   jixu ,/ expressed by Equation (2.33) as a first order 

difference. Taylor series expansion for jiu ,1  expanded about jiu , . 
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Solving for j,i)x/u(  ,is obtained 
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The information used in the finite difference quotient in Equation (2.35) comes 

from the left of grid point (i,j) ; that is, it uses j,iu 1 and j,iu . As a result, the finite 

difference in Equation (2.35) is call a rearward or backward difference. 

 

 

Figure 2.14 Discrete grid point (Holman, 1989) 

 

In most applications in CFD, first-order accuracy is not sufficient. To construct a 

finite difference of second-order accuracy as 
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Equation (2.36) can be written as 
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The information used in the finite difference quotient in Equation (2.37) comes 

from both side of the grid point located at (i,j) ; that is, it uses j,iu 1 to jiu ,1 . Grid point 

(i,j) falls between the two nearby grid points. The finite difference in Equation (2.37) is 

calling a second order central difference. The results are analogous to the previous 

equation for the x derivative. They are: 
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                          (2.38) 

                   (2.39)
        

                                             (2.40)

                         

Consequently, there is a need for second-order derivatives of CFD. We can obtain 

such finite difference expressions by continuing with a Taylor series analysis, as 

follows. 
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Solving
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In Equation (2.42), the first term on right-hand side is a central finite difference for 

the second derivative with respect to x evaluated at grid point (i,j). An expression can 

easily be obtained for the second derivative of y-axis, with the result that 
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Equation (2.41) and (2.42) are examples of second-order central second difference. 

Many other difference approximations can be obtained for the same derivative above, 

as show in Figure 2.15. 

2.6.1 Difference equation 

When all the partial derivatives in a partial differential equation are replaced 

by finite difference, the resulting algebraic equation is called a difference equation, 

which is an algebraic representation of the partial differential equation. The finite 

difference solutions in CFD is to use the difference derived to replace the partial 
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derivatives in the governing flow equation, resulting in a system of algebraic difference 

equations for the dependent variables at each grid point. One-dimensional heat 

conduction equation with constant thermal diffusivity, repeated below 

2

2
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T
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                                (2.44) 

The partial derivative in Equation (2.44) with finite difference. Equation 

(2.44) has two variables, x and t. Here, i is the index in the x-axis and n is the index in 

the t-axis. For example, instead of the time derivatives in Equation (2.44) with central 

difference patterned after Equation (2.42). 
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Writing just the difference equation from Equation (2.45) as 
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                             (2.46)

 

Equation (2.46) is a difference equation which indicated the original partial 

difference equation expressed in Equation (2.44), However, Equation (2.46) is just an 

approximation. 
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Figure 2.15 Finite difference expressions with their appropriate finite difference 

modules (Holman, 1989) 
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First-order  

Forward difference
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Figure 2.15 Finite difference expressions with their appropriate finite difference 

modules (Holman, 1989) 
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2.6.2 Explicit and Implicit Finite Difference Method  

Aspects of several difference techniques commonly used in CFD. However, 

the specific technique of solve a problem, an explicit approach or an implicit approach 

are presented. It is suitable to define these two general approaches. Explicit and implicit 

approaches are using for model equation without the complexity of the governing 

equation. tT  /  is a forward difference and 22 / xT  is a central second difference, 

leading to the form of the difference equation given by Equation (2.46), this equation 

can be written as 
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Figure 2.16 Grid for the differencing of Equation (2.43) (John & Anderson, 2005) 

 

The variable here is time t. To specific, consider the finite difference grid in 

Figure 2.17. Assume T is known at all grid point at time t level n. Time means that T at 

all grid point at time level n + 1 are calculated from known values at time level n. 

When this calculated is finished, we have known values at time level n + 1. Then the 

same procedure is used calculated T at all grid point at time level n + 2, using the 

known values at level n + 1. The solution is progressively obtained in steps of time. 

Equation (2.46) is written with properties at time level n on the right-hand side and 

properties at time level n + 1 on the left-hand side, all properties at level n are known 

and those at level n + 1 are to be calculated. The particular significance is that only one 
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known shown in Equation (2.46), namely, 
1n

iT


. Hence, Equation (2.46) allows for the 

immediate solution of 
1n

iT


 from the known properties at time level n. We have a single 

equation with a single unknown. For example, consider the grid shown in Figure 2.18, 

where the distribution of seven grid points along the x-axis. Centering on grid point 2, 

Equation (2.47) is written as 

 

 

Figure 2.17 Illustration of time marching (John & Anderson, 2005) 

 

 

Figure 2.18 Explicit finite difference modules (John & Anderson, 2005) 
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An explicit approach of difference equation has one unknown and can be 

solved explicit for this unknown in a straightforward manner. This explicit approach is 

further illustrated by the finite difference module constrained within the dashed balloon 

in Figure 2.18. Here, the module contains only one unknown at time level n+1. In 

Equation (2.44), this time writing the spatial difference on the right-hand side in terms 

of average properties between time levels n and n +1, will represent by  
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The differencing in Equation (2.49) is called the Crank-Nicolson. The 

unknown 1n

iT  is not only shown in terms of the known at time level n. namely, n

iT 1
,

 
n

iT and n

iT 1  , but in terms of other unknown at time level n + 1, namely, 1

1





n

iT  and 1

1





n

iT . 

Equation (2.49) represents one equation with three unknown, namely,
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Figure 2.19 Implicit finite difference modules (John & Anderson, 2005) 

 

Equation (2.48) can be rearranged to the unknowns on the left-hand side and 

the known number on the right-hand side. The result is 



 

 48 

 

)TT(
)t(

t
TT

)x(

t
T

)x(

t
T

)x(

t n

i

n

i

n

i

n

i

n

i

n

i

n

i 112

1

12

1

2

1

12
2

22
1

2








 

























 
  (2.50) 

Simplifying the nomenclature by denoting the following by A, B, and Ki 
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Write Equation (2.50) in the form 
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Note that Ki in Equation (2.51) consists of propertied at time level n, which are known. 

Hence, Ki is a known number in Equation (2.51). Returning to Figure 2.19, we now 

apply Equation (2.51) sequentially to grid point 2 through 6 

At grid point 2   2321 KATBTAT                 (2.52) 

Hence, in Equation (2.52) the term involving the known T1 can be transferred 

to the right-hand side and denoting K2 - AT1 by 2K  , where 2K   is a known number, 

Equation (2.52) is written as 

232 KATBT                 (2.53) 

At grid point 3   3432 KATBTAT                 (2.54) 

At grid point 4  

  
4543 KATBTAT                 (2.55) 

At grid point 5  

  
5654 KATBTAT                 (2.56) 

At grid point 6    6765 KATBTAT                 (2.57) 

In Equation (2.57), since grid point 7 is on a boundary, T7 is known from the 

defined boundary condition. Hence, Equation (2.58) can be rearranged as 

67665 KATKBTAT                            (2.58) 
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Where 6K   is a known number. Equations (2.51) to (2.55) are five equations for the five 

unknowns T2, T3, T4, T5 and T6. This system of equation can be written in matrix form 

as follows. 

 

 

                                                                                                                                  (2.59) 

 

  

The coefficient matrix is a tri-diagonal matrix. The system solved by Equation (2.58) 

involves the formulation of the tri-diagonal arrangement; such solutions are usually 

obtained using “Thomas‟ algorithm” (John & Anderson, 2005).  

2.6.3. The Explicit Method of cylinder coordinates 

 Transient conduction of long cylinders is considered in this section. From 

one-dimensional heat conduction equation in Equation (2.44) is modified for a long 

cylinder. The conduction equation for the instantaneous temperature rise T (r, θ, z, t), 

the temperature (Ti) in the region of a long circular cylinder as follows: 
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Where α is thermal diffusivity (k/ρCp) 

The partial derivative in Equation (2.60) with finite difference. Equation 

(2.60) has four variables, x θ, z, and t. Here, r is the index in the r-direction, θ is the 

index in the θ-direction, z is the index in the z-direction, and n is the index in the time. 

For example, instead of the time derivatives in Equation (2.60) with central difference 

patterned as follows: 
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            (2.61) 

 

2.7  Economic analysis 

2.7.1 The payback period 

Payback period is the time in which the initial cash outflow of an investment 

is expected to be recovered from the cash inflows generated by the investment. The 

formula to calculate payback period is:

 

Period per Inflow Cash

Investment Initial
 Period Payback                               (2.62) 

In a case of cash, inflows are discontinuous use the formula for payback period as: 

C

B
 Period Payback  A                              (2.63) 

In the above formula, 

A is the last period with a negative cash flow 

B is the absolute value of cash flow at the end of the period A 

C is the total cash flow during the period after A 

2.7.2 Return on investment (ROI) 

ROI measures the amount of return on an investment relative to 

the investment‟s cost. To calculate ROI, the benefit (or return) of an investment is 

divided by the cost of the investment, and the result is expressed as a percentage or a 

ratio. The return on investment formula: 

Investemt of Cost

Investment of Cost - Investment from Gain
 ROI                              (2.64) 

http://www.investopedia.com/terms/r/return.asp
http://www.investopedia.com/terms/o/opportunitycost.asp
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In the formula, "Gain from Investment” refers to the proceeds obtained from 

the sale of the investment of interest. Because ROI is measured as a percentage, it can 

be easily compared with returns from other investments. 

2.7.3 Net present value (NPV) 

The NPV is used to determine the present value of an investment by the 

discounted sum of all cash flows received from the project, can be rewritten as 


 


T

1  t
t

t

r)(1

C
CNPV 0

                                        (2.65) 

Where -C0 is initial investment, C is net cash inflow during the period i, r is discount 

rate, t is number of time periods. The investment is important to calculate an estimate of 

profitable the project. In the formula, the 0C
 
is the initial investment, which is a 

negative cash flow showing that money is going out as resisted to coming in. The net 

present value would need to be positive for considered a valuable investment. 

2.7.4 Internal rate of return (IRR) 

IRR is used in capital measuring the profitability of potential investments. 

Internal rate of return is a discount rate that makes the NPV of all cash flows from a 

particular project equal to zero. IRR calculations rely on the same formula as NPV 

does. To calculate IRR using the formula, one would set NPV equal to zero and solve 

for the discount rate r. IRR can be calculated through trial-and-error or using 

programmed to calculate IRR. 

2.8 Related statistics  

A statistical index is used to validate the model with the experimental data and also 

used to show the level of an error, generally consists of a coefficient of determination 

and a normalized root mean squares deviation. 

2.8.1 Coefficient of determination (R
2
)  

R-squared (R
2
) is a statistic that explains the amount of variance accounted 

for in the relationship between two (or more) variables. Sometime R
2
 is called the 

http://www.investopedia.com/terms/c/capitalbudgeting.asp
http://www.investopedia.com/terms/r/return.asp
http://www.investopedia.com/terms/d/discountrate.asp
http://www.investopedia.com/terms/c/capital-project.asp
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coefficient of determination, and it is given as the square of a correlation coefficient. 

This coefficient shows the proportion between the sum of squares for error (SSE), sum 

of squares for the regression (SSR) and the total sum of the squares (SST). The sum of 

squared errors (SSE), or the sum of squared residuals, is given by 
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                (2.66) 

SSE measures the amount of variability in yi that is not explained by the model. Then 

how does one measure the amount of variability in xi that is explained by the model. 

To answer this question, one needs to know the total variability present in the 

data. The SST is the measure of total variation in the y variable and is defined as 
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                            (2.67) 

Where y  is the sample mean of yi variables, that is, 
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                               (2.68) 

Since SSE is the minimum of the sum of squared residuals of any linear 

model, SSE is always smaller than SST. Then the amount of variability explained by the 

model is SST − SSE, which is denoted as the regression sum of squares (SSR), that is, 
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                            (2.69) 

The ratio SSR/SST measures the proportion of variability explained by the 

model. The coefficient of determination (R
2
) is defined as the ratio 

SSE

SSE

SST

SSR
R  12                               (2.70) 

Note that the coefficient of determination ranges between 0 and 1. R
2
 value is 

interpreted as the proportion of variation in experimental that is explained by the model. 
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2.8.2 Standard deviation 

The root-mean-square deviation (RMSD) is a frequently used measure of the 

differences between value predicted by a model and the experimental value. The RMSD 

represents the sample standard deviation (SD) of the differences between predicted 

values and experimental values. Both RMSD and SD can be calculated from. 

   









N

i

ii

N

i

ii expsim
N

xy
N

SDRMSD,
1

2

1

2

1

1

1

1
             (2.71) 

In addition, the percentage of standard deviation (STD) can also be obtained 

by the normalization of the SD with respect to the mean of the experimental data and 

multiply by a constant 100. The STD can be obtained from 

100
x

SD
STD                    (2.72) 

In this study, STD is used to be a statistical index to validate the model with 

the experimental data because it can indicate the percentage the deviation of an error 

between the simulation results and the experimental results by comparing with the 

experimental data. 


