CONTENTS

	Page
Acknowledgement	iii
Thai Abstract	iv
Abstract	vi
List of Tables	xi
List of Figures	xii
List of Abbreviation	xiv
Chapter 1 Introduction	1
1.1 Problem Statement	1
1.2 Biomass Burning and its Impact (on environment and health)	3
1.2.1 Air pollution and its environmental impacts	4
1.2.2 Air Pollution and its health impact	5
1.3 Air Pollutants	7
1.3.1 Particulate matters	7
1.4 Literature Review	8
1.4.1 Chemical composition of PM _{2.5}	8
1.4.2 Combustion chamber for biomass burning simulation	10
1.5 Research Objectives	16
Chapter 2 Experimental	17
2.1 Chemicals, Equipment and Instruments	17
2.1.1 Chemicals	17
2.1.2 Equipment/Apparatus	18
2.1.3 Instruments	18
2.2 Research Framework	19
2.3 Biomass Sampling and Biomass Burning Experiment	19

2.3.1 Biomass samples detail	21
2.3.2 Biomass sampling	21
2.3.3 Open burning simulation	22
2.4 Analysis of PM _{2.5} and Ash Samples from BB	25
2.4.1 PM _{2.5} sample extraction	25
2.4.2 Ash samples extraction	25
2.5 Analysis of PM _{2.5} and Ash Samples by ICP-OES	26
2.5.1 Method validation	26
2.5.2 Elemental analytical framework	26
2.5.3 Accuracy of the analysis method	27
2.5.4 Standard preparation for standard calibration curve	28
2.5.5 Performance of the ICP-OES	28
2.6 Calculation of Emission Factor (EF)	30
2.6.1 EF of PM _{2.5} from biomass burning	30
2.6.2 EFs of elements in PM _{2.5} and ash emitted from BB	32
2.7 Data Analysis	32
Chapter 3 Results and Discussion	33
3.1 Performance of Analysis Method by ICP-OES	33
3.1.1 Accuracy of the method for elemental analysis	33
3.1.2 Performance of the ICP-OES	35
3.1.3 Standard calibration curves	38
3.2 Emission of PM _{2.5} from Biomass Burning	40
3.2.1 Emission of PM _{2.5} and its elemental composition from rice straw	
burning right by Chiang Mai University	42
3.2.2 Emission of PM _{2.5} and its elemental composition from MR burning	45
3.2.3 Emission of PM _{2.5} and its elemental composition from DDF burning	49
3.2.4 Emission of PM _{2.5} and its elemental composition from MDF burning	52
3.2.5 Comparison of PM _{2.5} and its elemental composition emitted from BB	54
3.3 Elemental Composition of Ash Samples from BB	60
3.3.1 Composition of ash sample from RS burning	60
3.3.2 Composition of ash sample from MR burning	62
3.3.3 Composition of ash sample from DDF burning	64

3.3.4 Composition of ash sample from MDF burning3.3.5 Elemental composition of ash samples from BB	66 68
Chapter 4 Conclusion	73
References	75
Appendices	86
Appendex A Appendex B Appendex C	87 90 93
Adans Umonum vitae Adans Umonum vitae Adans Umonum vitae Copyright© by Chiang Mai University All rights reserved	113

LIST OF TABLES

	Page
Table 1.1 Overview of closed and open system combustion chambers	15
Table 2.1 Information about biomass samples locations and code	20
Table 2.2 specification of selected acidic conditions for optimizing ash	
extraction condition	26
Table 3.1 Recoveries of elements obtained from spiked solution concentration	
and CRM	34
Table 3.2 Repeatability of instrument measured from mixed elements standard	36
Table 3.3 Limits of detection and quantification of ICP-OES for each element	37
Table 3.4 Linear equation of calibration curve with coefficient of determination	39
Table 3.5 EFs of PM _{2.5} (mean \pm SD) of biomass types by location	41
Table 3.6 Overall details about RS burning experiments	43
Table 3.7 EFs of elements (mean \pm SD) of PM _{2.5} emitted from RS burning	44
Table 3.8 Overall details about MR burning experiments	46
Table 3.9 EFs of elements (mean \pm SD) of PM _{2.5} emitted from MR burning	47
Table 3.10 Overall details about DDF burning experiment	49
Table 3.11 EFs of elements (mean \pm SD) of PM _{2.5} emitted from DDF burning	50
Table 3.12 Overall details about MDF burning experiments	52
Table 3.13 EFs of elements (mean \pm SD) of PM _{2.5} emitted from MDF burning	53
Table 3.14 EFs of PM _{2.5} and its elemental composition (mean \pm SD)	57
Table 3.15 EF of Elemental composition of ash remained from RS burning	61
Table 3.16 EF of Elemental composition of ash remained from MR burning	63
Table 3.17 EF of Elemental composition of ash remained from DDF burning	65
Table 3.18 EF of Elemental composition of ash remained from MDF burnin	67
Table 3.19 Comparing elements in composition of ash of various biomasses	71

LIST OF FIGURES

	Page
Figure 1.1 Particle deposition in the lunch based on their size, (Pražnikar &	
Pražnikar, 2012)	6
Figure 1.2 Size comparison for PM particles (https://www.epa.gov/pm-	
pollution/particulate-matter-pm-basics).	8
Figure 1.3 Diagram of stainless-steel chamber (Sillapapiromsuk, et al., 2012;	
Wiriya, <i>et al.</i> , 2016)	11
Figure 1.4 Schematic view of Self-designed combustion stove constructed by	
Zhang, et al., (2011)	12
Figure 1.5 Diagram of combustion chamber for BB and sampling of PM	
constructed by Amaral et al., (2014)	13
Figure 2.1Diagram of the research plan and processes	19
Figure 2.2 Biomass sampling grids (2m x 2m) (Chantara et al., 2017)	21
Figure 2.3 Sampling process of agricultural residues, (a) 2 m x 2 m grid for	
biomass sampling, and (b) rice straw sample (Chantara et al., 2017)	22
Figure 2.4 Open burning simulation, (a) dried biomass in burning tray, and	
(b) burning process	22
Figure 2.5 Diagram of Open-system combustion chamber (Chantara et al., 2017)	23
Figure 2.6 $PM_{2.5}$ sampling process during open burning simulation, (a) $PM_{2.5}$	
samplers, and (b) Quarts fiber filter after sampling	24
Figure 2.7 Ash sampling after open burning, (a) ash remained in the burning tray of	
the chamber, and (b) Sieved and packed ash samples (Chantara et al., 2017)	24
Figure 2.8 (a) Microbalance, and (b) double layer Teflon digestive bomb	25
Figure 2.9 Flow chart of analytical method for elemental analysis by ICP-OES	27
Figure 3.1 Examples of linearity calibration curves for Al and K	38
Figure 3.2 Examples of standard calibration curves of Al and As	38
Figure 3.3 EF of PM _{2.5} from burning of four biomass types	42

45
48
51
56
58
59
62
64
68
69
72

LIST OF ABBREVIATION

BB Biomass Burning

CRM Certified Reference Material

DDF Dry Dipterocarps forest

DF Dilution Factor

ECRL Environmental Chemistry Research Laboratory

FP Filter paper

g Gram

GBD Global Burden Disease

ICP-OES Inductively coupled plasma optical emission spectroscopy

kg Kilogram ml Milliliter

MR Maize Residues

MDF Mixed Deciduous forest

PM_{2.5} Particulate Matter (diameter less than 2.5 micrometer)
PM₁₀ Particulate Matter (diameter less than 10 micrometer)

ppm Part per million

ppt Part per thousand

r Correlation coefficient

R² Coefficient of determination

RS Rice straw

SEA Southeast Asia

UNT Upper Northern Thailand

US EPA United States Environmental Protection Agency

WHO World Health Organization

μg/ml Microgram per milliliter