APPENDIX A

	Location					Study			
Study area			Sample		D 1	Geochemistry			
	Е	Ν		Lithology	Petrography	Major oxides	Trace elements	LOI	REE
Mae Phrik	516181.7	1915922.3	BTK25/1-1	rhyodacite porphyry rhyodacite		oxides	elements		KEE
			BTK25/1-2	porphyry rhyolite		30			
	515070.4	1017022.0	BTK25/1-3	porphyry		1			
	515879.4	1917823.9	BTK25/2-1	tuff					
		67	BTK25/2-2	tuff			- 1		
	514459	1919517.2	BTK25/4	tuff					
	515768.4	1913475.7	BTK25/5-1	tuff 🗢 🦍					
		1908	BTK25/5-2	tuff			202		
	515526.4	1912620.5	BTK25/6-1	tuff					
		19	BTK25/6-2	tuff			61		
	516138.2	1912653.8	BTK25/7	rhyodacite					
	518005.1	1914791.8	BTK25/8-1	basalt					
			BTK25/8-2	granite		S'			
			BTK25/8-3	basalt					
			BTK25/8-4	granite					
Mae Salaem	5337740	19224717	MSL25/1-1	rhyolite porphyry					
	ລິ		MSL25/1-2	tuff		Re	NA	11	
	CI C	CIII	MSL25/1-3	tuff		.00	UII	D.	
	Со	pyrigh	MSL25/1-4	/tuff hiar		Un	iversi	<u>ty</u>	
	- A -	ĽĹ –	MSL25/1-5	tuff		0.0	10	Á.	
	534772.2	1922655.2	MSL29/1-1	tuff		er	VE	u	
			MSL29/1-2	tuff					
	534665.2	1922516.8	MSL29/2	tuff					
	534476.4	1922478.1	MSL29/3-1	tuff					
			MSL29/3-2	tuff					
	534233.4	1922451	MSL29/4-1	tuff					
			MSL29/4-2	tuff					
	533951.5	1922368.6	MSL29/5	tuff					
	533914.5	1922376.9	MSL29/6	tuff					

	Location			Study							
Study area			Sample			Geochemistry					
	Е	Ν		Lithology	Petrography	Major oxides	Trace elements	LOI	REE		
Pong Daeng	541459	1875199.3	PDNG30/1	tuff							
	538418.7	1887072	PDNG30/3	tuff							
	538438.4	1886969.4	PDNG30/4	basalt							
	538764	1886550	PDNG30/5	tuff							
	539172	1886453.3	PDNG30/6-1	tuff							
			PDNG30/6-2	tuff							
			PDNG30/6-3	tuff 99							
	539398.5	1886310.4	PDNG30/7-1	tuff							
			PDNG30/7-2	tuff		62					
	538408.4	1882659.4	PDNG30/8	tuff			2				
	537380	1882765	PDNG30/9-1	tuff		1.	3				
		10	PDNG30/9-2	tuff			21				
			PDNG30/9-3	tuff							
		SB2	PDNG30/9-4	tuff 🗢 🎧							
	536396.3	1882960.1	PDNG30/10	tuff			125				
	535626.1	1882912	PDNG30/11	granodiorite			4				
	535359.9	1882984.1	PDNG30/12	granodiorite			6				
	534302.2	1883057.7	PDNG30/13-1	granodiorite		/ h	$\sum_{i=1}^{n}$				
			PDNG30/13-2	granodiorite		A					
	532915.5	1883774.7	PDNG30/14-1	granodiorite		SY/					
			PDNG30/14-2	granodiorite							
	533157.2	1883644.4	PDNG30/15	granodiorite							
	533475.3	1883482.8	PDNG30/16-1	granodiorite			~				
	- A2	an	PDNG30/16-2	granodiorite		129	เลโน	11			
	533828.2	1883308.2	PDNG30/17-1	granodiorite		100	10 HI	2			
	Co	pyrig	PDNG30/17-2	granodiorite		i Un	iversi	ty			
	534217.9	1883109.5	PDNG30/18-1	granodiorite		-		í.			
	A		PDNG30/18-2	granodiorite		D C I	v e	u			

	Location		Sample	Study					
Study area						Geochemistry			
	Е	Ν		Lithology	Petrography	Major oxides	Trace elements	LOI	REE
Wang Luek	5399374	18978973	SK25/3-1	basaltic flow					
			SK25/3-2	basaltic flow					
			SK25/3-3	basaltic flow					
			SK25/3-4	tuff					
	5396631	19002325	SK25/6-1	tuff					
			SK25/6-2	tuff					
			SK25/6-3	tuff					
			SK25/6-4	tuff					
	5414615	19038223	SK25/7	tuff		2			
	544951.1	1888567.7	WL29/1-1	cumulus gabbro					
	511551.1	1000507.7	WL29/1-2	cumulus					
		12	/ /	gabbro cumulus					
		(07	WL29/1-3	gabbro cumulus					
	544569.5	1888131.8	WL29/2-1	gabbro					
		582	WL29/2-2	gabbro					
	542939.1	1886575.6	WL29/3	gabbro					
	548533.1	1890162	WL29/6-1	tuff			7		
		H in	WL29/6-2	tuff			8/		
	551035.6	1892104.1	WL29/7-1	tuff		1	Y //		
			WL29/7-2	tuff		A			
Wenne			WL29/7-3	tuff		NY /			
Wang Prachop	540725	1870637.2	WPC26/1	tuff TTTT					
	533213.1	1870316.8	WPC26/2-1	tuff					
			WPC26/2-2	tuff			0		
	531983	1870780.5	WPC26/3-1	rhyolite porphyry					
	QLO		WPC26/3-2	basalt flow					
	534746.1	1871927.2	WPC26/4	andesite porphyry					
	534740.1	1872480.1	WPC26/5-1	tuff		01	VP	d	
	551712.7	10/2 100.1	WPC26/5-2	tuff				1.1	
			WPC26/5-3	tuff					
			WPC26/5-4	tuff					
	534805.8	1872910.1	WPC26/6	basaltic tuff					
	534800.2	1873573.5	WPC26/7	andesite porphyry					
	534576.5	1875060.9	WPC26/8	tuff					
	533804.4	1875647.3	WPC26/9-1	tuff					
			WPC26/9-2	tuff					
			WPC26/9-3	tuff					
]

	Location		Sample			Study			
Study area					D . 1	Geochemistry			
	Е	Ν		Lithology	Petrography	Major oxides	Trace elements	LOI	REE
Wang Prachop	534222.2	1875956.7	WPC26/10	andesite porphyry					
	534396.8	1876070.2	WPC26/11	andesite porphyry					
	534598.8	1876076.7	WPC26/12-1	andesite porphyry					
			WPC26/12-2	tuff					
	534683.8	1874852.6	WPC26/13	tuff					
	532732.8	1869531.1	WPC27/1	tuff					
	532962.9	1869503.8	WPC27/2	andesite					
	533142.6	1869515.6	WPC27/3-1	andesite					
			WPC27/3-2	basaltic tuff		0			
		// &	WPC27/3-3	welded tuff- rhyolite			1/12		
		18	WPC27/3-4	welded tuff- rhyolite			3		
		10	WPC27/3-5	welded tuff- rhyolite		1/	21		
				welded tuff-			. 1		
		582	WPC27/3-6	rhyolite welded tuff-			582	-	
	532634.8	1869710.6	WPC27/4	rhyolite			2001		
	532712.1	1869980.8	WPC27/6	tuff -basalt			A		
	533133.1	1869977.2	WPC27/7-1	tuff-basalt			Sel 1		
Wang		IE	WPC27/7-2	tuff-basalt rhyolite			\sim		
Chao	523557.3	1858038	WCH26/2-1	porphyry rhyolite					
			WCH26/2-2	porphyry rhyolite					
	522885.9	1857829.1	WCH26/3-1	porphyry rhyolite					
			WCH26/3-2	porphyry					
	522668.1	1857693.7	WCH26/4-1	rhyolite porphyry					
	6 a		WCH26/4-2	basalt		R	101	11	
	010		WCH26/4-3	gabbro			· ·		
	Co	pyrigh	WCH26/4-4	gabbro		ii Ui	livers	ity	
	523553.5	1853142.5	WCH26/5-1	rhyolite porphyry					
			WCH26/5-2	tuff					
			WCH26/5-3	tuff					
			WCH26/5-4	tuff					
	523892.3	1852737.5	WCH26/6	tuff					
	523890.9	1851296.6	WCH27/1	tuff					
	523910.4	1851417.1	WCH27/2-2	basalt porphyry basalt					
			WCH27/2-3	porphyry					

	Location			Study						
Study area			Sample		_	Geochemistry				
	Е	Ν		Lithology	Petrography	Major oxides	Trace elements	LOI	REE	
Wang Chao	524039.6	1851468.2	WCH27/3	tuff						
	524738	1850784.7	WCH27/4-1	tuff	-					
			WCH27/4-2	tuff						
			WCH27/4-3	tuff						
			WCH27/4-4	tuff						
	548365.2	1839774.3	WCH27/5-1	tuff						
			WCH27/5-2	basalt porphyry						
	531294.6	1843135.2	WCH28/1-1	basalt						
			WCH28/1-2	basalt flow		2				
		1/5	WCH28/1-3	basalt flow		4	1/00			
	530851.3	1836275.7	WCH28/4	basalt						
	529898.4	1843335	WCH28/8-1	basalt		_				
			WCH28/8-2	basalt		11				
		202	WCH28/8-3	tuff	2		2022			

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

APPENDIX B

PETROGRAPHY OF INDIVIDUAL STUDIED ROCK SAMPLES

Sample number BTK25/1-1

Rock name Rhyodacite

Lithology The brownish rock sample is a very fine-grain and shows a slightly porphyritic textures. It is a pinkish brown in color with a yellowish brown weathering surface. The phenocrysts are made up of quartz (colorless), feldspars (white), and opaque minerals (black), and are embedded in a very fine-grained groundmass.

Petrography

The rock sample shows a slightly porphyritic texture. The phenocrysts/microphenocrysts (10 modal %) are made up largely of quartz (6 modal %) and plagioclase (2 modal %), with small amounts of alkali feldspar (1 modal %) and opaque minerals (1 modal %). The groundmass phase is made up mainly of quartz-alkali feldspar devitrification with small amounts of quartz, alkali feldspar and chlorite.

Quartz phenocrysts/microphenocrysts are euhedral to subhedarl (sizes up to 2 mm across). It commonly shows rounded edges and embayed outlines. Groundmass quartz is anhedral with sizes up to 0.1 mm across.

Plagioclase phenocryst/microphenocrysts are subhedral with sizes up to 1 mm across. These phenocrysts/microphenocrysts may have formed as a cluster of glomerocrysts. Plagioclase crystals show carlsbad twin and albite twin and is moderately replaced by sericite and clay minerals.

Alkali feldspar phenocrysts/microphenocrysts are subhedral to euhedral (sizes up to 1 mm across). They show simple twin and perthitic texture (sanidine type). Alkali feldspar in the groundmass phase is anhedral with sizes up to 0.1 mm across. Alkali feldspar is slightly replaced by clay minerals.

Opaque minerals phenocryst/microphenocrysts are subhedral with sizes up to 0.7 mm across. They are moderately altered to leucoxene. Groundmass opaque minerals are anhedral and fine-grain with sizes up to 0.2 mm across. Quartz-alkali feldspar intergrowth groundmass is devitrified from grass.

Chlorite patches are anhedral and fine-grain with sizes up to 0.1 mm across.

Sample number BTK25/1-2

Rock name Rhyodacite

Lithology The brownish rock sample is a very fine-grain and shows a slightly porphyritic textures. It is a pinkish brown in color with a yellowish brown weathering surface. The phenocrysts are made up of quartz (colorless), feldspars (white), and opaque minerals (black), and are embedded in a very fine-grained groundmass.

Petrography

The rock sample shows a slightly porphyritic texture. The phenocrysts/microphenocrysts (10 modal %) are made up largely of quartz (4.5 modal %) and plagioclase (4 modal %), with small amounts of alkali feldspar (1 modal %) and opaque minerals (0.5 modal %). The groundmass phase is made up mainly of quartz-alkali feldspar devitrification, with small amounts of quartz, alkali feldspar, opaque minerals and muscovite.

Quartz phenocrysts/microphenocrysts are euhedral to subhedarl (sizes up to 1.75 mm across). It commonly shows rounded edges and embayed outlines. Groundmass quartz is anhedral with sizes up to 0.1 mm across.

Plagioclase phenocryst/microphenocrysts are subhedral with sizes up to 1.25 mm across. These phenocrysts/microphenocrysts may have formed as a cluster of glomerocrysts. Plagioclase crystals show carlsbad twin and albite twin and is moderately replaced by sericite and clay minerals.

Alkali feldspar phenocrysts/microphenocrysts are subhedral to euhedral (sizes up to 1.25 mm across). They show simple twin and perthitic texture (sanidine type). Alkali feldspar in the groundmass phase is anhedral with sizes up to 0.1 mm across. Alkali feldspar is highly replaced by clay minerals.

Opaque minerals phenocryst/microphenocrysts are subhedral with sizes up to 0.5 mm across. They are moderately altered to leucoxene. Groundmass opaque minerals are anhedral and fine-grain with sizes up to 0.2 mm across. Quartz-alkali feldspar intergrowth groundmass is devitrified from grass.

Muscovite in the groundmass phase is anhedral and fine-grain with sizes up to 0.1 mm across.

Sample number BTK25/7

Rock name Rhyodacite

Lithology The brownish gray rock sample is a very fine-grain and shows a slightly porphyritic textures. It is a pinkish brown in color with a yellowish brown weathering surface. The phenocrysts are made up of quartz (colorless), feldspars (white), and opaque minerals (black), and are embedded in a very fine-grained groundmass. This sample is made up mostly of alkali feldspar.

The rock sample shows a slightly porphyritic texture. The phenocrysts/microphenocrysts are made up largely of plagioclase with small amount of quartz and alkali feldspar. The groundmass phase is made up mainly of quartz-alkali feldspar devitrification with small amounts of quartz, alkali feldspar, chlorite, and opaque minerals.

Plagioclase phenocryst/microphenocrysts are subhedral with sizes up to 1 mm across. These phenocrysts/microphenocrysts may have formed as a cluster of glomerocrysts. Plagioclase crystals show carlsbad twin and albite twin and is moderately replaced by sericite and clay minerals.

Quartz phenocrysts/microphenocrysts are euhedral to subhedarl (sizes up to 0.75 mm across). It commonly shows rounded edges and embayed outlines. Groundmass quartz is anhedral with sizes up to 0.1 mm across.

Alkali feldspar phenocrysts/microphenocrysts are subhedral to euhedral (sizes up to 0.75 mm across). They show simple twin and perthitic texture (sanidine type). Alkali feldspar in the groundmass phase is anhedral with sizes up to 0.1 mm across. Alkali feldspar is slightly replaced by clay minerals. Quartz-alkali feldspar intergrowth groundmass is devitrified from grass. Chlorite patches are anhedral and fine-grain with sizes up to 0.2 mm across. Opaque minerals in the groundmass phase are anhedral and fine-grain with sizes up to 0.2 mm across.

Sample number BTK25/8-1

Copyright

Rock name Basalt

Lithology The rock sample has a dark green color and its surface is cover by dark yellowish brown materials. It has a very fine-grained texture.

by Chiang Mai University

Petrography

The rock sample shows a slightly porphyritic texture. The phenocrysts/microphenocrysts (10 modal %) are made up largely of plagioclase (7 modal %) with small amount of unidentified mafic mineral (3 modal %). The groundmass phase is made up mainly of plagioclase, with small amounts of unidentified mafic minerals, and opaque minerals. Plagioclase and clinopyroxene in the groundmass phase are ophitic/subohitic intergrowth.

Plagioclase phenocryst/microphenocrysts are subhedral with sizes up to 1 mm across. Their crystals show polysynthetic twin and are broken. Groundmass plagioclase is anhedral with sizes up to 0.1 mm across. Plagioclase is slightly replaced by sericite and clay minerals. Plagioclase crystals are broken and fold by deformation.

Unidentified mafic minerals phenocrysts/microphenocrysts are subhedral to euhedral (sizes up to 0.5 mm across). Groundmass unidentified mafic minerals are anhedral with sizes up to 0.1 mm across. Unidentified mafic minerals are completely replaced by serpentine/chlorite. Opaque minerals in the groundmass phase are anhedral and fine-grain with sizes up to 0.1 mm across.

Sample number BTK25/8-3

Rock name Basalt

Lithology The rock sample has a dark green color and its surface is cover by dark yellowish brown materials. It has a very fine-grained texture.

Petrography

The rock sample shows a slightly porphyritic texture. The phenocrysts/microphenocrysts (6 modal %) are made up largely of unidentified mafic minerals (4.5 modal %) with small amount of plagioclase (1.5 modal %). The groundmass phase is made up mainly of plagioclase, with small amounts of unidentified mafic minerals, and opaque minerals. Plagioclase and clinopyroxene in the groundmass phase are ophitic/subohitic intergrowth.

Unidentified mafic minerals phenocrysts/microphenocrysts are subhedral to euhedral (sizes up to 0.5 mm across). Groundmass unidentified mafic minerals are anhedral with sizes up to 0.1 mm across. Unidentified mafic minerals are completely replaced by serpentine/chlorite.

Plagioclase phenocryst/microphenocrysts are subhedral with sizes up to 1 mm across. Their crystals show polysynthetic twin and are broken. Groundmass plagioclase is anhedral with sizes up to 0.1 mm across. Plagioclase is slightly replaced by sericite and clay minerals. Opaque minerals in the groundmass phase are anhedral and fine-grain with sizes up to 0.1 mm across.

Copyright^C by Chiang Mai University Sample number MSL25-1-1 i g h t s r e s e r v e d

Rock name Rhyolite

Lithology The rock sample has a very fine-grained and shows a slightly porphyritic texture. It is pale pink to reddish in color with a yellowish brown weathering on their surfaces. The phenocrysts are made up of quartz (colorless), feldspars (white), and opaque minerals (black), which are embedded in a very fine-grained groundmass.

The rock sample shows a slightly porphyritic texture. The phenocrysts/microphenocrysts (6 modal %) are made up largely of quartz (2 modal %) and plagioclase (3.5 modal %) with small amount of alkali feldspar (0.5 modal %). The groundmass phase is made up mainly of quartz-alkali feldspar (granophyric and spherulitic) intergrowth with small amounts of quartz, alkali feldspar, muscovite, and opaque minerals.

Quartz phenocrysts/microphenocrysts are euhedral to subhedarl (sizes up to 0.75 mm across). They commonly show rounded edges and embayed outlines. Groundmass quartz is anhedral with sizes up to 0.1 mm across.

Plagioclase phenocryst/microphenocrysts are subhedral with sizes up to 1.5 mm across. Their crystals show carlsbad twin and albite twin and is slightly to moderately replaced by sericite and clay minerals.

Alkali feldspar phenocrysts/microphenocrysts are subhedral to euhedral (sizes up to 1 mm across). They show simple twin and perthitic texture (sanidine type). Alkali feldspar in the groundmass phase is anhedral with sizes up to 0.1 mm across. Alkali feldspar is slightly replaced by clay minerals.

Quartz-alkali feldspar intergrowth groundmass is composed of microgranophyric intergrowth and spherulite (sizes up to 1.5 mm across). Granophyric intergrowth is made up of radial quartz embedded in alkali feldspar. Spherulite is radial aggregate of quartz and feldspar. Muscovite in the groundmass phase is anhedral and fine-grain with sizes up to 0.2 mm across. Opaque minerals in the groundmass phase are anhedral and fine-grain with sizes up to 0.2 mm across.

Sample number PDNG30/4

Rock name Basalt porphyry

Lithology The rock sample has a dark green color and its surface is cover by dark yellowish brown materials. It has very fine-grained texture.

ายาลัยเชียงไหบ

Petrography

The rock sample shows a porphyritic texture. The phenocrysts/microphenocrysts (21.5 modal %) are made up of plagioclase (17 modal %) with small amount of unidentified mafic minerals (4.5 modal %). The groundmass phase is made up mainly of plagioclase, with small amounts of unidentified mafic minerals, and opaque minerals.

Felted plagioclase grains have two grain sizes, plagioclase phenocryst/microphenocrysts are subhedral with sizes up to 1.2 mm across. Their crystals show carlsbad twin. Groundmass plagioclase is

anhedral with sizes up to 0.1 mm across. Plagioclase is slightly replaced by sericite and clay minerals. Plagioclase crystals are broken and fold by deformation.

Unidentified mafic minerals phenocrysts/microphenocrysts are subhedral to euhedral (sizes up to 1.5 mm across). Groundmass unidentified mafic minerals are anhedral with sizes up to 0.1 mm across. Unidentified mafic minerals are completely replaced by chlorite and epidote. Opaque minerals in the groundmass phase are anhedral and fine-grain with sizes up to 0.1 mm across.

Sample number WL29/1-1

Rock name Cumulus Gabbro

Lithology The rock sample has a greenish gray in color and is fine-grained (grain size average less than 0.1 mm across). Tarnished surface is pale-moderate yellowish brown. It is made up of dark and white minerals.

งามยนต

Petrography

The rock sample is equigranular (grain size in the range of 0.2 - 1 mm across) and show cumulus texture. The cumulus crystals are made up mainly of plagioclase (56 modal %), with subordinate clinopyroxene (35 modal %) and unidentified mafic mineral (5 modal %). The intercumulus crystals comprise hornblende (1.5 modal %) and opaque mineral (magnetite?) (2.5 modal %) with small amount of apatite.

Plagioclase is euhedral to subhedral, long prismatic (sizes up to 0.8 mm across) and completely replaced by epidotes, sericite, and clay minerals. Plagioclase crystals line parallel along long axis.

Clinopyroxene is subhedarl (sizes up to 1.5 mm across) and colorless. It is moderately to highly replace by epidote and serpentine/chlorite. Plagioclase inclusion has been observed in clinopyroxene crystals.

Unidentified mafic mineral is euhedral and has short-primaic/prismatic shapes (sizes up to 0.5 mm across). It is completely replaced by serpentine/chlorite and small amounts pale brown amphibole and opaque minerals.

Hornblende is anhedral (sizes up to 0.5 mm across) and shows an intercumulus crystalization. It has a pleochroic formula as X = pale yellow, Y = yellowish brown and Z = greenish brow. Inclusions of unidentified mafic mineral, clinopyroxene and plagioclase are commonly present in this amphibole crystal.

Opaque mineral (magnetite?) is subhedral - equant (sizes up to 0.2 mm across) and intergranular with plagioclase laths. Apatite is euhedral and has a short-primaic/prismatic shape (sizes up to 0.15 mm across). Apatite inclusion has been observed in plagioclase and clinopyroxene crystals.

Sample number WL29/1-2

Rock name Cumulus Gabbro

Lithology The rock sample has a greenish gray in color and is fine-grained (grain size average less than 0.1 mm across). Tarnished surface is pale-moderate yellowish brown. It is made up of dark and white minerals.

Petrography

The rock sample is equigranular (grain size in the range of 0.2 - 1 mm across) and show cumulus texture. The cumulus crystals are made up mainly of plagioclase (52.5 modal %), with subordinate clinopyroxene (40 modal %) and unidentified mafic mineral (4 modal %). The intercumulus crystals comprise hornblende (1.5 modal %) and opaque mineral (magnetite?) (2 modal %) with small amount of apatite.

Plagioclase is euhedral to subhedral, long prismatic (sizes up to 0.8 mm across) and completely replaced by epidotes, sericite, and clay minerals. Plagioclase crystals line parallel along long axis.

Clinopyroxene is subhedarl (sizes up to 1.5 mm across) and colorless. It is moderately to highly replace by epidote and serpentine/chlorite. Plagioclase inclusion has been observed in clinopyroxene crystals.

Unidentified mafic mineral is euhedral and has short-primaic/prismatic shapes (sizes up to 0.5 mm across). It is completely replaced by serpentine/chlorite and small amounts pale brown amphibole and opaque minerals.

Hornblende is anhedral (sizes up to 0.5 mm across) and shows an intercumulus crystalization. It has a pleochroic formula as X = pale yellow, Y = yellowish brown and Z = greenish brow. Inclusions of unidentified mafic mineral, clinopyroxene and plagioclase are commonly present in this amphibole crystal.

Opaque mineral (magnetite?) is subhedral - equant (sizes up to 0.2 mm across) and intergranular with plagioclase laths. Apatite is euhedral and has a short-primaic/prismatic shape (sizes up to 0.15 mm across). Apatite inclusion has been observed in plagioclase and clinopyroxene crystals.

Sample number WL29/1-3

Rock name Cumulus Gabbro

Lithology The rock sample has a greenish gray in color and is fine-grained (grain size average less than 0.1 mm across). Tarnished surface is pale-moderate yellowish brown. It is made up of dark and white minerals.

Petrography

The rock sample is equigranular (grain size in the range of 0.2 - 1 mm across) and show cumulus texture. The cumulus crystals are made up mainly of plagioclase (46 modal %), with subordinate clinopyroxene (37 modal %) and unidentified mafic mineral (7.5 modal %). The intercumulus crystals comprise hornblende (3 modal %) and opaque mineral (magnetite?) (6.5 modal %).

Plagioclase is euhedral to subhedral, long prismatic (sizes up to 0.8 mm across) and completely replaced by epidotes, sericite, and clay minerals. Plagioclase crystals line parallel along long axis.

Clinopyroxene is subhedarl (sizes up to 1 mm across) and colorless. It is slightly replaced by epidote and serpentine/chlorite. Plagioclase inclusion has been observed in clinopyroxene crystals.

Unidentified mafic mineral is euhedral and has short-primaic/prismatic shapes (sizes up to 1 mm across). It is completely replaced by serpentine/chlorite and small amounts pale brown amphibole and opaque minerals.

Hornblende is anhedral (sizes up to 1 mm across) and shows an intercumulus crystalization. It has a pleochroic formula as X = pale yellow, Y = yellowish brown and Z = greenish brow. Inclusions of unidentified mafic mineral, clinopyroxene and plagioclase are commonly present in this amphibole crystal.

Opaque mineral (magnetite?) is anhedral with sizes up to 0.5 mm across and slightly replaced by titanite/leucoxene. It formed as intercumulus crystallization. Plagioclase inclusion can be observed in the opaque mineral.

Sample number WL29//2-1

Rock name Cumulus Gabbro

Lithology The rock sample has a greenish gray in color and is fine-grained (grain size average less than 0.1 mm across). Tarnished surface is pale-moderate yellowish brown. It is made up of dark and white minerals.

The rock sample is equigranular (grain size in the range of 0.2 - 1 mm across) and show cumulus texture. The cumulus crystals are made up mainly of plagioclase (57 modal %), with subordinate clinopyroxene (32.5 modal %) and unidentified mafic mineral (8 modal %). The intercumulus crystals comprise hornblende (1.5 modal %) and opaque mineral (magnetite?) (1 modal %).

Plagioclase is euhedral to subhedral, long prismatic (sizes up to 0.8 mm across) and completely replaced by epidotes, sericite, and clay minerals. Plagioclase crystals line parallel along long axis.

Clinopyroxene is subhedarl (sizes up to 1 mm across) and colorless. It is slightly replaced by epidote and serpentine/chlorite. Plagioclase inclusion has been observed in clinopyroxene crystals.

Unidentified mafic mineral is euhedral and has short-primaic/prismatic shapes (sizes up to 0.75 mm across). It is completely replaced by serpentine/chlorite and small amounts pale brown amphibole and opaque minerals.

Hornblende is anhedral (sizes up to 0.5 mm across) and shows an intercumulus crystalization. It has a pleochroic formula as X = pale yellow, Y = yellowish brown and Z = greenish brow. Inclusions of unidentified mafic mineral, clinopyroxene and plagioclase are commonly present in this amphibole crystal.

Opaque mineral (magnetite?) is anhedral with sizes up to 0.2 mm across and slightly replaced by titanite/leucoxene. It formed as intercumulus crystallization. Plagioclase inclusion can be observed in the opaque mineral.

Sample number WL29/2-2

Rock name Gabbro

Lithology The rock sample has a greenish gray color and surface is cover by dark yellowish brown materials. It is equigranular and fine-grian (grain sizes less than 1 mm across). The sample contains a white lath shape crystals (plagioclase) and a green crystals (pyroxene).

ายาลัยเชียงให

Petrography

The rock sample is slightly porphyritic with clinopyroxene (4 modal %), plagioclase (3 modal %), and unidentified minerals (1.5 modal %) phenocrysts/microphenocrysts. The groudmass phase is made up largely of plagioclase (56.5 modal %) and clinopyroxene (35 modal %), with small amount of opaque mineral (magnetite ?) (10 modal %). Plagioclase and clinopyroxene in the groundmass phase are ophitic/subohitic intergrowth.

Clinopyroxene phenocrysts/microphenocrysts are subhedral (sizes up to 1.2 mm across), whereas groundmass plagioclase is subhedral and long prismatic (grain sizes average in the range of 0.05 - 0.15 mm across). They are slightly replaced by epidote and serpentine/chlorite. Plagioclase inclusion has been observed in clinopyroxene crystals.

Plagioclase phenocrysts/microphenocrysts are euhedral and short prismatic (sizes up to 0.75 mm across), whereas groundmass plagioclase is subhedral and long prismatic (grain sizes average in the range of 0.05 - 0.15 mm across). Plagioclase is moderately replaced by epidotes, clay minerals, and sericite.

Unidentified mafic mineral phenocrysts/microphenocrysts are subhedral and has shortprimaic/prismatic shapes (sizes up to 0.75 mm across), whereas groundmass plagioclase is subhedral and long prismatic (grain sizes average in the range of 0.05 - 0.15 mm across). It is completely replaced by serpentine/chlorite. Opaque mineral (magnetite ?) is subhedral - equant (sizes up to 0.2 mm across) and intergranular with plagioclase laths.

Sample number WL29/3

Rock name Gal

Gabbro

Lithology The rock sample has a dark green color and surface is cover by dark yellowish brown materials. It is equigranular and fine-grian (grain sizes less than 1 mm across). The sample contains a white lath shape crystals (plagioclase) and a green crystals (pyroxene).

Petrography

The rock sample is made up largely of plagioclase (54 modal %) and clinopyroxene (28.5 modal %), with subordinate unidentified mafic minerals (13 modal %), with small amount of apatite opaque mineral (magnetite ?) (4.5 modal %). Plagioclase and clinopyroxene in the groundmass phase are ophitic/subohitic intergrowth.

Plagioclase is euhedral and short prismatic (sizes up to 0.75 mm across). Plagioclase is moderately replaced by epidotes, clay minerals, and sericite.

Clinopyroxene is subhedarl (sizes up to 1.5 mm across) and colorless. It is slightly replaced by epidote and serpentine/chlorite. Plagioclase inclusion has been observed in clinopyroxene crystals.

Unidentified mafic mineral is euhedral and has short-primaic/prismatic shapes (sizes up to 0.5 mm across). It is completely replaced by serpentine/chlorite and small amounts pale brown amphibole and opaque minerals. Opaque mineral (magnetite ?) is subhedral - equant (sizes up to 0.2 mm across) and intergranular with plagioclase laths.

Sample number WPC26/3-1

Rock name Rhyolite

Lithology The rock sample is a very fine-grain and shows a slightly porphyritic texture. It has a grayish color and a brownish weathering surface. The phenocrysts are made up of quartz (colorless) and feldspars (white), which is embedded in the very fine-grained groundmass.

Petrography

The rock sample shows slightly porphyritic texture. The phenocrysts/microphenocrysts (5 modal %) are made up largely of quartz (3.5 modal %) and plagioclase (1 modal %) with small amount of alkali feldspar (0.5 modal %). The groundmass phase is made up mainly of quartz-alkali feldspar granophyric intergrowth, with small amounts of quartz, alkali feldspar, and opaque minerals.

Quartz phenocrysts/microphenocrysts are euhedral to subhedarl (sizes up to 1 mm across). They commonly show rounded edges and embayed outlines. Groundmass quartz is anhedral with sizes up to 0.1 mm across.

Plagioclase phenocryst/microphenocrysts are subhedral with sizes up to 0.75 mm across. Their crystals show carlsbad twin and albite twin and is slightly replaced by sericite and clay minerals.

Alkali feldspar phenocrysts/microphenocrysts are subhedral to euhedral (sizes up to 0.75 mm across). They show simple twin and perthitic texture (sanidine type). Alkali feldspar in the groundmass phase is anhedral with sizes up to 0.1 mm across. Alkali feldspar is slightly replaced by clay minerals.

Quartz-alkali feldspar intergrowth groundmass is composed of microgranophyric intergrowth (sizes up to 1.5 mm across). Granophyric intergrowth is made up of radial quartz embedded in alkali feldspar. Opaque minerals in the groundmass phase are anhedral and fine-grain with sizes up to 0.1 mm across.

Copyright[©] by Chiang Mai University Sample number WPC26/4 rights reserved

Rock name Andesite porphyry

Lithology The rock sample has a dark green color and its surface is cover by dark yellowish brown materials. It has very fine-grained texture.

Petrography

The rock sample shows a highly porphyritic texture. The phenocrysts/microphenocrysts (29.5 modal %) are made up of plagioclase (15 modal %) with small amount of opaque minerals (6.5 modal %), unidentified mafic minerals (5 modal %) and clinopyroxene (3 modal %). The

phenocrysts/microphenocrysts may form as glomerocrysts and cumulocrysts. The groundmass phase is made up mainly of plagioclase, with small amounts of unidentified mafic minerals, and opaque minerals.

Felted plagioclase grains have two grain sizes, plagioclase phenocryst/microphenocrysts are subhedral with sizes up to 1.5 mm across. Their crystals show carlsbad twin. Groundmass plagioclase is anhedral with sizes up to 0.1 mm across. Plagioclase is moderately replaced by sericite and clay minerals. Inclusion of apatite is present some grains.

Opaque minerals phenocrysts/microphenocrysts are subhedral to anhedral (sizes up to 0.5 mm across). Groundmass opaque minerals are anhedral with sizes up to 0.1 mm across.

Unidentified mafic minerals phenocrysts/microphenocrysts are subhedral to euhedral (sizes up to 1 mm across). Groundmass unidentified mafic minerals are anhedral with sizes up to 0.1 mm across. Unidentified mafic minerals are completely replaced by serpentine/chlorite and epidote.

Clinopyroxene is colorless and anhedral (averaged size 1 mm across). It is slightly altered to brown amphibole, chlorite. Fractures are commonly present in the crystals including serpentine/chlorite.

Sample number WPC26/7

Rock name Andesite porphyry

Lithology The rock sample has a dark green color and its surface is cover by dark yellowish brown materials. It has very fine-grained texture.

I UNIVE

Petrography

The rock sample shows a highly porphyritic texture. The phenocrysts/microphenocrysts (50 modal %) are made up of plagioclase (24 modal %) with small amount of unidentified mafic minerals (16.75 modal %), clinopyroxene (7 modal %), and opaque minerals (2.25 modal %). The groundmass phase is made up mainly of plagioclase, with small amounts of unidentified mafic minerals, opaque minerals, and apatite.

Felted plagioclase grains have two grain sizes, plagioclase phenocryst/microphenocrysts are subhedral with sizes up to 2.1 mm across. Its crystals show carlsbad twin. Groundmass plagioclase is anhedral with sizes up to 0.1 mm across. Plagioclase is highly replaced by sericite and clay minerals. Inclusion of apatite is present some grains.

Unidentified mafic minerals phenocrysts/microphenocrysts are subhedral to euhedral (sizes up to 1.5 mm across). Groundmass unidentified mafic minerals are anhedral with sizes up to 0.1 mm across. Unidentified mafic minerals are completely replaced by serpentine/chlorite.

Clinopyroxene is colorless and anhedral (averaged size 1.7 mm across). It is moderately altered to brown amphibole, chlorite. Fractures are commonly present in the crystals including serpentine/chlorite. Inclusion of apatite and opaque minerals are present some grains.

Opaque minerals phenocrysts/microphenocrysts are subhedral to anhedral (sizes up to 0.7 mm across). Groundmass opaque minerals are anhedral with sizes up to 0.1 mm across. Apatite is euhedral and has a short-primaic/prismatic shape (sizes up to 0.15 mm across). Apatite inclusion has been observed in plagioclase and clinopyroxene crystals.

Sample number WPC26/10

Rock name Andesite porphyry

Lithology The rock sample has a dark green color and its surface is cover by dark yellowish brown materials. It has very fine-grained texture.

งายนด

2102

Petrography

The rock sample shows a highly porphyritic texture. The phenocrysts/microphenocrysts (42.5 modal %) are made up of plagioclase (23 modal %) with small amount of unidentified mafic minerals (9 modal %), clinopyroxene (8.5 modal %), and opaque minerals (2 modal %). The groundmass phase is made up mainly of plagioclase, with small amounts of unidentified mafic minerals, opaque minerals, and apatite.

Felted plagioclase grains have two grain sizes, plagioclase phenocryst/microphenocrysts are subhedral with sizes up to 2 mm across. Their crystals show carlsbad twin. Groundmass plagioclase is anhedral with sizes up to 0.1 mm across. Plagioclase is completely replaced by sericite and clay minerals. Inclusion of clinopyroxene and apatite are present some grains.

Unidentified mafic minerals phenocrysts/microphenocrysts are subhedral to euhedral (sizes up to 1 mm across). Groundmass unidentified mafic minerals are anhedral with sizes up to 0.1 mm across. Unidentified mafic minerals are completely replaced by serpentine/chlorite.

Clinopyroxene is colorless and anhedral (averaged size 1.2 mm across). It is slightly altered to brown amphibole and serpentine/chlorite. Fractures are commonly present in the crystals including serpentine/chlorite. Inclusion of apatite is present some grains.

Opaque minerals phenocrysts/microphenocrysts are subhedral to anhedral (sizes up to 0.7 mm across). Groundmass opaque minerals are anhedral with sizes up to 0.1 mm across. Apatite is euhedral and has a short-primaic/prismatic shape (sizes up to 0.15 mm across). Apatite inclusion has been observed in plagioclase and clinopyroxene crystals.

Sample number WPC26/11

Rock name Andesite porphyry

Lithology The rock sample has a dark green color and its surface is cover by dark yellowish brown materials. It has very fine-grained texture.

Petrography

The rock sample shows a highly porphyritic texture. The phenocrysts/microphenocrysts (41.75 modal %) are made up of plagioclase (28 modal %) with small amount of clinopyroxene (6 modal %), unidentified mafic minerals (5.75 modal %), and opaque minerals (2 modal %). The groundmass phase is made up mainly of plagioclase, with small amounts of unidentified mafic minerals, opaque minerals, and apatite.

Felted plagioclase grains have two grain sizes, plagioclase phenocryst/microphenocrysts are subhedral with sizes up to 1.5 mm across. Their crystals show carlsbad twin. Groundmass plagioclase is anhedral with sizes up to 0.1 mm across. Plagioclase is highly replaced by sericite and clay minerals. Inclusion of apatite is present some grains.

Clinopyroxene is colorless and anhedral (averaged size 1.5 mm across). It is slightly altered to serpentine/chlorite. Fractures are commonly present in the crystals including serpentine/chlorite. Inclusion of apatite and opaque minerals is present some grains.

Unidentified mafic minerals phenocrysts/microphenocrysts are subhedral to euhedral (sizes up to 0.8 mm across). Groundmass unidentified mafic minerals are anhedral with sizes up to 0.1 mm across. Unidentified mafic minerals are completely replaced by serpentine/chlorite.

Opaque minerals phenocrysts/microphenocrysts are subhedral to anhedral (sizes up to 0.7 mm across). Groundmass opaque minerals are anhedral with sizes up to 0.1 mm across. Apatite is euhedral and has a short-primaic/prismatic shape (sizes up to 0.15 mm across). Apatite inclusion has been observed in plagioclase and clinopyroxene crystals.

rights reserved

Sample number WPC26/12

Rock name Andesite porphyry

Lithology The rock sample has a dark green color and its surface is cover by dark yellowish brown materials. It has very fine-grained texture.

The rock sample shows a highly porphyritic texture. The phenocrysts/microphenocrysts (43.25 modal %) are made up of plagioclase (25.5 modal %) with small amount of unidentified mafic minerals (9 modal %), clinopyroxene (6 modal %), and opaque minerals (2.75 modal %). The groundmass phase is made up mainly of plagioclase, with small amounts of unidentified mafic minerals, opaque minerals, and apatite.

Felted plagioclase grains have two grain sizes, plagioclase phenocryst/microphenocrysts are subhedral with sizes up to 2 mm across. Their crystals show carlsbad twin. Groundmass plagioclase is anhedral with sizes up to 0.1 mm across. Plagioclase is highly replaced by sericite and clay minerals. Inclusion of apatite is present some grains.

Unidentified mafic minerals phenocrysts/microphenocrysts are subhedral to euhedral (sizes up to 1 mm across). Groundmass unidentified mafic minerals are anhedral with sizes up to 0.1 mm across. Unidentified mafic minerals are completely replaced by serpentine/chlorite.

Clinopyroxene is colorless and anhedral (averaged size 1 mm across). Some crystals show character of exsolution structure that is made up of lamellae clinopyroxene in orthopyroxene host. It is slightly altered to serpentine/chlorite. Fractures are commonly present in the crystals including serpentine/chlorite. Inclusion of apatite and opaque minerals is present some grains.

Opaque minerals phenocrysts/microphenocrysts are subhedral to anhedral (sizes up to 0.5 mm across). Groundmass opaque minerals are anhedral with sizes up to 0.1 mm across. Apatite is euhedral and has a short-primaic/prismatic shape (sizes up to 0.15 mm across). Apatite inclusion has been observed in plagioclase and clinopyroxene crystals.

Sample number WPC27/2 Rock name Andesite porphyry

Lithology The rock sample has a dark green color and its surface is cover by dark yellowish brown materials. It has very fine-grained texture.

Petrography

The rock sample shows a highly porphyritic texture. The phenocrysts/microphenocrysts (43.75 modal %) are made up of plagioclase (22 modal %) with small amount of unidentified mafic minerals (12.75 modal %), clinopyroxene (5.5 modal %), and opaque minerals (3.5 modal %). The phenocrysts/ microphenocrysts may form as glomerocrysts and cumulocrysts. The groundmass phase is made up mainly of plagioclase, with small amounts of unidentified mafic minerals, opaque minerals, and apatite.

Felted plagioclase grains have two grain sizes, plagioclase phenocryst/microphenocrysts are subhedral with sizes up to 2 mm across. Their crystals show carlsbad twin. Groundmass plagioclase is anhedral with sizes up to 0.1 mm across. Plagioclase is highly replaced by sericite and clay minerals. Inclusion of apatite is present some grains.

Unidentified mafic minerals phenocrysts/microphenocrysts are subhedral to euhedral (sizes up to 1 mm across). Groundmass unidentified mafic minerals are anhedral with sizes up to 0.1 mm across. Unidentified mafic minerals are completely replaced by serpentine/chlorite. Inclusion of apatite is present some grains.

Clinopyroxene is colorless and anhedral (averaged size 1 mm across). Some crystals show character of exsolution structure that is made up of lamellae clinopyroxene in orthopyroxene host. It is moderately altered to serpentine/chlorite. Fractures are commonly present in the crystals including serpentine/chlorite. Inclusion of apatite and opaque minerals is present some grains.

Opaque minerals phenocrysts/microphenocrysts are subhedral to anhedral (sizes up to 0.5 mm across). Groundmass opaque minerals are anhedral with sizes up to 0.1 mm across. Apatite is euhedral and has a short-primaic/prismatic shape (sizes up to 0.15 mm across). Apatite inclusion has been observed in plagioclase, unidentified mafic minerals, and clinopyroxene crystals.

Sample number WPC27/3

Rock name Andesite porphyry

Lithology The rock sample has a dark green color and its surface is cover by dark yellowish brown materials. It has highly porphyritic and very fine-grained textures.

Petrography อิปสิทธิ์มหาวิทยาลัยเชียงไหม

The rock sample shows a highly porphyritic texture. The phenocrysts/microphenocrysts (44 modal %) are made up of plagioclase (28 modal %) with small amount of unidentified mafic minerals (7 modal %), clinopyroxene (7 modal %), and opaque minerals (2 modal %). The phenocrysts/microphenocrysts may form as glomerocrysts and cumulocrysts. The groundmass phase is made up mainly of plagioclase, with small amounts of unidentified mafic minerals, opaque minerals, and apatite.

Felted plagioclase grains have two grain sizes, plagioclase phenocryst/microphenocrysts are subhedral with sizes up to 1.5 mm across. Their crystals show carlsbad twin. Groundmass plagioclase is anhedral with sizes up to 0.1 mm across. Plagioclase is highly replaced by sericite and clay minerals. Inclusion of apatite is present some grains.

Unidentified mafic minerals phenocrysts/microphenocrysts are subhedral to euhedral (sizes up to 1.2 mm across). Groundmass unidentified mafic minerals are anhedral with sizes up to 0.1 mm across. Unidentified mafic minerals are completely replaced by serpentine/chlorite. Inclusion of apatite is present some grains.

Clinopyroxene is colorless and anhedral (averaged size 1 mm across). Some crystals show character of exsolution structure that is made up of lamellae clinopyroxene in orthopyroxene host. It is moderately altered to serpentine/chlorite. Fractures are commonly present in the crystals including serpentine/chlorite. Inclusion of apatite and opaque minerals is present some grains.

Opaque minerals phenocrysts/microphenocrysts are subhedral to anhedral (sizes up to 0.5 mm across). Groundmass opaque minerals are anhedral with sizes up to 0.1 mm across. Apatite is euhedral and has a short-primaic/prismatic shape (sizes up to 0.1 mm across). Apatite inclusion has been observed in plagioclase, unidentified mafic minerals, and clinopyroxene crystals.

Sample number WCH26/2-1

Rock name Rhyolite

Lithology The rock sample is very fine-grain and shows a slightly porphyritic textures. It is a grayish color with a pinkish brown weathering surface. The phenocrysts are made up of quartz (colorless) and feldspars (white) and are embedded in the very fine-grained groundmass.

Petrography

The rock sample shows a slightly porphyritic texture. The phenocrysts/microphenocrysts (4 modal %) are made up largely of quartz (2.5 modal %) with small amount of plagioclase (1 modal %) and alkali feldspar (0.5 modal %). The groundmass phase is made up mainly of quartz-alkali feldspar devitrification, with small amounts of quartz and alkali feldspar.

Quartz phenocrysts/microphenocrysts are euhedral to subhedarl (sizes up to 1.25 mm across). They commonly show rounded edges and embayed outlines. Groundmass quartz is anhedral with sizes up to 0.1 mm across.

Chiang Mai University

Plagioclase phenocryst/microphenocrysts are subhedral with sizes up to 0.75 mm across. Their crystals show carlsbad twin and albite twin and is slightly to moderately replaced by sericite and clay minerals.

Alkali feldspar phenocrysts/microphenocrysts are subhedral to euhedral (sizes up to 0.75 mm across). It shows simple twin and perthitic texture (sanidine type). Alkali feldspar in the groundmass

phase is anhedral with sizes up to 0.1 mm across. Alkali feldspar is slightly replaced by clay minerals. Quartz-alkali feldspar intergrowth groundmass is devitrified from grass.

Sample number WCH26/2-2

Rock name Rhyolite

Lithology The rock sample is very fine-grain and porphyritic textures. It is a grayish color with a pinkish brown weathering surface. The phenocrysts are made up of quartz (colorless) and feldspars (white) and are embedded in the very fine-grained groundmass.

Petrography

The rock sample shows a slightly porphyritic texture. The phenocrysts/microphenocrysts (6.5 modal %) are made up largely of plagioclase (3 modal %) and quartz (1.5 modal %) with small amount of alkali feldspar (0.5 modal %). The groundmass phase is made up mainly of quartz-alkali feldspar spherulitic intergrowth, with small amounts of quartz and alkali feldspar.

Plagioclase phenocryst/microphenocrysts are subhedral with sizes up to 1.5 mm across. Their crystals show carlsbad twin and albite twin and is slightly to moderately replaced by sericite and clay minerals.

Quartz phenocrysts/microphenocrysts are euhedral to subhedarl (sizes up to 0.75 mm across). They commonly show rounded edges and embayed outlines. Groundmass quartz is anhedral with sizes up to 0.1 mm across. IINI

Alkali feldspar phenocrysts/microphenocrysts are subhedral to euhedral (sizes up to 1 mm across). They show simple twin and perthitic texture (sanidine type). Alkali feldspar in the groundmass phase is anhedral with sizes up to 0.1 mm across. Alkali feldspar is slightly replaced by clay minerals. Quartz-alkali feldspar intergrowth groundmass is composed of spherulite (sizes up to 1.5 mm across). Spherulite is radial aggregate of quartz and feldspar. reserved

rights

Sample number WCH26/3-1

Rock name **Rhyolite**

The rock sample is very fine-grain and porphyritic textures. It is a grayish color with a Lithology pinkish brown weathering surface. The phenocrysts are made up of quartz (colorless) and feldspars (white) and are embedded in the very fine-grained groundmass.

The rock sample shows a slightly porphyritic texture. The phenocrysts/microphenocrysts (12 modal %) in the sample are made up largely of quartz (8.5 modal %) and plagioclase (3 modal %) with small amount of alkali feldspar (0.5 modal %). The groundmass phase is made up mainly of quartz-alkali feldspar granophyric intergrowth, with small amounts of quartz, alkali feldspar, and opaque minerals.

Quartz phenocrysts/microphenocrysts are euhedral to subhedarl (sizes up to 1.5 mm across). They commonly shows rounded edges and embayed outlines. Groundmass quartz is anhedral with sizes up to 0.1 mm across.

Plagioclase phenocryst/microphenocrysts are subhedral with sizes up to 1 mm across. Their crystals show carlsbad twin and albite twin and is slightly replaced by sericite and clay minerals.

Alkali feldspar phenocrysts/microphenocrysts are subhedral to euhedral (sizes up to 1 mm across). They show simple twin and perthitic texture (sanidine type). Alkali feldspar in the groundmass phase is anhedral with sizes up to 0.1 mm across. Alkali feldspar is slightly replaced by clay minerals.

Quartz-alkali feldspar intergrowth groundmass is composed of microgranophyric intergrowth (sizes up to 1.5 mm across). Granophyric intergrowth is made up of radial quartz embedded in alkali feldspar. Opaque minerals in the groundmass phase are anhedral and fine-grain with sizes up to 0.1 mm across.

VGMA Sample number WCH26/3-2

Rock name **Rhyolite**

The rock sample is very fine-grain and porphyritic textures. It is a reddish color with a Lithology pinkish brown weathering surface. The phenocrysts are made up of quartz (colorless) and are embedded in the very fine-grained groundmass. by Chiang Mai University

Petrography

The rock sample shows a slightly porphyritic texture. The phenocrysts/microphenocrysts (6 modal %) in the sample are made up of only quartz. The groundmass phase is made up mainly of quartzalkali feldspar devitrification, with small amounts of quartz, alkali feldspar and muscovite.

reserved

ghts

Quartz phenocrysts/microphenocrysts are euhedral to subhedarl (sizes up to 0.75 mm across). They commonly show rounded edges and embayed outlines. Groundmass quartz is anhedral with sizes up to 0.1 mm across.

Alkali feldspar in the groundmass phase is anhedral with sizes up to 0.1 mm across. Alkali feldspar is slightly replaced by clay minerals. Quartz-alkali feldspar intergrowth groundmass is devitrified from grass.

Sample number WCH26/4

Rock name Rhyolite

Lithology The rock sample is very fine-grain and porphyritic textures. It is a reddish color with a pinkish brown weathering surface. The phenocrysts are made up of quartz (colorless) and feldspars (white) and are embedded in the very fine-grained groundmass.

Petrography

The rock sample shows a slightly porphyritic texture. The phenocrysts/microphenocrysts (11 modal %) are made up largely of quartz (7 modal %) and plagioclase (2.5 modal %) with small amount of alkali feldspar (1.5 modal %). The groundmass phase is made up mainly of quartz-alkali feldspar granophyric and spherulitic intergrowth, with small amounts of quartz, alkali feldspar and opaque minerals.

Quartz phenocrysts/microphenocrysts are euhedral to subhedarl (sizes up to 1.75 mm across). They commonly show rounded edges and embayed outlines. Groundmass quartz is anhedral with sizes up to 0.1 mm across.

Plagioclase phenocryst/microphenocrysts are subhedral with sizes up to 0.75 mm across. Their crystals show carlsbad twin and albite twin and are highly replaced by sericite and clay minerals.

Alkali feldspar phenocrysts/microphenocrysts are subhedral to euhedral (sizes up to 0.75 mm across). They show simple twin and perthitic texture (sanidine type). Alkali feldspar in the groundmass phase is anhedral with sizes up to 0.1 mm across. Alkali feldspar is slightly replaced by clay minerals. Quartz-alkali feldspar intergrowth groundmass is devitrified from grass. Opaque minerals in the groundmass phase are anhedral and fine-grain with sizes up to 0.2 mm across.

Sample number WCH26/5

Rock name Rhyolite

Lithology The rock sample is very fine-grain and porphyritic textures. It is a reddish color with a pinkish brown weathering surface. The phenocrysts are made up of quartz (colorless) and feldspars (white) and are embedded in the very fine-grained groundmass.

The rock sample shows a slightly porphyritic texture. The phenocrysts/microphenocrysts (12.5 modal %) are made up largely of plagioclase (9.5 modal %) and quartz (3 modal %) with small amount of alkali feldspar. The groundmass phase is made up mainly of quartz-alkali feldspar devitrification, with small amounts of quartz, alkali feldspar and opaque minerals.

Plagioclase phenocryst/microphenocrysts are subhedral with sizes up to 1.5 mm across. Their crystals show carlsbad twin and albite twin and are highly replaced by sericite and clay minerals.

Quartz phenocrysts/microphenocrysts are euhedral to subhedarl (sizes up to 1.75 mm across). They commonly show rounded edges and embayed outlines. Groundmass quartz is anhedral with sizes up to 0.1 mm across.

Alkali feldspar phenocrysts/microphenocrysts are subhedral to euhedral (sizes up to 1 mm across). They show simple twin and perthitic texture (sanidine type). Alkali feldspar in the groundmass phase is anhedral with sizes up to 0.1 mm across. Alkali feldspar is slightly replaced by clay minerals. Quartz-alkali feldspar intergrowth groundmass is devitrified from grass. Opaque minerals in the groundmass phase are anhedral and fine-grain with sizes up to 0.2 mm across.

Sample number WCH27/5-2

opyright[©]

Rock name Rhyolite

Lithology The rock sample is very fine-grain and porphyritic textures. It is a grayish color with a pinkish brown weathering surface. The phenocrysts are made up of quartz (colorless), feldspars (white), and opaque minerals (black) and are embedded in the very fine-grained groundmass. This sample is made up mostly of alkali feldspar.

Petrography

The rock sample shows a slightly porphyritic texture. The phenocrysts/microphenocrysts (10 modal %) are made up largely of plagioclase with small amount of quartz and alkali feldspar. The groundmass phase is made up mainly of quartz-alkali feldspar devitrification with small amounts of quartz, alkali feldspar, chlorite, and opaque minerals.

by Chiang Mai University

Plagioclase phenocryst/microphenocrysts are subhedral with sizes up to 0.75 mm across. Their crystals show carlsbad twin and albite twin and is moderately replaced by sericite and clay minerals.

Quartz phenocrysts/microphenocrysts are euhedral to subhedarl (sizes up to 1.25 mm across). They commonly show rounded edges and embayed outlines. Groundmass quartz is anhedral with sizes up to 0.1 mm across.

Alkali feldspar phenocrysts/microphenocrysts are subhedral to euhedral (sizes up to 0.75 mm across). They show simple twin and perthitic texture (sanidine type). Alkali feldspar in the groundmass phase is anhedral with sizes up to 0.1 mm across. Alkali feldspar is slightly replaced by clay minerals. Quartz-alkali feldspar intergrowth groundmass is devitrified from grass. Chlorite patches are anhedral and fine-grain with sizes up to 0.2 mm across. Opaque minerals in the groundmass phase are anhedral and fine-grain with sizes up to 0.2 mm across.

Sample number WCH28/4

Rock name Andesite

Lithology The rock sample has a dark gray color and its surface is cover by yellowish brown materials. It has very fine-grained texture.

กมยนดิ

Petrography

The rock sample shows a slightly porphyritic texture. The phenocrysts/microphenocrysts (9.25 modal %) are made up of plagioclase (5.5 modal %) with small amount of unidentified mafic minerals (2.75 modal %) and opaque minerals (1 modal %). The phenocrysts/microphenocrysts may form as glomerocrysts and cumulocrysts. The groundmass phase is made up mainly of plagioclase, with small amounts of opaque minerals.

Felted plagioclase grains have two grain sizes, plagioclase phenocryst/microphenocrysts are subhedral with sizes up to 1.5 mm across. Their crystals show carlsbad twin. Groundmass plagioclase is anhedral with sizes up to 0.1 mm across. Plagioclase is slightly to moderately replaced by sericite and clay minerals. Unidentified mafic minerals phenocrysts/microphenocrysts are subhedral to euhedral (sizes up to 0.5 mm across). Unidentified mafic minerals are completely replaced by serpentine/chlorite. Opaque minerals phenocrysts/microphenocrysts are subhedral to anhedral (sizes up to 0.2 mm across). Groundmass opaque minerals are anhedral with sizes up to 0.1 mm across.

ghts reser

Sample number WCH28/8-1

Rock name Basalt

Lithology The rock sample has a dark brown color and its surface is cover by yellowish brown materials. It has very fine-grained texture.

The rock sample shows a slightly porphyritic texture. The phenocrysts/microphenocrysts (7.75 modal %) are made up of plagioclase (4 modal %) with small amount of opaque minerals (3 modal %) and unidentified mafic minerals (0.75 modal %). The phenocrysts/microphenocrysts may form as glomerocrysts and cumulocrysts. The groundmass phase is made up mainly of plagioclase, with small amounts of opaque minerals.

Felted plagioclase grains have two grain sizes, plagioclase phenocryst/microphenocrysts are subhedral with sizes up to 1 mm across. Their crystals show carlsbad twin. Groundmass plagioclase is anhedral with sizes up to 0.1 mm across. Plagioclase is slightly replaced by sericite and clay minerals. Unidentified mafic minerals phenocrysts/microphenocrysts are subhedral to euhedral (sizes up to 0.5 mm across). Unidentified mafic minerals are completely replaced by epidote and serpentine/chlorite. Opaque minerals phenocrysts/microphenocrysts are subhedral to anhedral (sizes up to 0.2 mm across). Groundmass opaque minerals are anhedral with sizes up to 0.1 mm across.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

CURRICULUM VITAE

Auther's Name	Ms. Mukda Singtuen							
Date/Year of Birth	29 July 1992							
Place of Birth	Uthai Thani Province, Thailand							
Education	2011 High School, Nakhon Sawan School							
	2015 B.S. in Geology, Chiang Mai University							
Scholarship	2012-2020 Science Achievement Scholarship of Thailand							
Publications	Singtuen, M. and Phajuy, B., 2015, Petrogenesis of Mafic Dikes in							
	the Ban Chun area, Tambon Chun, Chun District, Phayao Province,							
	In Proceeding, the GEOINDO international conference 2 0 1 5,							
	November 23-24, pp. 11.							
	Phajuy, B. and Singtuen, M., 2016, Lithology Petrography and							
ลิขสิ	Geochemistry of Limestone for Lime Industry Ban Pong, Hang							
Сору	Dong District, Chiang Mai Province, Proceeding 2 nd Doi Suthep							
AÍÍ	symposium, 15-16 August, pp. 11.							
	Singtuen, M. and Phajuy, B., 2016, Geochemistry and Tectonic							
	Significance of Andesitic Rocks in Tak Province, Thailand, In							
	Proceeding, 52 nd CCOP Annual Session, November 1, pp. 34.							
	Singtuen, M. and Phajuy, B., 2 0 1 7, Geochemistry of Felsic							
	Extrusive Rocks in the Southern Part of the Chiang Khong -							
	Lampang -Tak Volcanic Belt, Thailand, In Proceeding, 6th iGRC							
	international conference 2017, February 9-10, pp. xx.							

- Experience Summer 2012, Researcher (as scholarship student), Science Achievement Scholarship of Thailand; report submitted to Faculty of Science, Chiang Mai University
 - a) Resistivity for the fault in Ban Suan Prik, Tambon Mae Hia, Mueang Chiang Mai District, Chiang Mai Province
 - b) Resistivity for the materials of subsurface in field where is in front of 40th woman's domitory, Chiang Mai university

Summer 2013, Internship student, Regional Irrigation Office 1 (Chiang Mai), Royal Irrigation Department

Summer 2013, Researcher (as scholarship student), Science Achievement Scholarship of Thailand, "Geological map of Ban Cham Khi Mod, Tambon Sribuaban, Mueang Lamphun district, Lamphun province"; report submitted to Chiang Mai University

May-June 2 0 1 4 , Exchanged student, Geology Field Camp (in southwestern Montana State), California State University: Fullerton

July 2014, Geology of Doi Pha Hom Pok National Park, Fang District, Chiang Mai Province; report submitted to Department of Groundwater Resources

May 2015, Geological study of Chiang Mai University Hariphunchai Education Centre Area and Peripheral, Lamphun Province; report submitted to Chiang Mai University

Copyright[©] by Chiang Mai University

